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Abstract The descending projections from motor cortex

share many features with top-down or backward connec-

tions in visual cortex; for example, corticospinal projec-

tions originate in infragranular layers, are highly divergent

and (along with descending cortico-cortical projections)

target cells expressing NMDA receptors. This is somewhat

paradoxical because backward modulatory characteristics

would not be expected of driving motor command signals.

We resolve this apparent paradox using a functional char-

acterisation of the motor system based on Helmholtz’s

ideas about perception; namely, that perception is inference

on the causes of visual sensations. We explain behaviour in

terms of inference on the causes of proprioceptive sensa-

tions. This explanation appeals to active inference, in

which higher cortical levels send descending propriocep-

tive predictions, rather than motor commands. This process

mirrors perceptual inference in sensory cortex, where

descending connections convey predictions, while

ascending connections convey prediction errors. The ana-

tomical substrate of this recurrent message passing is a

hierarchical system consisting of functionally asymmetric

driving (ascending) and modulatory (descending) connec-

tions: an arrangement that we show is almost exactly

recapitulated in the motor system, in terms of its laminar,

topographic and physiological characteristics. This per-

spective casts classical motor reflexes as minimising

prediction errors and may provide a principled explanation

for why motor cortex is agranular.

Keywords Active inference � Free energy � Hierarchy �
Motor control � Reflexes

Introduction

This paper tries to explain the functional anatomy of the

motor system from a theoretical perspective. In particular,

we address the apparently paradoxical observation that

descending projections from the motor cortex are, ana-

tomically and physiologically, more like backward con-

nections in the visual cortex than the corresponding

forward connections (Shipp 2005). Furthermore, there are

some unique characteristics of motor cortex, such as its

agranular cytoarchitecture, which remain unexplained. We

propose that these features of motor projections are con-

sistent with recent formulations of motor control in terms

of active inference. In brief, we suggest that if sensory

systems perform hierarchal perceptual inference, where

descending signals are predictions of sensory inputs, then

the functional anatomy of the motor system can be

understood in exactly the same way, down to the level of

classical motor reflex arcs. We develop this argument in

five sections.

In the first section, we review the concept of perceptual

inference from a Helmholtzian perspective, and describe

how it can be instantiated by minimising prediction error

using a hierarchical generative model. This treatment leads

to the established notion of predictive coding in visual

synthesis. Predictive coding schemes suggest that ascend-

ing and descending connections in cortical hierarchies must

have distinct anatomical and physiological characteristics,
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which are remarkably consistent with empirical observa-

tions. In the second section, we introduce active inference

as a generalisation of predictive coding, in which move-

ment is considered to suppress proprioceptive prediction

error. We discuss how active inference could have

important implications for the organisation of the motor

system, and illustrate the implicit mechanisms using the

classical ‘knee-jerk’ reflex. The active inference view dif-

fers from the conventional (computational) views of motor

control in conceptual and anatomical terms. Conceptually,

under active inference, predictions about proprioceptive

input are passed down the hierarchy; not motor commands.

Anatomically, descending or efferent connections in active

inference should be of the modulatory backward-type.

Conversely, conventional motor control schemes would

predict that descending motor command signals should be

of the driving forward-type.

In the third section, we describe forward-type ascending

and backward-type descending connections in the visual

system, and use these features to furnish ‘tests’ for forward

and backward connections in the motor system. In the

subsequent section, we apply these tests to central and

peripheral connections in the motor hierarchy, and find that

descending connections are backward-type, and ascending

connections are forward-type. This means the motor sys-

tem conforms to the predictions of active inference. In the

final section, we discuss the implications of this charac-

terisation of the motor system, with a particular focus on

the fact that primary motor cortex lacks a granular cell

layer. Before we begin, we must clarify our nomenclature.

This paper refers to extrinsic connections between

cortical areas (and subcortical structures and the spinal

cord) as afferent, efferent, ascending, descending, forward,

backward, driving and modulatory. We use ‘ascending’

(resp. afferent) and ‘descending’ (resp. efferent) in refer-

ence to the hierarchical direction of corticocortical and

corticofugal projections: towards and away from high-level

(association) cortex, respectively. We use ‘forward’ and

‘backward’ to describe the characteristics of projections,

which can be laminar, topographic or physiological. For

example, physiologically, ‘forward’ projections are ‘driv-

ing’ while ‘backward’ projections are ‘modulatory’. In

sensory systems, ascending projections have forward-type,

driving characteristics, and descending projections have

backward-type, modulatory characteristics. This relation-

ship does not necessarily hold in the motor system. The

aim of this paper is to establish whether ‘descending’

motor connections are ‘forward’ or ‘backward’ and

understand this designation in functional terms. If the

theory behind active inference is broadly correct, then all

projections of ‘ascending’ direction will have ‘forward’

characteristics, because their function is to convey pre-

diction errors. Conversely, all projections of ‘descending’

direction will have ‘backward’ characteristics, because

their function is to convey predictions.

We stress that we are not looking to impose an either/or

classification upon every projection in the nervous system as

regards ascending versus descending, forward versus back-

ward and prediction error versus prediction. These are false

partitions: for example—regarding the direction of projec-

tions—hierarchies also contain lateral connections (that are

neither ascending nor descending, and with intermediate

anatomical and physiological characteristics). Regarding the

function of projections—not every projection in a predictive

coding hierarchy conveys either a prediction or a prediction

error: for example, the information carried by primary sen-

sory afferents only becomes a prediction error signal once it

encounters a prediction (which may be at the thalamus or in

the spinal cord; see Fig. 9).

Perception and predictive coding

Hermann von Helmholtz was the first to propose that the

brain does not represent sensory images per se, but the

causes of those images and, as these causes cannot be

perceived directly, they must be inferred from sensory

impressions (Helmholtz 1860/1962). In his study of optics,

he noted that the richness of the brain’s visual perceptions

contrasted with the signals coming from retinal nerves,

which he felt could only differ in hue, intensity and retinal

position. From these signals, the brain is able to perceive

depth and spatial position, and maintain the size and colour

constancy of objects. Helmholtz summarised this as, ‘‘We

always think we see such objects before us as would have

to be present in order to bring about the same retinal

images’’—we perceive the world as it is, and not as it is

sensed. He concluded that to derive the causes of a retinal

image from the image itself, the brain must perform

unconscious inference.

How might such inferences be performed? What follows

is a précis of arguments covered in depth elsewhere

(Friston 2003). As Helmholtz pointed out, perception

entails recognising the causes of sensation. In order to

perceive, therefore, the brain must embody a generative

model of how causes generate sensations. By simply

inverting such a model (such that sensations generate

causes), it can infer the most likely causes of its sensory

data. The problem is that there are a multitude of inter-

acting causes that give rise to the same sensory impres-

sions. In vision, for instance, both object size and distance

from the observer affect retinal image size. In these cases,

straightforward inversion of the forward model becomes an

ill-posed problem.

The solution to this ill-posed problem is to use a gen-

erative (forward) model that contains prior beliefs about
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how causes interact: e.g. that objects maintain a constant

size irrespective of their distance from the observer. This

inferential process is fundamentally Bayesian, as it

involves the construction of a posterior probability density

from a prior distribution over causes and sensory data. The

brain cannot generate all of its prior beliefs de novo;

instead it must estimate them from sensory data, which

calls for empirical Bayes. Empirical Bayes uses a hierar-

chical generative model, in which estimates of causes at

one level act as (empirical) priors for the level below. In

this way, the brain can recapitulate the hierarchical causal

structure of the environment: for example, the meaning of a

phrase (encoded in semantic areas) predicts words (enco-

ded in lexical areas), which predicts letters (encoded in

ventral occipital areas), which predict oriented lines and

edges (encoded in visual areas). All these hierarchically

deployed explanations for visual input are internally con-

sistent and distributed at multiple levels of description,

where higher levels provide empirical priors that finesse

the ill-posed inversion of the brain’s generative model.

A hierarchical generative model can be used to

approximate the causes of sensory input by minimising the

difference between the observed sensory data and the

sensory data predicted or generated by the model (and

indeed differences at all higher levels). These differences

are known as prediction error, and the inversion scheme is

generally called predictive coding (Rao and Ballard 1999).

In predictive coding, backward projections from one hier-

archical level to its subordinate level furnish predictions of

the lower level’s representations, while reciprocal forward

projections convey prediction errors that report the differ-

ence between the representation and the prediction

(Mumford 1994). Error signals received by the higher level

are then used to correct its representation so that its pre-

dictions improve. This recurrent exchange of signals con-

tinues until prediction error is minimised, at which point

the hierarchical representation becomes a Bayes-optimal

estimate of the (hierarchical) causes of sensory input.

The idea that the brain uses a predictive coding scheme

has become increasingly popular, as evidence for such a

scheme has accumulated in various modalities; e.g. Rao

and Ballard (1999); Pessiglione et al. (2006); Henson and

Gagnepain (2010); McNally et al. (2011); Rauss et al.

(2011). In summary, predictive coding schemes suggest

that descending predictions are subtracted from sensory

input to generate an ascending prediction error, which

corrects the prediction. This subtraction must be effected

by local circuitry: the backward connections that carry

descending predictions, like all long-range corticocortical

(extrinsic) connections, originate in pyramidal cells and are

excitatory. It is therefore generally assumed that the sup-

pression of prediction error units is mediated by inhibitory

interneurons (whose intrinsic connections are confined to

each hierarchical level). The action of backward connec-

tions on layer 6 could be one such mechanism, as opto-

genetic manipulation of layer 6 pyramidal neurons in

mouse V1 by Olsen et al. (2012) has demonstrated that

excitation of layer 6 exerts a suppressive effect on neural

activity in layers 2–5 (apart from fast-spiking inhibitory

neurons in these layers, that showed enhanced activity).

The sign-reversal effected by this backward pathway is

clearly consistent with the tenets of predictive coding.

Another potential mechanism for the suppression of pre-

diction error is an inhibitory action of layer 1 activation on

layer 2/3 pyramidal neurons (Shlosberg et al. 2006).

