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 Abstract 

  Background/Aims:  Although studies show a negative relationship between physical activity 
and the risk for cognitive impairment and late-onset Alzheimer’s disease, studies concerning 
early-onset Alzheimer’s disease (EOAD) are lacking. This review aims to justify the value of exer-
cise interventions in EOAD by providing theoretical considerations that include neurobiological 
processes.  Methods:  A literature search on key words related to early-onset dementia, exercise, 
imaging, neurobiological mechanisms, and cognitive reserve was performed.  Results/Conclu-

sion:  Brain regions and neurobiological processes contributing to the positive effects of exer-
cise are affected in EOAD and, thus, provide theoretical support for exercise interventions in 
EOAD. Finally, we present the design of a randomized controlled trial currently being conducted 
in early-onset dementia patients.  Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Epidemiological studies demonstrate a positive relationship between physical activity 
and cognitive functioning  [1, 2] . A decrease in the level of physical activity by a disturbance 
in gait and, consequently, in walking coincides with a decline in cognitive functioning  [1] . A 
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decrease in the level of physical activity might even predict dementia  [3] . In contrast, main-
taining a physically active lifestyle may protect against dementia  [4, 5] .

  A causal relationship, i.e. does physical activity improve cognitive functioning, can only 
be demonstrated by randomized controlled trials (RCTs). In one study, a daily physical activ-
ity intervention in healthy sedentary older persons improved executive functions, in par-
ticular working memory  [6] . Intervention studies that examine the effects of physical activ-
ity on cognition in demented patients are limited and show mixed results. Positive effects on 
executive functions after aerobic exercise were found in small groups of elderly patients suf-
fering from mild cognitive impairment  [7] . Another study also observed positive effects of 
exercise on cognitive functioning in older persons at risk for Alzheimer’s disease (AD)  [8] . 
In contrast, in older persons with moderate dementia, no positive effects on cognition were 
found, potentially explained by the fact that most of the patients were suffering from con-
comitant cardiovascular disease  [9]  (for a review, see  [10] ). In summary, positive effects of 
physical activity have been found in healthy older individuals, patients with mild cognitive 
impairment, and persons at risk for AD. In persons with moderate dementia, these positive 
effects were not found.

  One of the brain regions that play a crucial role in executive functions is the prefrontal 
cortex  [11] . The functions of the prefrontal cortex react positively to increased physical activ-
ity  [12] . The functioning of other cortical areas, such as the parietal lobe, also show a positive 
relationship with physical activity  [13] . The prefrontal and parietal lobes are particularly vul-
nerable in   early-onset Alzheimer’s disease (EOAD)  [14, 15] . It is therefore remarkable that 
studies examining the effects of physical activity in this population are lacking.

  Studies on the effects of physical activity interventions on cognition in this younger 
population may be worthwhile for a number of reasons. Firstly, few specific treatments are 
available for patients with EOAD. However, EOAD is increasingly recognised as a problem 
 [16] . It places a large psychological and economic burden on patients and caregivers because 
of the patient’s prominent role in society at the time of disease onset  [17] . A treatment, such 
as a physical activity program, might bring positive effects for both the patient and the care-
giver. Secondly, EOAD patients suffer less from physical inconveniences  [18]  and may there-
fore participate in a more intensive program; intensity of an exercise program is important 
for its effect on cognition  [19] . Finally, positive effects of exercise on cognition in normal age-
ing and (very) early dementia can be explained by their beneficial impact on several neuro-
biological processes, such as neurogenesis, synaptogenesis, and angiogenesis  [20] . Improve-
ment of these processes may also benefit patients with EOAD.

  The goal of the present review is to provide theoretical considerations that justify exer-
cise interventions in EOAD. Within this scope, we will address the following topics. First, 
the physical functioning of EOAD patients will be addressed. Subsequently, brain regions 
that respond positively to exercise and that are affected in EOAD will be discussed. Next, 
neurobiological mechanisms such as neurogenesis, synaptogenesis, angiogenesis, and neu-
rotrophins that may underlie the effects of exercise on cognition in EOAD will be highlight-
ed. Subsequently, the cognitive reserve hypothesis will be reviewed. Finally, we present the 
design of an RCT currently being conducted in early-onset dementia (EOD) patients in our 
centre.