Additional findings from non-invasive human studies

suggest that top-down influences suppress overall activity

in lower areas, when that activity can be predicted (Murray

et al. 2002, 2006; Harrison et al. 2007; Summerfield et al.

2008, 2011). This suppression has been proposed as the

basis of repetition suppression and phenomena such as the

mismatch negativity in electrophysiology (Garrido et al.

2009; Vuust et al. 2009).

If the brain implements predictive coding, then its

functional architecture ought to have particular attributes.

These include: (1) a hierarchical organisation with (2)

reciprocal connections between areas (conveying predic-

tions and prediction errors) that are (3) divergent (because

a cause has multiple consequences) and (4) functionally

asymmetrical. The functional asymmetry is important

because descending predictions have to embody nonlin-

earities in the generative model (e.g. to model visual

occlusion) that require them to interact or modulate each

other, whereas ascending connections that drive higher

representations do not. These attributes are indeed char-

acteristic of cortical architectures (Friston 2005). The

functional asymmetry of ascending and descending con-

nections is a critical issue for this paper, to which we shall

return in the next section.

Active inference, predictive coding and reflexes

So far we have discussed hierarchical models as they relate to

perceptual inference, but we have made no reference to

motor control. Before doing so, we must turn to a wider

theory under which predictive coding can be subsumed: the

free energy principle. This principle has been described

extensively elsewhere (e.g. Friston et al. 2006; Friston 2010),

and is summarised below. In brief, we will see that the

Helmholtzian inference and predictive coding are only one

side of the coin, in that action or behaviour also suppresses

prediction errors. This rests on equipping the brain with

motor reflexes that enable movement to suppress (proprio-

ceptive) prediction errors. The free energy principle itself

explains why it is necessary to minimise prediction errors.
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Free energy is a concept borrowed from statistical

physics. It is a quantity that bounds the surprise (negative

log probability) of some (sensory) data, given a model of

how those data were generated. The free energy principle

explains how self-organising systems (like the brain)

maintain their sensory states within physiological bounds,

in the face of constant environmental flux. Such systems

are obliged to minimise their sensory surprise, as this

maximises the probability of remaining within physiolog-

ical bounds (by definition). Although organisms cannot

evaluate surprise directly, they can minimise a bound on

surprise called (variational) free energy. Crucially, under

some simplifying assumptions, free energy corresponds to

prediction error. This is intuitive, in the sense that we are

only surprised when our predictions are violated.

The brain can minimise prediction error in one of two

ways. It can either change its predictions to better cohere

with sensory input, or change the sampling of the envi-

ronment such that sensory samples conform to predictions.

The former process corresponds to perceptual inference—

discussed in the previous section as predictive coding—the

latter to action: together, they constitute ‘active inference’

(Friston et al. 2010). The free energy principle thus dictates

that the perceptual and motor systems should not be

regarded as separate but instead as a single active inference

machine that tries to predict its sensory input in all

domains: visual, auditory, somatosensory, interoceptive

and, in the case of the motor system, proprioceptive (cf.

Censor et al.’s (2012) analysis of common learning

mechanisms in the sensory and motor systems). In what

follows, we look at the implications of this for the so-

matomotor system, in which we include sensory afferents

relevant to motor control (e.g. proprioceptors), all motor

efferents, and associated cortical and subcortical systems.

Active inference has the following important implications

for the somatomotor system (also see Fig. 1):

• In common with the rest of the central nervous system,

it should embody a hierarchical generative model that

enables the minimisation of prediction errors by its

(descending) predictions.

• Descending messages in the somatomotor system are

therefore predictions of proprioceptive input and not

motor commands.

• In the somatosensory system, predictions of sensory

input are corrected by prediction errors in the usual way

during exteroception (although note that some of these

somatosensory predictions will come from the somato-

motor system, e.g. cutaneous sensations during grip-

ping—see the ‘‘Discussion’’). In the somatomotor

system, however, proprioceptive predictions should

not be corrected but fulfilled, by the automatic periph-

eral transformation of proprioceptive prediction errors

into movement. The neuronal encoding of predic-

tions—in terms of the activity of specific neuronal

populations—and the transformations—mediated

through synaptic connections—conform to the neuro-

biologically plausible schemes considered for predic-

tive coding in the brain (for details, see Friston et al.

2010). A proprioceptive prediction error can be gener-

ated at the level of the spinal cord by the comparison of

proprioceptive predictions (from motor cortex) and

proprioceptive input. Sources of proprioceptive input

include muscle spindles (via Ia and II afferents), Golgi

tendon organs (via Ib afferents), and articular and

cutaneous receptors. The prediction error can then

activate the motor neuron to contract the muscle in

which the spindles—or other receptors—are sited: this

is the classical reflex arc (Figs. 1, 2). In short,

peripheral proprioceptive prediction errors are (or

become) motor commands.

• If both systems are minimising prediction error,

descending hierarchical projections in the motor cortex

should share the laminar, topographic and physiological

characteristics of backward connections in exterocep-

tive (sensory) systems.

The second point above raises the question: what exactly

is the difference between a top-down prediction of pro-

prioceptive input and a top-down motor command? In

principle a motor command is a signal that drives a muscle

(motor unit) and should not show context specificity: the

command to one motor unit should not depend upon the

commands to another. In contrast, a prediction of propri-

oceptive input encodes the consequences of a movement

rather than its cause.1 Given that these consequences are a

nonlinear function of their causes, the proprioceptive pre-

dictions for several motor units should be interdependent.

For example, proprioceptive consequences are modulated

by the current position of the limb. M1 efferents do in fact

have the characteristics of proprioceptive predictions:

stimulation of points in M1 activates either biceps or tri-

ceps differentially, according to the degree of flexion of the

monkey’s arm (Graziano 2006). Furthermore, prolonged

(500 ms) stimulation of M1 causes movement of a mon-

key’s arm to specific locations, no matter what position the

arm started in (Graziano 2006). This stimulation regime is

controversial (Strick 2002), as it is non-physiological and

stimulus-driven activity has been shown to ‘hijack’ all

activity in the resulting M1 output (Griffin et al. 2011).

1 Another way to put this is that command signals live in a space of

motor effectors, whose dimensionality is equal to the number of

(extrafusal) neuromuscular junctions—this is the output of the motor

neurons. Predictions live in the space of sensory receptors, whose

dimensionality is equal to the number of primary afferents—this is

input to the motor neurons.
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Nevertheless, one can still argue that under this non-

physiological stimulation, the M1 layer 5 pyramidal cells’

output encodes the goal of the movement and not the motor

commands for generating that movement (because the

necessary commands to reach a given location would be

different at different starting positions). Whether physio-

logical M1 activity can be said to encode goals or motor

commands is reviewed in the ‘‘Discussion’’.

In brief, under active inference, descending signals do

not enact motor commands directly, but specify the desired

consequences of a movement.2 These descending signals

are either predictions of proprioceptive input or predictions

of precision or gain (see Fig. 2 and the ‘‘Discussion’’ for

explication of the latter).

Our focus in this paper is on the functional anatomy of

the motor system, considered in light of active inference.

Although we have stressed the importance of hierarchical

message passing in predictive coding, we shall not consider

in detail where top-down predictions and (empirical) priors

come from. Priors in the motor system are considered to be

established in the same way as in perceptual systems: some

would be genetically specified and present from birth (e.g.

innate reflexes), while most would be learned during

development. The easiest way to demonstrate their exis-

tence empirically is to show their effects on evoked

responses to stimuli; i.e. their contribution to prediction

error responses. In perception, it has been shown that the

mismatch negativity response is best characterised as that

of a predictive coding network to a change in a stimulus

about which prior beliefs have been formed (Garrido et al.

2009). There are myriad of other examples of how learning

priors about stimuli changes the responses they evoke: e.g.

for visual (Summerfield et al. 2008; Summerfield and

Koechlin 2008), auditory (Pincze et al. 2002), and

somatosensory (Akatsuka et al. 2007) stimuli. As the brain

learns these changing probabilities, they can be expressed

in the motor domain as increased speed and accuracy of

motor responses (den Ouden et al. 2010). There is also a

literature which demonstrates the effects of learning priors

on single cell responses in electrophysiology (e.g. Rao and

Ballard 1999; Spratling 2010).

The idea that the motor cortex specifies consequences

of, rather than instructions for, movements is not a new

one. More than half a century ago, Merton (1953) proposed

the servo hypothesis, which held that descending motor

signals activated gamma motor neurons, specifying the

desired length of the muscle. This changed the sensitivity

of their muscle spindles, thereby activating alpha motor

neurons via the tonic stretch reflex, which causes the

muscle to contract until its length reached the point spec-

ified by the gamma motor neurons. The servo hypothesis

assumed that while the descending command remains

constant, muscle length will also remain constant, because

changes in load will be compensated for by the tonic

stretch reflex. The servo hypothesis did not survive because

gamma and alpha motor neurons were shown to activate

simultaneously, not sequentially (Granit 1955), and the

gain of the tonic stretch reflex was shown to be insufficient

for maximal increases in muscle force with minimal dis-

placement (Vallbo 1970).

The successor to the servo hypothesis is the equilibrium

point hypothesis—or more properly, threshold control

theory (Feldman and Levin 2009), which proposes that

descending signals to both alpha and gamma motor neu-

rons specify the relationship between muscle force and

muscle length—by setting the threshold of the tonic stretch

reflex—such that a given load will result in the muscle

reaching the specific length at which its force matches the

external load: the ‘equilibrium point’. For a constant

descending signal, changes in this external load would

result in predictable changes in muscle length, as it is the

relationship between force and length which descending

signals dictate, not the absolute length (unlike the servo

hypothesis).

Threshold control theory and active inference are clo-

sely related and consensual in several respects. First, both

eschew the complex calculation of motor commands by the

central nervous system (CNS); instead, they merely ask the

CNS to specify the sensory conditions under which motor

commands should emerge—through the operation of clas-

sical reflex arcs. In threshold control theory, the sensory

conditions specified by the CNS are the threshold positions

at which muscles begin to be recruited in order to achieve a

narrow subset of equilibrium points. In active inference,

they are the sensory consequences of movement, which

then undergo automatic peripheral transformation into

motor commands.

Second, neither theory holds that redundancy problems

in motor control require an optimality criterion to choose

between competing trajectories (see Friston 2011 for fur-

ther discussion). Third, both theories propose that the

2 As noted by our reviewers, predictions of muscle torque (reported

by Ib afferents) might be construed as motor commands, not

proprioceptive consequences. The key point here is that the Ib

inhibitory interneurons that receive descending predictions do not just

receive torque information from Ib afferents, but also inputs from

muscle spindles via Ia afferents, articular afferents and low-threshold

afferent fibres from cutaneous receptors. It is therefore most accurate

to describe the descending prediction of Ib activity as not simply a

‘prediction of torque’, but a ‘prediction of torque in a particular

context’. It is this contextual aspect of the prediction that differen-

tiates it from a motor command, which would not be context-

dependent. Furthermore, under active inference, actions minimise

sensory prediction error not just on position, but also on velocity,

acceleration, jerk, smoothness, etc. (Friston et al. 2010). This means

proprioceptive predictions will necessarily have a torque component,

but they cannot generate this torque: this is the job of the spinal reflex

arc.
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sensory conditions under which motor commands emerge

are specified in an extrinsic frame of reference—as

opposed to an intrinsic (muscle based) frame of reference.

This enables top-down predictions about the consequences

of movement in other sensory modalities, which can be

regarded as corollary discharge. Crucially, this obviates the

need for a complex (ill posed) transformation of efference

copy from intrinsic to extrinsic frames (Feldman 2008).

There are two essential differences between the theories.

First, active inference is grounded in predictive coding, and

therefore holds that descending signals are predictions of

the sensory consequences of movement. This is in contrast

to threshold control theory, which does not predict pro-

prioceptive or torque-related states—the threshold position

is not the movement ‘prediction’ and deviation from this

position is not a ‘prediction error’—instead, the threshold

position is a tool for the production of actions and the

interpretation of (otherwise ambiguous) kinaesthetic

information.

Second, in threshold control theory, changing descend-

ing signals lead (via changing threshold positions) to new

equilibrium points that are defined in terms of position and

torque. In active inference, descending signals specify

sensory trajectories whose fixed point is the equilibrium

point; i.e. the dynamics of the movement (including

velocity, acceleration, jerk, etc), not just the position and

torque at an end point (Friston et al. 2010).

The last of the four implications of active inference for

the nervous system listed above motivates the following

hypothesis, which we address in the remainder of this

paper.

Under active inference, descending projections in the

motor hierarchy convey proprioceptive predictions and

therefore should have comparable laminar, topographic and

physiological characteristics as backward projections in

exteroceptive (e.g. visual) hierarchies.

Conversely, conventional models of the somatomotor

system, as exemplified in the motor control literature

(Shadmehr et al. 2010), consider descending connections to

deliver driving command signals and therefore to be of the

forward type. The conventional motor control model is

taken here to treat the brain as an input–output system that

mediates stimulus–response mappings—in which sensory

signals are passed forwards to sensory to association to

motor cortex and then to the spinal cord and cranial nerve

nuclei as motor commands. In computational motor control
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this usually involves the use of forward and inverse mod-

els, where the inverse model supplies the motor command

and the forward model converts efference copy into sen-

sory predictions (Wolpert and Kawato 1998). These pre-

dictions are used to optimise the estimated state of the

motor plant required by the inverse model (see Fig. 1 for a

schematic that compares active inference and motor control

schemes).

In the last 10 years, optimal motor control has become a

dominant model of motor control (Scott 2004). This model

was based on influential work by Todorov and Jordan

(2002, 2004), who showed the selective use of sensory

feedback to correct deviations that interfere with task goals

could account for several unexplained effects in motor

control, such as the variability of task-irrelevant movement

qualities. The idea that motor cortex could use sensory

feedback contrasted with the earlier purely ‘feed-forward’

serial model of motor control (see Fig. 1). The optimal

control model has some commonalities with the active

inference view, in that both propose that sensory inputs to

motor cortex finesse its output: in optimal control theory,

these inputs are state estimates that the optimal controller

uses to optimise motor commands. Under active inference,

these inputs are proprioceptive and somatosensory predic-

tion errors, which a forward model uses to derive

proprioceptive predictions. However, there are profound

differences between the two: a crucial theoretical differ-

ence—explained at length in Friston (2011)—is that opti-

mal control models generate optimal motor commands by

minimising a cost function associated with movement. In

active inference schemes, the cost functions are replaced

by prior beliefs about desired trajectories in extrinsic

frames of reference, which emerge naturally during hier-

archical perceptual inference.

Of interest in the present context, is an important dif-

ference between the signals descending the spinal cord in

the two models: under active inference these are proprio-

ceptive predictions, whereas in optimal control—as in

earlier serial models—these signals are motor commands.

In neurobiological terms, predictions must have modula-

tory or non-linear context-dependent (backward-type)

properties, whereas commands must have driving, linear,

context-independent (forward-type) properties. We assume

here, that predictions (or commands) are communicated

through the firing rate modulation of descending efferents

of upper motor neurons in M1. The key difference between

predictions and commands is that the former have yet to be

converted (inverted) into command signals that fulfil the

predictions (goals). This conversion necessarily entails

context-sensitivity—for example, producing different

Fig. 1 Motor control, optimal control and active inference: these simplified schematics ignore the contributions of spinal circuits and subcortical

structures; and omit many hierarchical levels (especially on the sensory side). M1, S1, M2 and S2 signify primary and secondary motor and

sensory cortex (S2 is area 5, not ‘SII’), while As signifies prefrontal association cortex. Red arrows denote driving ‘forward’ projections, and

black arrows modulatory ‘backward’ projections. Afferent somatosensory projections are in blue. a-MN and c-MN signify alpha- and gamma

motor neuron output. The dashed black arrows in the optimal control scheme show what is different about optimal control compared with earlier

serial models of the motor system: namely, the presence of sensory feedback connections to motor cortices. Under the active inference

(predictive coding) scheme, all connections are reciprocal, with backward-type descending connections and forward-type ascending connections.

They are descending from motor to sensory areas because the motor areas are above somatosensory areas in the hierarchy (see Fig. 4a).

Anatomical implications The motor control and active inference models have identical connection types in the sensory system, but opposite

connection types in the motor system (examples are indicated with asterisks). The nature of these connections should therefore disambiguate

between the two models. The active inference model predicts descending motor connections should be backward-type, while conventional motor

control schemes require the descending connections to convey driving motor commands. Predictions and prediction errors In the active

inference scheme, backward connections convey predictions, and the forward connections deliver prediction errors. In the motor control scheme,

the descending forward connections from M1 convey motor commands computed by an inverse model for generating movements and efference

copy required by a forward model, for predicting its sensory consequences. The classical reflex arc The active inference model illustrates how the

classical reflex arc performs an inverse mapping from sensory predictions to action (motor commands). The (classical) reflex arcs we have in

mind are a nuanced version of Granit’s (1963) proposal that, in voluntary movements, a reference value is set by descending signals, which act on

both the alpha and gamma motor neurons—known as alpha-gamma coactivation (Matthews 1959; Feldman and Orlovsky 1972). In this setting,

the rate of firing of alpha motor neurons is set (by proprioceptive prediction errors) to produce the desired (predicted) shortening of the muscle,

though innervation of extrafusal muscle fibres; while the rate of firing of gamma motor neurons optimises the sensitivity or gain of muscle

spindles, though innervation of intrafusal muscle fibres. Note the emphasis here is on alpha motor neurons as carrying proprioceptive prediction

errors derived from the comparison of descending predictions (about movement trajectories) and primary afferents (see Fig. 2). In this setting,

gamma motor neurons are considered to provide context-sensitive modulation or gain of primary afferents (e.g. ensure they report changes in

muscle length and velocity within their dynamic range). Forward and inverse models Conventional (computational) motor control theory uses

the notion of forward–inverse models to explain how the brain generates actions from desired sensory states (the inverse model) and predicts the

sensory consequences of action (the forward model). In these schemes, the inverse model has to generate a motor command from sensory cues—

a complex transformation—and then a forward model uses an efference copy of this command to generate a predicted proprioceptive outcome

called corollary discharge (Wolpert and Kawato 1998). In active inference a forward or generative model generates both proprioceptive and

sensory predictions—a simple transformation—and an inverse mapping converts a proprioceptive prediction into movement. This is a relatively

well-posed problem and could be implemented by spinal reflex arcs (Friston et al. 2010). In the terminology of this paper, optimal control’s

inverse model maps from an extrinsic frame to an intrinsic frame and from an intrinsic frame to motor commands. The inverse mapping in active

inference is simply from the intrinsic frame to motor commands. This figure omits the significant contribution of the cerebellum to the forward

model

b
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Fig. 2 Generation of spinal prediction errors and the classical reflex arc.