  Methods 

 Search databases were PubMed/MEDLINE and Web of Science. The search terms used 
were combinations of the key words early-onset and presenile in combination with dementia, 
Alzheimer’s disease, vascular dementia, and frontotemporal dementia. During the literature 
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search, it appeared that studies on EOD involve almost exclusively studies on EOAD. There-
fore, this review targets exclusively this type of EOD.

  With respect to studies on physical functioning, the following search terms were used: 
physical functioning, gait (disturbance * ), balance, falling, and walking (speed). The search 
for imaging studies included the following search terms: image * , damage * , atrophy * , de-
generate * , single-photon emission computed tomography (SPECT), (functional) magnetic 
resonance imaging ((f)MRI), and positron emission tomography (PET), in combination 
with the terms brain, cortical, cerebral, lobe, cerebrum, encephalon, and grey matter. In 
relation to exercise, only studies concerning structural MRI were included. Studies on neu-
rogenesis were searched using the terms neuro * , brain, cell, and dendri * , in combination 
with genesis, growth, branch * , survival, prolifera * , plastic * , death, damage, atrophy * , and 
degenerat * . The search for studies on synaptogenesis included the term synap * , in combi-
nation with genesis, formation, elimination, pruning, synaptophysin, and synaptotagmin. 
With respect to studies focusing on angiogenesis, the following search terms were used: 
angio * , arterio * , vessel * , and vascul * , in combination with genesis, growth, branch * , pro-
lifera * , death, deterioration, elimination, and SPECT. Neurotrophin studies were gathered 
by the search terms neurotrophin * , neurotrophic factor, brain-derived neurotrophic factor 
(BDNF), neurotrophin-4 (NT-4), nerve growth factor (NGF), neurotrophin-3 (NT-3), in-
sulin-like growth factor (IGF), and new-neurotrophin-1 (NNT-1). Studies regarding the 
cognitive reserve hypothesis included the search terms cognitive reserve, brain reserve, 
and neural reserve. Studies were first selected based on the title. Subsequently, the residu-
al studies were selected using the abstract and the content of the article. The final search 
was performed in June 2011.

  Physical Functioning of EOAD Patients Compared to Late-Onset Alzheimer’s 

Disease Patients 

 We found one study on gait disturbances in EOAD compared to late-onset Alzheimer’s 
disease (LOAD) showing that EOAD patients experience less gait disturbances (16% of the 
patients) than LOAD patients (45%)  [18] . In LOAD, gait disturbances have recently been 
studied (for reviews, see  [21–23] ). Gait disturbances are caused by neuropathology in subcor-
tical brain regions, e.g. basal ganglia, and in cortical areas, e.g. frontal lobe, and can hence 
be divided in parkinsonian and pseudoparkinsonian gait disturbances, respectively  [24] . 
Gait disturbances can be experienced even in mild stages of AD (i.e. cautious gait)  [25, 26]  
and include decreased gait velocity, step length, static and dynamic balance, and a widened 
base  [27] . In more advanced stages of AD, a ‘frontal gait’ can be observed: patients show a 
shuffling walking style and start and turn difficulties  [25] .

  Taken together, although studies are scarce, we assume that the physical condition of 
EOAD patients would permit participation in a more intensive exercise program than LOAD 
patients.

  Brain Regions That Respond Positively to Exercise and Are Affected in EOAD 

 In individuals with higher levels of cardiorespiratory fitness, the loss of grey matter, 
 characteristic for ageing, is reduced in prefrontal, superior and anterior parietal, medial tem-
poral (specifically in the hippocampus), and occipital regions  [12, 28–31] . It is known that 
exercise has a beneficial influence on cardiorespiratory fitness  [32] . Indeed, after aerobic ex-
ercise, increases in grey matter density were observed in prefrontal and temporal cortices; 
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concerning the latter, these increases are particularly seen in the hippocampus  [33, 34] . For 
more details see  table 1 .

  Neocortical atrophy is a neuropathological hallmark of EOAD  [35–37] . MRI, SPECT, 
and PET imaging techniques show that the above-mentioned brain regions which respond 
positively to exercise are affected in EOAD  [14, 15, 35, 36, 38–42] . For more details on the 
aforementioned areas and on areas affected in EOAD but not related to exercise, see  table 2 .

  Of note is that the primary sensory and motor areas are relatively preserved in EOAD 
 [35] , implying that motor activity is still possible in these patients.