This schematic provides examples of spinal cord circuitry that are

consistent with its empirical features and could mediate proprioceptive

predictions. They all distinguish between descending proprioceptive

predictions of (Ia and Ib) primary afferents and predictions of the

precision of the ensuing prediction error. Predictions of precision

optimise the gain of prediction error by facilitating descending predic-

tions (through NMDA receptor activation) and the afferents predicted

(through gamma motor neuron drive to intrafusal muscle fibres). This

necessarily entails alpha-gamma coactivation and renders descending

predictions (of precision) facilitatory. The prediction errors per se are

simply the difference between predictions and afferent input. The left
panel considers this to be mediated by convergent monosynaptic

(AMPA-R mediated) descending projections (‘CM’ neurons) and

inhibition, mediated by the inhibitory interneurons of Ib (Rudomin and

Schmidt 1999) or II (Bannatyne et al. 2006) afferents. The middle and
right panels consider the actions of Ia afferents, which drive (or

disinhibit) alpha motor neurons, in opposition to (inhibitory) descending

predictions. The middle panel is based on Hultborn et al. (1987) and the

right panel on Lindström (1973). Note that corticospinal neurons synapse

directly with spinal motor neurons and indirectly via interneurons

(Lemon 2008). When a reflex is elicited by stretching a tendon, sudden

lengthening of the (fusimotor) muscle spindle stretch receptors sends

proprioceptive signals (via primary sensory Ia neurons) to the dorsal root

of the spinal cord. These sensory signals excite (disinhibit) alpha motor

neurons, which contract (extrafusal) muscle fibres and return the stretch

receptors to their original state. The activation of alpha motor neurons by

sensory afferents can be monosynaptic or polysynaptic. In the case of

monosynaptic (simple) reflex arcs (middle panel), a prediction error is

generated by inhibition of the alpha motor neurons by descending

predictions from upper motor neurons. In polysynaptic (spinal) reflexes,

Ia inhibitory interneurons may report prediction errors (right panel). Ia

inhibitory interneurons are inhibited by sensory afferents (via glycine)

and this inhibition is countered by descending corticospinal efferents

(Lindström 1973). In this polysynaptic case, reflex muscle fibre

contractions are elicited by disinhibition of alpha motor neuron drive.

Crucially, precisely the same muscle contractions can result from

changes in descending (corticospinal) predictions. This could involve

suspension of descending (glutamatergic) activation either of presynaptic

inhibition of Ia afferents (Hultborn et al. 1987; reviewed by Rudomin and

Schmidt 1999)—not shown—or of Ia inhibitory interneurons, and

disinhibition of alpha motor neuron activity. The ensuing mismatch or

prediction error is resolved by muscle contraction and a reduction in

stretch receptor discharge rates. In both reflexes and voluntary

movement, under active inference the motor system is enslaved to fulfil

descending proprioceptive predictions. As Feldman (2009) notes,

‘‘posture-stabilizing mechanisms (i.e. classical reflex arcs) do not resist
but assist the movement’’ [italics in original]: threshold control theory

does this by changing the threshold position, active inference by changing

proprioceptive predictions. The key aspect of this circuitry is that it places

descending corticospinal efferents and primary afferents in opposition,

through inhibitory interneurons. The role of inhibitory interneurons is

often portrayed in terms of a reciprocal inhibitory control of agonist and

antagonist muscles. However, in the setting of predictive coding, they

play a simpler and more fundamental role in the formation of prediction

errors. This role is remarkably consistent with computational architec-

tures in the cortex and thalamus: for example, top-down projections in the

sensory hierarchies activate inhibitory neurons in layer 1 which then

suppress (superficial) pyramidal cells, thought to encode prediction error

(Shlosberg et al. 2006). Note that there are many issues we have ignored

in these schematics, such as the role of polysynaptic transformations,

nonlinear dendritic integration, presynaptic inhibition by cutaneous

afferents, neuromodulatory effects, the role of Renshaw cells, and other

types of primary afferents
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command signals at the spinal level, depending upon limb

position. Another difference lies in the nature of the sen-

sory input to motor cortex: under active inference, these

ascending signals must be sensory prediction errors (in

predictive coding architectures, ascending signals cannot

be predictions), whereas in optimal control these inputs to

the optimal controller (inverse model) are state estimates,

i.e. sensory predictions.

The analysis above means that characterising somato-

motor connections as forward or backward should disam-

biguate between schemes based on active inference and

optimal motor control. In the next section, we describe the

characteristics of forward (ascending) and backward

(descending) projections in sensory hierarchies, and then

apply these characteristics as tests to motor projections in

the subsequent section.

Forward and backward connections

In this section, we review the characteristics of ascending

and descending projections in the visual system, as this is

the paradigmatic sensory hierarchy. The characteristics of

ascending visual projections will become tests of forward

projections (i.e. those conveying prediction errors) and the

characteristics of descending visual projections will con-

stitute tests of backward projections (i.e. those conveying

predictions). These characteristics can be grouped into four

areas; laminar, topographic, physiological and pharmaco-

logical (also see Table 1).

Laminar characteristics

The cerebral neocortex consists of six layers of neurons,

defined by differences in neuronal composition (pyramidal

or stellate excitatory neurons, and numerous inhibitory

classes) and packing density (Shipp 2007). Layer 4 is

known as the ‘internal granular layer’ or just ‘granular

layer’ (due to its appearance), and the layers above and

below it are known as ‘supragranular’ and ‘infragranular’,

respectively. Since the late 1970s (e.g. Rockland and

Pandya 1979), it has been known that extrinsic cortico-

cortical (ignoring thalamocortical) connections between

areas in the visual system have distinct laminar charac-

teristics, which depend on whether they are ascending

(forward) or descending (backward).

Felleman and Van Essen (1991) surveyed 156 cortico-

cortical pathways and specified criteria by which

Table 1 Columns 2 and 4 summarise the characteristics of forward (driving) and backward (modulatory) connections in sensory cortex

Test Forward connections

in sensory cortex

Ascending connections in

motor cortex

Backward

connections in

sensory cortex

Descending connections in motor cortex

(and periphery)

Origin Supra � infragranular Bilaminar

(Supra [ infragranular)

Infra [ supragranular Bilaminar (Supra [ infragranular), but

of a lower S:I ratio than the ascending

connections*

Termination Layer 4 (granular) Multilaminar in higher motor

areas; layer 3 in S1 to M1

Concentrated in

layers 1 and 6,

avoiding layer 4

Multilaminar, concentrated in layer 1

and avoiding lower layer 3 (or layer 4

in sensory cortex)

Axonal properties Rarely bifurcate,

patchy terminations

Not described Commonly bifurcate,

widely distributed

terminations

Motor neurons innervate hundreds of

muscle fibres in a uniform distribution;

corticospinal axons innervate many

motor neurons in different muscle

groups

Vergence Somatotopic, more

segregated

S1 to M1 and peripheral

proprioceptive connections

to M1 are more somatotopic

and segregated

Less somatotopic,

more diffuse

M1 to periphery very divergent and

convergent; cingulate, SMA and PMC

to M1 less somatotopic

Proportion Fewer See descending column Greater Greater from M1 to the periphery, areas

6–4, F6 to F3, and CMAr to SMA/

PMdr

Physiological and

pharmacological

properties

More driving in

character (via non-

NMDA-Rs)

S1 connections to M1 more

driving than PMC

connections; M1’s

ascending input is via non-

NMDA-Rs

More modulatory in

character

(projecting to

supragranular

NMDA-Rs)

NMDA receptors in supragranular

distribution; 50 % of M1’s descending

input is via NMDA-Rs; F5 has a

powerful facilitatory effect on M1

outputs but is not itself driving

These are used as tests of the connection type of ascending (afferent) and descending (efferent) projections in motor cortex and the periphery. As

can be seen from columns 3 and 5, ascending connections in motor cortex are forward (driving), and descending connections are backward

(modulatory); the one exception (marked *) has some mitigating properties, as discussed in the text (see ‘‘Laminar characteristics’’ in ‘‘Motor

projections’’). This pattern is predicted by our active inference model of somatomotor organisation
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projections could be classified as forward, backward or

lateral. They defined forward projections as originating

predominantly (i.e.[70 % cells of origin) in supragranular

layers, or occasionally with a bilaminar pattern (meaning

\70 % either supra- or infragranular, but excluding layer 4

itself). Forward projections terminate preferentially in layer

4. Backward projections are predominantly infragranular or

bilaminar in origin with terminations in layers 1 and 6

(especially the former), and always evading layer 4 (see

Table 1). Further refinements to this scheme suggest the

operation of a ‘distance rule’, whereby forward and back-

ward laminar characteristics become more accentuated for

connections traversing two or more tiers in the hierarchy

(Barone et al. 2000).

Topographic characteristics

Salin and Bullier (1995) reviewed a large body of evidence

concerning the microscopic and macroscopic topography

of corticocortical connections, and how these structural

properties contribute to their function; e.g. their receptive

fields. In cat area 17, for example, \3 % of forward pro-

jecting neurons have axons which bifurcate to separate

cortical destinations. Conversely, backward projections to

areas 17 and 18 include as much as 30 % bifurcating axons

(Bullier et al. 1984; Ferrer et al. 1992). A similar rela-

tionship exists in visual areas in the monkey (Salin and

Bullier 1995).

Rockland and Drash (1996) contrasted a subset of

backward connections from late visual areas (TE and TF)

to primary visual cortex with typical forward connections

in the macaque. The forward connections concentrated

their synaptic terminals in 1–3 arbours of around 0.25 mm

in diameter, whilst backward connections were distributed

over a ‘‘wand-like array’’ of neurons, with numerous ter-

minal fields stretching over 4–10 mm, and in one case,

21 mm (Fig. 3b). This very diffuse pattern was only found

in around 10 % of backward projections, but it was not

found in any forward projections.

These microscopic properties of backward connections

reflect their greater macroscopic divergence. Zeki and

Shipp (1988) reviewed forward and backward connections

between areas V1, V2 and V5 in macaques, and concluded

that backward connections showed much greater conver-

gence and divergence than their forward counterparts

(Fig. 3a). This means that cells in higher visual areas

project back to a wider area than that which projects to

them, and cells in lower visual areas receive projections

from a wider area than they project to. Whereas forward

connections are typically patchy in nature, backward con-

nections are more diffuse and, even when patchy, their

terminals can be spread over a larger area than the

deployment of neurons projecting to them (Shipp and Zeki

1989a, b; Salin and Bullier 1995). These attributes mean

that visuotopy preserved in the forward direction is eroded

in the backward direction, allowing backward projections

Fig. 3 Topographic characteristics of forward and backward projec-

tions. a This schematic illustrates projections to and from a lower and

higher level in the visual hierarchy (adapted from Zeki and Shipp

1988). Red arrows signify forward connections and black arrows
backward connections. Note that there is a much greater convergence

(from the point of view of neurons receiving projections) and

divergence (from the point of view of neurons sending projections) in

backward relative to forward connections. b This schematic is

adapted from Rockland and Drash (1996), and illustrates the terminal

fields of ‘typical’ forward (axon FF red) and backward (axon FB
purple) connections in the visual system. IG represents infragranular

collaterals of a backward connection, and ad an apical dendrite;

cortical layers are labelled on the left. Note the few delimited arbours

of terminals on the forward connection, and the widely distributed

‘‘wand-like array’’ of backward connection terminals
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to contribute significantly to the extra classical receptive

field of a cell (Angelucci and Bullier 2003).