  Neurobiological Mechanisms, Exercise, Cognition, and EOAD 

 Animal and human experimental studies show that 3 major neurobiological mecha-
nisms underlie the positive effects of exercise on brain structures and subsequently on cog-
nitive function: neurogenesis, synaptogenesis, and angiogenesis  [20, 43, 44] .

  Neurogenesis 
 Exercise
In a landmark paper, cell proliferation and neurogenesis have been shown in the hippo-

campal area of mice having access to a running wheel  [45] . Other studies report similar find-
ings, suggesting that prolonged physical activity (voluntary wheel running) enhances neu-
rogenesis in the hippocampus, both in adult mice and rats  [46–48]  as well as in aged mice 
and rats  [49] . More specifically, wheel running in mice stimulates survival of newly gener-
ated neurons and their development into functional hippocampal neurons  [50] . Further-

Table 1.  Brain regions that respond positively to exercise (structural MRI)

Reference Design Population (n) Age, yearsa Exercise measurement Brain region

Colcombe et al. 
[12], 2003

Relational Healthy older adults (55) 66.5 (5.3) VO2 max estimate PFC, superior parietal

Colcombe et al. 
[33], 2006

RCT
6 months (aerobic training 
vs. stretching toning)

Healthy older adults (59),
MRI of young controls 
(20)

EG 65.5
CG 66.9

VO2 max estimate PFC, temporal cortex

Erickson et al. 
[34], 2011

RCT
1 year (aerobic exercise vs. 
stretching)

Healthy older adults 
(120)

EG 67.6 (5.81)
CG 65.5 (5.44)

VO2 max Hippocampus

Erickson et al. 
[29], 2010

Relational Healthy older adults 
(299)

78 Number of blocks 
walked in 1 week 

PFC, occipital,
entorhinal,
hippocampus

Erickson et al. 
[28], 2009

Relational Healthy older adults 
(165)

66.5 (5.6) VO2 peak Hippocampus 

Gordon et al. 
[30], 2008

Relational Healthy older adults (40),
MRI of young controls 
(20)

71.5 (4.7) VO2 max Medial temporal, 
anterior parietal, 
inferior frontal

Rovio et al. 
[31], 2010

Follow-up (20.9 (4.9) 
years)a after survey 

Healthy adults (31), MCI 
(23), dementia (21)

Active (n=32): 
73.0 (3.5); 
sedentary (n=43): 
72.1 (4.4)

At follow-up: 
indication of weekly 
participation in 
physical activity

Frontal

M CI = Mild cognitive impairment; EG = exercise group; CG = control group; VO2 max = maximum oxygen volume; VO2 peak = peak oxygen 
volume; PFC = prefrontal cortex.

a Mean with standard deviation in parentheses, unless otherwise specified.
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more, continued physical activity reduces the adult-dependent decrease in adult neurogen-
esis  [51] . Increased neurogenesis after exercise is mainly coupled with positive effects on 
BDNF levels, as shown in an early study  [52]  and supported by several studies (for reviews, 
see  [20, 53] ). Cerebral blood volume, coupling neuro- and angiogenesis, proves to be elevated 
in the hippocampus in healthy subjects after 3 months of aerobic exercise  [54] .

EOAD 
 Mutations in the presenilin 1 and 2 (PS1 and PS2) genes are linked to most autosomal 

dominantly inherited forms of EOAD. Several studies suggest an association between PS1 
 [55–58]  and PS2 mutations  [59, 60]  and cell apoptosis, due to withdrawal of neurotrophins, 
and amyloid beta disposition  [61, 62] . PS1 mutations further impair enrichment-induced 
neurogenesis of hippocampal neural progenitor cells  [63] . Although some studies reported 

Table 2. B rain regions that are affected in EOAD

Reference Design Population (n) Age, yearsa Imaging 
technique

Brain region

Frisoni et al. [35], 2007 EOAD vs. LOAD EOAD (15),
LOAD (15),
younger healthy adults (15),
older healthy adults (15)

62.5 (5.4),
78.5 (6.2),
62.5 (5.4),
76.8 (3.4)

MRI Occipital, frontal 

Frisoni et al. [116], 2005 EOAD vs. younger healthy 
adults

EOAD (9),
LOAD (9),
younger healthy adults (9),
older healthy adults (17)

62 (7),
78 (4),
61 (4),
74 (6)