Salin and Bullier (1995) also noted that in the macaque

ventral occipitotemporal pathway (devoted to object rec-

ognition), backward connections outnumber forward con-

nections. Forward projections from the lateral geniculate

nucleus (LGN) to V1 are outnumbered 20 to 1 by those

returning in the opposite direction; and backward projec-

tions outweigh forward projections linking central V1 to

V4, TEO to TE, and TEO and TE to parahippocampal and

hippocampal areas. It is perhaps significant that backward

connections should be so prevalent in the object recogni-

tion pathway, given the clear evolutionary importance of

recognising objects and the fact that occluded objects are a

classic example of nonlinearity, whose recognition may

depend on top-down predictions (Mumford 1994).

Physiological characteristics

Forward and backward connections in sensory systems have

always been associated with ‘driving’ and ‘modulatory’

characteristics, respectively, though the latter physiological

duality has lacked the empirical clarity of its anatomical

counterpart, particularly for cortical interactions.

The simple but fundamental observation that visual

receptive field size increases at successive tiers of the

cortical hierarchy implies that a spatially restricted subset

of the total forward input to a neuron is capable of driving

it; evidently the same is not true, in general, of the back-

ward connections. Experiments manipulating feedback

(e.g. by cooling) found no effect upon spontaneous activity,

and were generally consistent with the formulation that

backward input might alter the way in which a neuron

would respond to its forward, driving input, but did not

influence activity in the absence of that driving input, nor

fundamentally alter the specificity of the response (Bullier

et al. 2001; Martinez-Conde et al. 1999; Przybyszewski

et al. 2000; Sandell and Schiller 1982). Thus driving and

modulatory effects could be defined in a somewhat circu-

lar, but logically coherent fashion.

The generic concept of driving versus modulatory also

applies to the primary thalamic relay nuclei, where driving

by forward connections implies an obligatory correlation of

pre and post-synaptic activity (e.g. as measured by a cross-

correlogram), that is barely detectable in backward con-

nections (Sherman and Guillery 1998). LGN neurons, for

instance, essentially inherit their receptive field character-

istics from a minority of retinal afferents, whilst displaying

a variety of subtler influences of cortical origin; these

derive from layer 6 of V1, and modulate the level and

synchrony of activity amongst LGN neurons. In vitro—in

slice preparations—driving connections produce large

excitatory postsynaptic potentials (EPSPs) to the first

action potential of a series that diminish in size with sub-

sequent action potentials (Li et al. 2003; Turner and Salt

1998). The effect is sufficiently discernible with just two

impulses, and termed ‘paired-pulse depression’. It is also

‘all or none’—the magnitude of electrical stimulation can

determine the probability of eliciting an EPSP, but not its

size. Modulating connections, by contrast, have smaller

initial EPSPs that grow larger with subsequent stimuli (i.e.

‘paired pulse facilitation’), and show a non-linear response

to variations in stimulus magnitude. Both types of EPSP

are blocked by antagonists of ionotropic glutamate

receptors.

Much as the study of laminar patterns of termination

imposed greater rigour on the concept of hierarchy, the

in vitro properties offer a robust, empirical definition of

driving and modulatory synaptic contacts (Reichova and

Sherman 2004). The latter also use metabotropic glutamate

receptors (mGluRs), which are not found in driving con-

nections. More recent work has extended the classification

from thalamic synapses to thalamocortical and cortico-

cortical connections between primary and secondary sen-

sory areas (Covic and Sherman 2011; De Pasquale and

Sherman 2011; Lee and Sherman 2008; Viaene et al.

2011a, b, c). A crucial question for this work is the extent

to which its in vitro findings are applicable in vivo, as

several of its initial results are at odds with previous gen-

eralisations: not least the finding that forward and back-

ward connections can have equal and symmetrical driving

and modulatory characteristics, albeit between cortical

areas that are close to each other in the cortical hierarchy.

With respect to this question, there are at least three sets of

considerations that deserve attention:

1. In vivo and in vitro physiologies are not identical

(Borst 2010). Importantly, the paired-pulse investiga-

tions routinely add GABA blocking agents to the

incubation medium, to avoid masking of glutamate

excitation. In vitro conditions are further characterised,

in general, by a higher concentration of calcium ions,

and lower levels of tonic network activity.

2. The paired pulse effects are largely presynaptic in

origin, and reflect the variability of transmitter release

probability rather than the operational characteristics

of the synapse in vivo (Beck et al. 2005; Branco and

Staras 2009; Dobrunz and Stevens 1997). Due to the

factors mentioned in (1), release probability is higher

in vitro (Borst 2010).

3. The physiology of forward/backward connections will

depend upon many factors—laminar distribution, the

cell-types contacted, location of synapses within the

dendritic arborisation, and the nature of postsynaptic

receptors—in addition to the presynaptic release

mechanisms.
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Each one of these factors might constrain the ability of

‘drivers’ to drive in vivo. For instance, even in an in vitro

system, tonic activity has been shown to switch cortico-

thalamic driver synapses to a ‘coincidence mode’, requir-

ing co-stimulation of two terminals to achieve postsynaptic

spiking (Groh et al. 2008). We will therefore assume a

distinction between driving and modulation in operational

terms; i.e. as might be found in vivo (e.g. neuroimaging

studies—see Büchel and Friston 1997). In the realm of

whole-brain signal analysis, a related distinction can be

drawn between linear (driving) and nonlinear (modulatory)

frequency coupling (Chen et al. 2009).

We now consider the factors listed in (3) above and

evidence linking nonlinear (modulatory) effects to back-

ward connections, much of which depends on a closer

consideration of the roles played by the different types of

postsynaptic glutamate receptors:

Pharmacological characteristics

Glutamate is the principal excitatory neurotransmitter in

the cortex and activates both ionotropic and metabotropic

receptors. Metabotropic receptor binding triggers effects

with the longest time course, and is clearly modulatory in

action (Pin and Duvoisin 1995). Spiking transmission is

mediated by ionotropic glutamate receptors, classified

according to their AMPA, kainate and NMDA agonists

(Traynelis et al. 2010). These are typically co-localised,

and co-activated, but profoundly different biophysically.

AMPA activation is fast and stereotyped, with onset times

\1 ms, and deactivation within 3 ms; recombinant kainate

receptors have AMPA receptor-like kinetics, although they

can be slower in vivo. NMDA currents, by contrast, are

smaller but more prolonged: the onset and deactivation are

one and two orders of magnitude slower, respectively.

Unlike non-NMDA receptors, NMDA receptors are both

ligand-gated and voltage-dependent—to open their channel

they require both glutamate binding and membrane depo-

larisation to displace the blocking Mg2? ion. The voltage

dependence makes NMDA transmission non-linear and the

receptors function, in effect, as postsynaptic coincidence

detectors. These properties may be particularly important

in governing the temporal patterning of network activity

(Durstewitz 2009). Once activated, NMDA receptors play a

critical role in changing long-term synaptic plasticity (via

Ca2? influx) and increase the short-term gain of AMPA/

kainate receptors (Larkum et al. 2004). In summary,

NMDA receptors are nonlinear and modulatory in char-

acter, whereas non-NMDA receptors have more phasic,

driving properties.

NMDA receptors (NMDA-Rs) are ubiquitous in distri-

bution, and clearly participate in forward, intrinsic and

backward signal processing. They occur, for instance, at

both sensory and cortical synapses with thalamic relay cells

(Salt 2002). The ratio of NMDA-R:non-NMDA-R synaptic

current is not necessarily equivalent, however, and it is

known to be greater at the synapses of backward connec-

tions in at least one system, the rodent somatosensory relay

(Hsu et al. 2010). In the cortex, NMDA-R density can vary

across layers, in parallel with certain other modulatory

receptors (e.g. cholinergic, serotoninergic; Eickhoff et al.

2007). The key variable of interest may rather be the

subunit composition of NMDA-Rs (NR1 and NR2). The

NR2 subunit has four variants (NR2A–D), which possess

variable affinity for Mg2? and affect the speed of release

from Mg2? block, the channel conductance and its deac-

tivation time. Of these the NR2B subunit has the slowest

kinetics for release of Mg2?, making NMDA-R that con-

tain the NR2B subunit the most nonlinear, and the most

effective summators of EPSPs (Cull-Candy and Les-

zkiewicz 2004). In macaque sensory cortex, the NR2B

subunit is densest in layer 2, followed by layer 6 (Muñoz

et al. 1999)—the two cellular layers in which feedback

terminates most densely (equivalent data for other areas is

not available). Predictive coding requires descending non-

linear predictions to negate ascending prediction errors,

and interestingly, it seems that the inhibitory effects of

backward projections to macaque V1 are mediated by

NR2B-containing NMDA-R’s (Self et al. 2012). By con-

trast, layer 4 of area 3B, in particular, features a highly

discrete expression of the NR2C subunit (Muñoz et al.

1999), which has faster Mg2? kinetics (Clarke and Johnson

2006); in rodent S1 (barrel field) intrinsic connections

between stellate cells in layer 4 have also been demon-

strated to utilise NMDA-R currents that are minimally

susceptible to Mg2? block, and these cells again show high

expression of the NR2C subunit (Binshtok et al. 2006). In

general, therefore, the degree of nonlinearity conferred on

the NMDA-R by its subunit composition could be said to

correlate, in laminar fashion, with the relative exposure to

backward connections.