MRI Temporoparietal junction

Ishii et al. [36], 2005 EOAD vs. LOAD,
EOAD vs. younger healthy 
adults

EOAD 1st group (30), 2nd group (20),
LOAD (30) (20),
younger healthy adults (30) (20),
older healthy adults (30) (20)

60.2 (5.2), 60.8 (4.6),
71.5 (2.6), 72.2 (3.2),
59.6 (3.8), 59.1 (2.7),
71.4 (3.5), 70.3 (4.2)

MRI EOAD vs. LOAD:
precuneus, parietal, middle
temporal, fusiform gyrus;
EOAD vs. younger healthy adults:
medial temporal, inferior parietal, 
precuneus, perisylvian, basal 
forebrain, inferior frontal areas

Johnson et al. [38], 2001 AD vs. PS1– healthy,
AD vs. PS1+ asymptomatic

PS1– healthy (23),
PS1+ asymptomatic (18),
PS1+ diagnosed AD (16)

42.7 (7.9),
38.1 (7.2),
51.0 (6.4)

SPECT AD vs. PS1– healthy: posterior 
parietal, superior frontal; 
AD vs. PS1+ asymptomatic: 
temporoparietal

Karas et al. [117], 2007 EOAD vs. LOAD,
correlational 
(MRI – age)

AD (51) 69 (8.5) MRI Precuneus

Kemp et al. [39], 2003 EOAD vs. LOAD,
retrospective

EOAD (20),
LOAD (44)

57.8 (4.1),
76.4 (4.5)

SPECT Posterior association areas

Kim et al. [109], 2005 EOAD vs. LOAD
EOAD (74),
LOAD (46),
younger healthy adults (20),
older healthy adults (13)

Onset
55.7 (5.4), 
69.6 (3.1)

Exam.
59.1 (5.7),
72.8 (3.6),
56.4 (4.9),
71.5 (2.0)

PET Superior temporal, inferior
parietal, middle occipital,
precuneus

Mosconi et al. [14], 2005 EOAD vs. LOAD EOAD ApoE4– (15),
EOAD ApoE4+ (12),
LOAD ApoE4– (34),
LOAD ApoE4+ (31),
healthy adults (35)

60 (8),
65 (5),
77 (4),
77 (4),
69.3 (5.6)

PET Orbitofrontal, inferior parietal, 
inferior temporal

Rabinovici et al. [40], 2010 EOAD vs. LOAD
EOAD (21),
LOAD (18),
healthy adults (30)

Onset
55.2 (5.9),
72.0 (4.7),
73.7 (6.4)

Exam.
60.2 (6.2),
77.8 (4.9)

PET Temporoparietal, middle
temporal, precuneus, posterior
cingulate, occipital 

Seo et al. [15], 2011 Correlational 
(age at onset – MRI)

AD (193),
healthy adults (142)

73.5 (7.3),
66.0 (7.9)

MRI Parietal

Shiino et al. [42], 2008 Correlational 
(age – MRI)

AD (50),
healthy adults (83)

73.1 (8.7),
70.6 (6.4)

MRI Temporal, posterior cingulate

Shiino et al. [41], 2006 Comparison of 4
subgroups of atrophy

AD (40),
MCI (20),
younger healthy adults (40),
older healthy adults (88)

71.1 (9.7),
67.7 (9.0),
24.5 (2.1),
68.7 (8.7)

MRI Posterior cingulate, posterior 
cortices

P S1+/– = Presenilin 1 mutation present/absent; ApoE4 +/– = apolipoprotein allele 4 present/absent; Exam. = examination. a Mean with standard deviation in parentheses.
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increased hippocampal proliferation in EOAD  [64, 65] , this hippocampal proliferation does 
probably not reflect neurogenesis but rather glial proliferation and vascular changes  [64] .

  Synaptogenesis 
 Exercise 
 Animal models show that aerobic training increases synaptic development and synaptic 

plasticity  [66, 67] . Voluntary exercise increases dendritic complexity in the dentate gyrus  [47, 
68]  and small heat shock proteins and pre- and postsynaptic proteins in the hippocampus in 
rats  [69] . Moderate physical activity changes the level of synaptic proteins in the motor areas 
of the brain and, hence, may trigger brain plasticity in these areas  [70] . Apart from exercise, 
synaptogenesis has mainly been studied in relation to environmental enrichment. Motor 
learning (rotorad training) increases synapse formation in the cerebellar cortex of female 
rats  [71–73] , and acrobatic training enhances synaptogenesis in the motor cortex of male rats 
 [74] . These synaptic changes rely on motor learning and not on the repetitive use of synaps-
es during physical activity only  [71] . Cortical levels of synaptophysin are increased after 
stimulation (living in cages with toys, tunnels, and a running wheel in comparison to regu-
lar cages) for 20 weeks  [75] .