Studies with pharmacological manipulation of NMDA-

R in vivo are rare. However, application of an NMDA-R

agonist to cat V1 raised the gain of response to stimulus

contrast (Fox et al. 1990). The effect was observed in all

layers, except layer 4. Application of an NMDA-R antag-

onist had the reverse effect, reducing the gain such that the

contrast response curve (now mediated by non-NMDA-R)

became more linear. However, the gain-reduction effect

was only observed in layers 2 and 3. To interpret these

results, the NMDA-R agonist may have simulated a

recurrent enhancement of responses in the layers exposed

to backward connections (i.e. all layers save layer 4). The

experiments were conducted under anaesthesia, minimising

activity in backward pathways, and hence restricting the

potential to observe reduced gain when applying the
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NMDA-R antagonist. The restriction of the antagonist

effect to layer 2/3 could indicate that NMDA-R plays a

more significant role in nonlinear intrinsic processing in

these layers (e.g. in mediating direction selectivity, see

Rivadulla et al. 2001). The relative subunit composition of

NMDA-R in cat V1 is not known.

Finally, the modulatory properties of backward con-

nections have been demonstrated at the level of the single

neuron. The mechanism depends on the generation of

‘NMDA spikes’ within the thinner, more distal ramifica-

tions of basal and apical dendrites (Larkum et al. 2009;

Schiller et al. 2000), whose capacity to initiate axonal

spikes is potentiated through interaction with the back-

propagation of action potentials from the axon hillock

through to the dendritic tree. The effect was demonstrated

for apical dendrites in layer 1, and could simulate a

backward connection enhancing the gain of a neuron and

allowing coincidence detection to transcend cortical layers

(Larkum et al. 1999, 2004, 2009).

Note, also, that in highlighting the modulatory character

of backward connections we are not assuming a total lack

of the driving capability inferred from the in vitro studies

(Covic and Sherman 2011; De Pasquale and Sherman

2011). For instance, the NMDA mechanism for pyramidal

neurons described above might, potentially, be self-sus-

taining once initiated. Imaging studies of top-down influ-

ences acting on area V1 imply that backward connections

can sustain or even initiate activity, in the absence of a

retinal signal (e.g. Muckli et al. 2005; Harrison and Tong

2009). This is important from the point of view of pre-

dictive coding because, as noted above, top-down predic-

tions have to drive cells that explain away prediction error.

From a computational perspective, the key role of modu-

latory effects is to model the context-sensitive and non-

linear way in which causes interact to produce sensory

consequences. For example, backward projections enhance

the contrast between a receptive field’s excitatory centre

and inhibitory surround (Hupé et al. 1998).

A summary of the laminar, topographic and physiolog-

ical characteristics of forward and backward connections in

the visual system can be found in Table 1. These charac-

teristics are now be used as tests of directionality for

descending projections in the motor system.

Motor projections

In this section, we summarise the evidence that suggests

descending connections in the motor system are of a

backward type and are therefore in a position to mediate

predictions of proprioceptive input. See Fig. 9 for a sche-

matic of the implicit active inference scheme. As noted

above, these predictions rest upon context-sensitive and

implicitly nonlinear (modulatory) synaptic mechanisms

and are broadcast over divergent descending projections to

the motor plant.

Laminar characteristics

Prior to a detailed examination of motor cortex—BA 4 and

BA 6—two well-known features are worth noting. The first

is the regression of the ‘granular’ layer 4, that is commonly

described as absent in area 4—although Sloper et al. (1979)

clearly demonstrated a layer 4 in macaque area 4 as a diffuse

middle-layer stratum of large stellate cells—or present as an

‘incipient’ layer in parts of area 6; sometimes referred to as

dysgranular cortex (Watanabe-Sawaguchi et al. 1991). The

second feature is that the deep layers 5 and 6—the source of

massive motor projections to the spinal cord—are around

twice the thickness of the superficial layers 1–3 (Zilles et al.

1995). These projections originate in large pyramidal cells

(upper motor neurons, including Betz cells) in layer 5. These

differences in the architecture of motor cortex clearly sug-

gest an emphasis on the elaboration of backward rather than

forward connections—but the relative absence of layer 4

implies that the laminar rules developed for sensory cortex

cannot be applied without some modification.

Shipp (2005) performed a literature analysis of the

laminar characteristics of projections in the motor system,

motivated by the ‘‘paradoxical’’ placement of area 4 (pri-

mary motor cortex) below area 6 (premotor cortex) and the

supplementary motor area in the Felleman and Van Essen

(1991) hierarchy (Fig. 4a). Note that this placement is only

paradoxical from the point of view of conventional motor

control models; it is exactly what is predicted by active

inference. The schematic summary of this meta-analysis is

reproduced here, with some additions and updates (Fig. 5).

The scheme includes connections originating in primary

and higher order sensory cortex, primary motor cortex, sub-

divisions of premotor and supplementary motor areas and

areas of prefrontal cortex just rostral to motor cortex, arranged

in a hierarchy according to the characteristics of forward and

backward connections in Table 1. Following Felleman and

Van Essen (1991), forward connections to agranular cortex

are identified with terminal concentrations in layer 3, as

ascending terminations in sensory cortex typically terminate

in both this layer and layer 4 (see also Rozzi et al. 2006; Borra

et al. 2008). Conversely, backward-type terminations in

agranular cortex can be characterised by avoiding layer 3, and/

or being concentrated in layer 1 (see Fig. 6).

To what extent do corticocortical motor projections

conform to the forward/backward tests? We list the major

findings, followed by a more forensic analysis.

(a) The terminations of projections ascending the so-

matomotor hierarchy are intermediate in character
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(terminate in all layers) apart from those originating

in the sensory areas of parietal cortex, which have the

characteristics of forward projections.

(b) The terminations of projections descending the

somatomotor hierarchy have an overall backward

character. The pattern is notably more distinct for

terminations within postcentral granular areas, but the

available evidence leans toward a backward pattern in

the precentral agranular areas as well.

(c) The origins of projections ascending or descending

the somatomotor hierarchy are qualitatively similar to

each other; the projecting neurons are typically

described as bilaminar and equally dense in layers 3

and 5, or as predominating in layer 3.

Regarding (c), the proposition that both ascending and

descending connection originate primarily from layer 3

breaches the rules of forward and backward connectivity

developed for sensory cortex (Table 1). However, there is

considerable variability in the reported laminar density of

neurons that are labelled with retrograde tracers (attribut-

able to factors such as the type of tracer used, its laminar

spread at the site of deposition, survival time, and the

means of assessment). To circumvent such problems,

Fig. 5 emphasises quantitative data (the layer 3:5 ratio)

obtained for two or more projections in the same study,

thus enabling a more robust comparison of ascending and

descending connections assessed with identical methodol-

ogy. This ‘ratio of ratios’ approach suggests that the origin

of ascending projections within the somatomotor hierarchy

may be characterised by a higher superficial: deep ratio

than the origin of descending connections, even if both

ratios are above one. This is true for (1) projections to M1

from S1 versus premotor cortex (PMd), and (2) projections

to PMd from M1 versus rostral frontal cortex. The ratio of

ratios device may depart from the original test criteria but

as Felleman and Van Essen (1991) point out: ‘‘the key

issue is whether a consistent hierarchical scheme can be

identified using a modified set of criteria’’.

Fig. 4 Somatomotor hierarchy and anatomy. a The somatomotor

hierarchy of Felleman and Van Essen (1991), with several new areas

and pathways added by Burton and Sinclair (1996). Ri, Id and Ig are

in the insula, 35 and 36 are parahippocampal, and 12M is orbitome-

dial. The key point to note here is the high level of M1 (Brodmann’s

area 4 in green) in the hierarchy. b Prefrontal areas in the macaque,

taken from Petrides and Pandya (2009). The frontal motor areas have

been left white, and are illustrated in the figure below. c Somatomotor

areas in the macaque, adapted from Geyer et al. (2000). Areas F2, F4,

F5 and F7 constitute premotor cortex, and F3 and F6 the

supplementary motor area (SMA) together they form area 6. Primary

motor cortex (M1) is area 4, primary sensory cortex (S1) areas 1–3,

and areas 5 and 7b are secondary sensory areas. ps, as, cs, ips and ls
are principal, arcuate, central, intraparietal and lunate sulci,

respectively
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Notably, both the above examples involve a comparison

stretching across three hierarchical levels; when direct

reciprocal connections are examined between areas on

notionally adjacent levels; i.e. between M1 and PMd, PMv

or SMA, the patterns of retrograde labelling are reportedly

broadly similar (Dum and Strick 2005). This more recent

study holds that motor, premotor and supplementary motor

interconnections all show an ‘equal’ pattern of superficial:

deep cell labelling (i.e. % superficial within 33–67 %),

associated with a ‘lateral’ connection in hierarchical terms.

The discrepancy with the earlier cell-count data may reflect

methodological differences, but can also be given a more

systematic interpretation: that, similar to sensory cortex,

the laminar patterns associated with the motor hierarchy

obey the ‘distance rule’ (Barone et al. 2000), and are more

marked when assessing connections over a larger number

of levels.

If the laminar origins of directly reciprocal projections

are similar, a different style of analysis might be needed to

reveal differences. An example is a study by Johnson and

Ferraina (1996), who noted that cells in SMA projecting to

PMd were more concentrated in the superficial layers than

cells projecting from SMA to M1: they used a statistical

comparison of the mean and shape of the two depth dis-

tributions to confirm that the difference was significant. In

summary, the available evidence suggests ascending con-

nections in the motor system have a forward character and

descending connections are backward in nature. There is no

evidence for the reverse. The bilaminar origins of motor

connections indicate that motor, premotor and supple-

mentary motor cortices are close together in the somato-

motor hierarchy.