  EOAD 
 Research on synapses is often performed using specific synaptic vesicle proteins, such as 

synaptophysin and synaptotagmin  [76] . The level of synaptophysin is lower in EOAD than 
in LOAD, indicating a higher synapse loss in EOAD  [77] . In a preliminary study, synapto-
tagmin also seemed to be reduced in both cerebral spinal fluid and brain tissue in EOAD 
compared to age-matched healthy individuals  [78, 79] . Greater metabolic dysfunction in the 
hippocampi and the basal frontal cortex, reflecting greater synapse loss, has been found in 
EOAD patients carrying the apolipoprotein  � 4 (ApoE4) allele, compared to EOAD patients 
not carrying the ApoE4 allele and LOAD patients  [14] .

  Angiogenesis 
 Exercise 
 In rats, prolonged exercise (30 days of wheel running) induces angiogenesis and in-

creased blood flow in the cerebellum, motor cortex, and hippocampus  [71, 80–82] . Angio-
genesis occurs in the motor cortex within 30 days from the onset of the exercise program
and these effects seem to last over time  [82] . Three weeks of exercise reduces neurologic def-
icits and infarct volume after an induced stroke in rats – a finding that is attributed to an-
giogenesis  [83, 84] . Elevated microvessel density is revealed in the striatum after exercise  [83, 
84] . Growth factors that stimulate angiogenesis are already increased after 1–3 weeks of ex-
ercise in rats, and the levels of these factors are further elevated after 3 weeks of exercise  [84] . 
Older adults who perform regular exercise show more constant levels of cerebral blood flow 
in comparison to an inactive control group  [85] .

  EOAD 
 Angiogenesis is hypothesized to be reduced in AD  [86] , but it has not been specifically 

studied in EOAD.

  Neurotrophins 
 Neurotrophins are proteins that support neural networks by stimulating the develop-

ment of synapses, synaptic efficiency, and survival of neurons  [87] . There are several differ-
ent neurotrophins, e.g. NGF, BDNF, NT-3, NT-4, and IGF-1. Neurotrophins act in brain ar-
eas with a high degree of plasticity, such as the cerebral cortex and the hippocampus  [88] .
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  Exercise 
 Several animal experimental studies revealed increased BDNF levels in rats after volun-

tary exercise  [88–94]  in Ammon’s horn areas (CA1 and CA4) of the hippocampus, in layers 
II and III of the caudal cortex, and in retrosplenial cortices  [95] . Also, NGF levels are in-
creased in the dentate gyrus, in CA4 of the hippocampus, and in layers II and III of the cau-
dal cortex after exercise  [95] . Both BDNF and NGF levels increased in the motor cortex (lay-
er V; neuron) and in the striatum (glia) after 3 weeks of wheel running  [83] . Additionally, 
IGF-1 levels are increased after exercise  [96, 97] , which is thought to be neuroprotective  [98] .

  EOAD 
 Mutations in the PS1 and PS2 genes are thought to contribute to apoptotic cell death by 

means of trophic factor withdrawal  [56, 62, 99] . PS1 mutations may alter cellular signalling 
systems associated with trophic factor-induced differentiation in PC12 cells  [100] . This al-
tered responsiveness to neurotrophic factors could play a role in the pathogenesis of neuritic 
degeneration and cell death in human PS1 mutation carriers  [100] . It is also known that IGF-
1 has anti-apoptotic effects. In EOAD, PS1 mutation-related apoptotic neuronal cell death 
may be caused by disruptions of IGF-1 signalling  [101] .