In sensory cortex, it is generally accepted that bilaminar

origins can be consistent with forward, lateral, or backward

projections, and that patterns of termination are typically

more indicative of hierarchical order (Felleman and Van

Essen 1991). The motor system may be similar, but as

relatively few adequate descriptions of laminar terminal

patterns are available, the indications derive from an

uncomfortably small number of reports. Ascending pro-

jections are typically described as being columnar—a

multilayer distribution that would be consistent with a

lateral connection. Perhaps the best documented example is

the projection from M1 to SMA, illustrated by photomi-

crographs in three separate studies (Künzle 1978b; Leich-

netz; Stepniewska et al. 1993). Künzle (1978b) noted: ‘‘the

anterograde labelling within the columns appeared some-

what heavier in supragranular layers 1–3 than in infra-

granular layers 5–6’’, whilst Stepniewska et al. (1993) put

it thus: ‘‘anterogradely labelled axons and terminals are

concentrated mainly in layers 1 and 3–6, leaving layer 2

almost free of label’’. The material obtained by each study

is clearly comparable, and does not readily demonstrate

forward characteristics. The projections to agranular cortex

that do display a forward pattern; i.e. terminating mainly in

the mid-layers, are those arising in sensory cortex, e.g.

from areas 2 and 5 to M1, or from several visuosensory

parietal areas to premotor cortex (see Fig. 5 for references).

Backward laminar patterns for motor and premotor

projections are most evident in parietal cortex, typified by

the following description: ‘‘an unlabeled line highlighted

lamina 4 amid substantial anterograde labelling in the

supra- and infragranular layers above and below it’’

(Leichnetz 1986). For motor cortex itself, there is just one

equivalent description, pertaining to a back projection from

area F4 to M1, where ‘‘the labelled terminals were dis-

tributed throughout all layers, with the exception of the

lower half of layer 300 (Watanabe-Sawaguchi et al. 1991);

this connection is reproduced here in Fig. 6. The backward

pattern is alternatively diagnosed by a superficial concen-

tration of terminals, especially within layer 1—e.g. ‘‘in

certain regions, such as area 4… label was found pre-

dominantly in supragranular layers and especially in layer

1’’ (Barbas and Pandya 1987). Künzle (1978a), also

describing premotor cortex projections, makes a similar

comment: ‘‘the cortical projections are found to terminate

consistently and often with highest intensity within cortical

layer 100. This description was a global one, including

occipital and parietal cortex where the layer 1 concentra-

tion may have been most prominent. However, his sketches

of terminations within motor cortex show several connec-

tions that appear to satisfy this description, again as listed

in Fig. 5. It is possible that motor terminal patterns also

observe the ‘distance rule’ and are more liable to display

hierarchical character when they traverse more than one

level; this could apply to the cases illustrated by Barbas and

Pandya (1987), for instance.

The literature survey lacks detailed studies of reciprocal

terminal connections, examined area by area with identical

methods. If, as we infer, a lateral (multilaminar) pattern of

terminals in the ascending direction is reciprocated by a

backward pattern in the descending direction, this infringes

on the standard hierarchical dogma (which would hold that

a pair of reciprocal connections should both be ‘lateral’, or

that one should be forward and the other backward (Fell-

eman and Van Essen 1991). The anomaly might be recti-

fied by an appropriate, purposeful study of reciprocal

terminal connections in motor cortex. Alternatively, the

standard dogma might simply fail to address the full

diversity of cortical connectivity; other factors, such as

differential architecture, may also be determinants of

laminar patterns (Barbas 1986; Hilgetag and Grant 2010).

Ultimately, the study of laminar patterns is a proxy for a

more sophisticated, physiological determination of the

functional composition of a projection; e.g. as character-

ised by driving or modulatory synaptic contacts (Covic and
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Sherman 2011) on particular subclasses of excitatory or

inhibitory neurons (Medalla and Barbas 2009).

In the absence of such evidence, the interim conclusion

is that laminar connectivity patterns reveal a relatively

clear-cut hierarchical divide within the somatomotor sys-

tem between (higher) precentral agranular motor and

(lower) postcentral granular sensory areas, and that hier-

archical divisions within the agranular areas are more

subtle. Even so, the indications from both origins and ter-

minations place rostral premotor (or even prefrontal) cor-

tices at the apex of the somatomotor hierarchy, favouring

the active inference model over a serial motor command

model.

Topographic characteristics

In the sensory system, backward connections widely

bifurcate and have very distributed terminations, and are

both more divergent and more convergent than their for-

ward counterparts (see Fig. 3). Do descending connections

in the motor system share these properties?

First consider the connections of motor neurons in the

periphery. A single motor neuron innervates hundreds of

muscle fibres, and these fibres do not form discrete clusters

but are distributed uniformly across part of a muscle (a

motor unit). There is therefore extensive overlap of the

motor units innervated by different motor neurons

(Schieber 2007). Further divergence on the microscopic

level is shown by corticospinal axons: one studied by

Shinoda et al. (1981) innervated motor neurons in the

nuclei of the radial, ulnar and median nerves (Fig. 7a), and

neurophysiological evidence for this anatomical diver-

gence was found by Lemon and Porter (1976).

The distribution of corticospinal neurons innervating

(via spinal motor neurons) a single muscle can be exam-

ined by use of the rabies virus tracer; this subset of corti-

cospinal neurons which synapse directly with spinal motor

neurons, as opposed to interneurons, are known as ‘CM’

neurons (described at length in the ‘‘Discussion’’). Com-

parison of cases examining digit, elbow and shoulder

muscles reveals the expected gross proximal–distal

topography in M1, but also shows intermingling of corti-

cospinal neurons with different targets (Rathelot and Strick

2009). Thus corticospinal axons from a large territory of

M1 also converge on a single body part (also see Geyer

et al. 2000).

A complementary set of cortical ‘muscle maps’ has been

obtained by recording electromyographic (EMG) activity

within the forelimb musculature, produced across a grid of

cortical stimulation sites (Fig. 8b from Boudrias et al.

2010). EMG activity reflects both direct and indirect cor-

ticospinal circuitry, and the resulting muscle maps show no

sign of segregated regions representing different muscles or

muscle groups. Individual stimulation sites commonly
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yield EMG activity in both proximal and distal muscles,

such that the somatotopic organisation of forelimb M1 was

only recognisable in the medial and lateral poles of the

mapped area with, respectively, proximal and distal seg-

regated muscle representations. In PMd and PMv there was

no discernible topography at all, with proximal and distal

muscle maps overlapping completely.

The divergence of M1s neuronal outputs may be con-

trasted with older data pertaining to their sensory afferent

inputs. Neurons responding to joint movement (but not to

cutaneous stimulation) are thought to represent sensory

input from muscle spindles, and many neurons in M1 are

selective for a single joint. For example, Lemon and Porter

(1976) found that 110/152 (72 %) of M1 neurons respon-

sive to passive forelimb manipulation in alert macaques

were only activated by manipulation of one particular joint

(e.g. a single finger joint). The ascending sensory repre-

sentation of individual muscles in M1 is thus distinctly

more focal in nature than the descending (divergent) motor

output, as assessed at the level of M1 neurons. At the

macroscopic level, Wong et al. (1978) mapped the cortical

distribution of these sensory inputs to M1 (Fig. 8a), and

found that whilst sensory inputs seem less organised here

than in sensory areas (e.g. different sensory modalities

innervating the same M1 microcolumns, unlike in S1),

there is ‘‘virtually no overlap of the… sensory fields related

to nonadjacent joints’’: in contrast to the M1 motor fields

mapped by Boudrias et al. (2010).

Now let us examine corticocortical connections within

the sensorimotor system. Studies using dual retrograde

tracers have examined the sources of input to the parts of

M1 innervating the distal and proximal parts of the monkey

forelimb (Tokuno and Tanji 1993) and hindlimb (Hatanaka

et al. 2001). They noted that clear, separate subregions in

SI, SII and area 5 project to the distal and proximal rep-

resentations of either limb in M1, whereas the projections

from motor areas [cingulate, supplementary and dorsal area

6 (PMd)] were intermixed: several regions in these areas

sent axons to both distal and proximal forelimb parts of M1

(Fig. 7b) and a similar pattern was observed for the hind-

limb. Essentially, this demonstrates that divergence in the

descending (motor) input to M1 exceeds divergence in the

ascending (sensory) input to M1.

In a later study, Dancause et al. (2006) used a bidirec-

tional tracer placed in PMv to prepare high-resolution

somatotopic maps of the reciprocal corticocortical

Fig. 5 Laminar systematics in the somatomotor hierarchy: this figure is updated from Shipp (2005). The diagrams show patterns of terminations

(left) and cells of origin (right) in selected areas comprising the somatomotor hierarchy (shown anatomically in Fig. 4b, c). Not all connections

are shown, only those for which an adequate indication of laminar characteristics is obtainable (the blue numbers provide a key to the literature).

In order to compile data across studies with variable terminology and placement of injected tracers, or with similar outcomes, some areas are

combined into single blocks; the ampersand should be interpreted as ‘and/or’. The diagrams are intended to give an indication of forward or

backward relationships, but not the precise number of pathways or levels involved. The sensory tiers, for instance, are compressed into a single

level: S1 shown as a single block, comprises four separate areas (3a, 3b, 1 and 2) that precede higher order parietal areas in a sensory hierarchy.

Left panel schematic illustrations of terminal patterns—forward (2, 3, 13 and 20); intermediate (4, 5, 6, 11 and 21); and backward (1, 7–10, 12

and 14–19). Forward patterns have a concentration in layer 3. Intermediate patterns are described as columnar, with little or no laminar

differentiation. Backward patterns are concentrated in layers 1 (and 6) and/or tend to avoid the lower part of layer 3. Feedback from M1 to S1

tends to avoid layer 4. Right panel laminar distribution of cells of origin, coded as the relative density of labelled cells in layers 3 and 5. In

general, ascending connections are associated with a high 3:5 ratio, and descending connections with a lower 3:5 ratio (that may still exceed

unity). Factors influencing cell density can vary considerably across studies and few provide quantitative cell count data. Coloured boxes
emphasise four studies that provide comparative cell data for connections at two or more separate levels. Pink the ascending input to M1 from S1

has a greater 3:5 ratio than the descending input to M1 from premotor cortex (data from Ghosh et al. 1987). Green the ascending and descending

inputs to premotor cortex show a similar relationship (Barbas and Pandya 1987). Brown a study in which the interconnections of M1 with

premotor and supplementary motor cortex were not found to be distinct (Dum and Strick 2005). Blue the depth profile of connections from F3

(area SMA) to M1 and to premotor cortex were shown to differ, neurons projecting to M1 being less superficial (Johnson and Ferraina 1996).