  Cognitive Reserve 

 In connection with neurogenesis and exercise, the ‘cognitive reserve hypothesis’ has been 
mentioned. Cognitive reserve is thought to operate as a buffer against cognitive decline in 
both healthy ageing  [102]  and neurodegenerative processes  [103] . A broad set of determinants 
contribute to a greater cognitive reserve  [104] , including exercise  [6, 105, 106] . There is some 
inconsistency in the use of the term cognitive reserve. The literature shows a classification of 
cognitive reserve into more passive  [107]  and more active models  [104] . Passive reserve is de-
fined by quantitative neurobiological measures, such as brain volume and the number of neu-
rons and synapses. If more neurons and synaptic connections are present, the brain is able to 
function longer at a normal level after neuropathological damage resulting from a neurode-
generative process has been inflicted  [108] . On the other hand, active   reserve implies that the 
brain actively attempts to cope with neuropathology. Active reserve is determined by how ef-
ficient neural networks operate in a healthy brain (neural reserve) and by the ability to com-
pensate via cognitive strategies and the deployment of different neural networks when the 
pre-existing networks are damaged (neural compensation)  [104] . To date, only a few studies 
have addressed the specific role of cognitive reserve in EOAD. Studies on the relation between 
passive reserve and EOAD conclude that passive reserve is lower in EOAD than in LOAD, 
since EOAD patients show clinical symptoms at an earlier age and therefore have a lower pre-
morbid count of neurobiological measures  [14, 77] . In contrast, studies investigating the as-
sociation between active reserve and EOAD state that the degree of neuropathology at the 
moment of symptom onset is greater in EOAD than in LOAD. Active reserve is consequently 
presumed to be larger in younger than in older patients, since the younger patients are able to 
cope with a more severe state of neuropathology  [109, 110] .

  Conclusions 

 The notion emerging from this review is that brain regions responding positively to ex-
ercise, such as frontal and parietal regions, are particularly affected in EOAD  [111] . Damage 
in these areas results in a variety of EOAD-related clinical features, such as loss of planning 
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skills, loss of initiative, and personality changes  [112] , which are detrimental to an individu-
al’s autonomy  [113] . From this result, it follows that exercise may help fight the symptoms 
associated with EOAD.

  Exercise leads to neurogenesis in the hippocampal formation, to synaptogenesis (par-
ticularly) in the cerebellum, to angiogenesis in the motor cortex, and to increased levels of 
neurotrophins. In EOAD, synapse loss and loss of neurons are neuropathological hallmarks. 
This suggests that exercise may partly reverse the pathological mechanisms in EOAD.

  With respect to the cognitive reserve hypothesis, passive reserve is thought to be lower, 
and active reserve is considered to be higher in EOAD than in LOAD. Of note is that, to date, 
only a few studies have addressed this topic directly.

  There might be a difference between EOAD and LOAD in the way these disorders re-
spond to a treatment. This difference may be due to a variation in disease progression. Pa-
tients with EOAD show a more rapid cognitive decline than patients with LOAD  [40, 114] . 
In a meta-analysis, AD patients with a more rapid disease progression showed greater cogni-
tive benefit from rivastigmine treatment than slowly progressing patients  [115] . The question 
arises whether the same may account for nonpharmacological treatments, such as exercise 
interventions.

  This review provides theoretical support for exercise interventions in EOAD. We now 
present the design of an RCT currently being conducted studying the effects of exercise on 
the course of dementia in EOD patients.

  Design of an RCT in EOD: The EXERCISE-ON Study 

 The EXERcise and Cognition In Sedentary adults with Early-ONset dementia (EXER-
CISE-ON) study is a multicentre RCT in patients with EOD (AD, vascular dementia, fron-
totemporal dementia, or other types of dementia). The aim of this study is to assess whether 
exercise slows down the progressive course of symptoms of EOD. Participants are randomly 
assigned to 1 of 2 exercise programs: the  aerobic exercise program  (using a bicycle ergometer) 
and the  flexibility and relaxation program  (flexibility and relaxation exercises). Both pro-
grams last 3 months, with a frequency of 3 times a week and are situated in a rehabilitation 
centre. Measurements take place at baseline, after 3 months (end of the exercise program), 
and after 6 months. Primary outcomes are cognitive functioning (in particular executive 
functioning), (instrumental) activities of daily living, and quality of life. Secondary measures 
include physical and neuropsychological measures. Outcome measures will be controlled for 
comorbid medical conditions (medical chart), depressive symptoms, ApoE genotype, and 
the rest-activity rhythm in view of possible moderating effects on treatment outcome.

  This study is the first to assess the effect of exercise on cognition in EOD patients.

  Disclosure Statement 

 The authors have no financial relationships or conflicts of interest to disclose.
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