There are no quantitative data where the density of layer 5 cells much exceeds layer 3 cells in motor connections, and only rare qualitative

descriptions to this effect, e.g. for the projection from F4 to M1 (Stepniewska et al. 1993); and from M1 to area 1 (Burton and Fabri 1995).

1 Künzle (1978a); 2 Jones et al. (1978), Shipp et al. (1998), Leichnetz (2001); 3 Jones et al. (1978), Künzle (1978b), Pons and Kaas (1986);

4 Künzle (1978b), Leichnetz (1986), Matelli et al. (1986), Stepniewska et al. (1993); 5 Barbas and Pandya (1987); 6 Künzle (1978a), Barbas and

Pandya (1987); 7 Watanabe-Sawaguchi et al. (1991); 8 Künzle (1978a), Barbas and Pandya (1987), 9 Barbas and Pandya (1987), Watanabe-

Sawaguchi et al. (1991); 10 Jones et al. (1978), Künzle (1978b), Leichnetz (1986), Stepniewska et al. (1993); 11 Künzle (1978a), Barbas and

Pandya (1987), Watanabe-Sawaguchi et al. (1991); 12 Arikuni et al. (1988); 13 Jones et al. (1978), Pons and Kaas (1986); 14 Preuss and

Goldman-Rakic (1989), Watanabe-Sawaguchi et al. (1991); 15 Künzle (1978a), Barbas and Pandya (1987), Deacon (1992); 16 Künzle (1978b),

Watanabe-Sawaguchi et al. (1991); 17 Künzle (1978b), Leichnetz (1986); 18 Barbas and Pandya (1987); 19 Künzle (1978a), Matelli et al. (1986),

Barbas and Pandya (1987), Deacon (1992), Gerbella et al. (2011); 20 Rozzi et al. (2006), Borra et al. (2008); 21 Barbas and Pandya (1987),

Deacon (1992), Gerbella et al. (2011); 22 Jones et al. (1978), Leichnetz (1986), Ghosh et al. (1987), Huerta and Pons (1990), Darian-Smith et al.

(1993), Stepniewska et al. (1993); 23 Matelli et al. (1986), Barbas and Pandya (1987), Kurata (1991), Watanabe-Sawaguchi et al. (1991);

24 Barbas and Pandya (1987), Deacon (1992); 25 Arikuni et al. (1988), Watanabe-Sawaguchi et al. (1991), Lu et al. (1994); 26 Barbas and

Pandya (1987), Watanabe-Sawaguchi et al. (1991), Deacon (1992), Gerbella et al. (2011); 27 Kurata (1991); 28 Muakkassa and Strick (1979),

Godschalk et al. (1984), Leichnetz (1986), Ghosh et al. (1987), Stepniewska et al. (1993), Lu et al. (1994); 29 Pons and Kaas (1986), Darian-

Smith et al. (1993), Burton and Fabri (1995); 30 Dum and Strick (2005); 31 Muakkassa and Strick (1979), Godschalk et al. (1984), Leichnetz

(1986), Ghosh et al. (1987), Stepniewska et al. (1993), Lu et al. (1994), Johnson and Ferraina (1996); 32 Matelli et al. (1986), Kurata (1991),

Johnson and Ferraina (1996)

b
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connections between PMv and M1. Two results are of

interest: (a) that the distal forelimb part of PMv connects

with both distal and proximal forelimb parts of M1, dem-

onstrating descending divergence similar to the other motor

areas noted above; (b) that the termination of the

descending projection to M1, while patchy, was broader

than the territory occupied by source neurons for the

ascending projection, thus replicating the kind of pattern

noted previously in visual cortex. Our final test of forward

and backward connection types is that if they are of

unequal size, backward projections should outnumber for-

ward. In fact, descending projections outnumber ascending

ones between area 6 and area 4 (Matelli et al. 1986), areas

F6 and F3 (Luppino et al. 1993), and between CMAr and

SMA/PMdr (Hatanaka et al. 2003).

Physiological and pharmacological characteristics

Zilles et al. (1995) demonstrated that human motor cortex

has the same distribution of NMDA and non-NMDA

receptors as is found elsewhere in the brain: the former are

concentrated in supragranular layers, whereas the latter

have a uniform (AMPA-R) or infragranular (KA-R) dis-

tribution. When a granular layer is present, e.g. in rat

prefrontal cortex, NMDA receptors tend to avoid it (Rudolf

et al. 1996). Hence, one might expect that as in sensory

cortex, descending corticocortical motor connections (ter-

minating in supragranular layers) have access to modula-

tory synaptic mechanisms.

Ghosh et al. (1987) counted the relative numbers of

neurons projecting to monkey forelimb M1. In the 3 ani-

mals they examined, 11–31 % of neurons projecting to M1

came from premotor cortex (lateral area 6), whereas

1–17 % of neurons originated in area 5 (higher sensory

cortex). Ghosh and Porter (1988) then stimulated these two

cortical areas using surface electrodes, and recorded EPSPs

and IPSPs in M1. They found that despite the bias in

numbers towards descending projections, stimulation of

area 5 neurons elicited responses in 90 % of recorded M1

neurons, whereas the same stimulation of premotor cortex

Fig. 6 Backward termination pattern of a premotor to M1 projection:

Adapted from Watanabe-Sawaguchi et al. (1991), this is a darkfield

photomicrograph showing labelled cells and terminals in area 4 after

injection of WGA-HRP into the inferior premotor area (PMv, or F5)

of a baboon. The termination pattern is characteristic of a backward

connection as it is bilaminar (with a particularly dense supragranular

projection) and minimally dense in lower layer 3. W.m. signifies white

matter

Fig. 7 Topographic characteristics of projections in the motor

system: a adapted from Shinoda et al. (1981), this is a transverse

section through the spinal cord at level C7, showing a corticospinal

axon that projects to at least four different motor nuclei: those of the

ulnar (the upper nucleus), radial (the lower two nuclei) and medial

nerves (not shown). b Adapted from Tokuno and Tanji (1993), this

depicts cortical areas containing neurons projecting to proximal

(white) and distal (black) movement areas of M1. Lower hierarchical

areas have segregated projections, whereas higher projections are

intermixed (grey) with the exception of premotor cortex, whose inputs

were subsequently also shown to be intermixed (Dancause et al.

2006). CMAc caudal cingulate motor area, CMAr rostral cingulate

motor area, MI primary motor cortex, PMd dorsal premotor cortex,

PMv ventral premotor cortex, SI primary somatosensory cortex, SII
secondary somatosensory cortex, SMA supplementary motor area
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caused only 30 % of recorded M1 neurons to respond. One

can infer from this that ascending projections from sensory

cortex are the more driving in character, despite their lesser

number. Likewise, it is known that inactivation of M1 has a

more significant effect on the activity in PMv and SMA

than vice versa (Schmidlin et al. 2008), which one would

expect if descending connections to M1 were more

modulatory, and ascending connections from M1 more

driving in character.

Shima and Tanji (1998) provide valuable evidence about

the receptor types mediating descending connections to M1

from SMA, in comparison to ascending connections to M1

from S1. They showed that 83 % of the M1 neurons acti-

vated by stimulation of S1 were suppressed by a non-

Fig. 8 Somatotopic differences in ascending and descending motor

projections: this figure illustrates the relative preservation of soma-

totopy in forward projections and the much greater convergence and

divergence in backward projections in the motor system, as is found

in sensory projections (schematised in Fig. 3a). a This figure is taken

from Wong et al. (1978). It illustrates the spatial distribution of

neurons in macaque M1 that respond to passive movement of the

relevant joint (the tiny letters indicate the direction of movement, not

important for our purposes). One can see that the shoulder, elbow,

wrist and fingers joints’ representations are overlapping but reason-

ably somatotopic: non-adjacent joints do not overlap. The 15 % of

neurons that responded to movement of multiple joints are not

illustrated here. b This figure is taken from Boudrias et al. (2010). It

illustrates the motor output maps for the premotor cortex and M1 (top
right and bottom left of each drawing, respectively) of two macaques,

with each row corresponding to muscles around different joints. The

maps were obtained by stimulating in the dotted cortical sites and

recording EMGs in peripheral muscles; the red and yellow dots

signify post-stimulus facilitation and suppression, respectively.

Whilst some resemblance can be seen to the sensory maps in a, it

is clear that there is far more convergence and divergence of these

descending projections
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NMDA-R antagonist, whereas only 10 % were affected by

an NMDA-R antagonist. Conversely, of neurons in M1

activated by stimulation of SMA, roughly equal propor-

tions (55 %) were affected by NMDA-R and non-NMDA-

R antagonists. This indicates that the influence of SMA

over M1 depends to a much greater extent upon NMDA-R

transmission, that can be nonlinear and modulatory, whilst

the ascending connections from S1 to M1 rely more

heavily on AMPA or kainate receptors, with linear prop-

erties more characteristic of driving connections.

Shima and Tanji (1998) speculated that SMA—via

NMDA-Rs—might modulate the gain of driving S1 inputs

to M1. Evidence for higher motor areas modulating the

gain of M1 neurons has actually been provided by Shimazu

et al. (2004), who recorded corticospinal outputs following

stimulation of the ventral premotor area (F5) and/or M1.

M1 stimulation alone evoked several corticospinal volleys,

whereas F5 stimulation alone evoked minimal output. If F5

stimulation directly preceded that of M1, however, the later

corticospinal volleys were powerfully facilitated, as were

the resulting EPSEs in 92 % of intrinsic hand motor neu-

rons. A similar outcome was observed when the experi-

ment was repeated in an alert monkey performing a motor

task, allowing the additional observation that the effect of

F5 stimulation varied with the type of grasp being per-

formed (Prabhu et al. 2009).

Finally, in relation to descending corticospinal projec-

tions, note that cortical modulatory connections have

smaller EPSPs which show facilitation with stimulus rep-

etition and are more non-linear: the direct synapses of

corticospinal neurons with motor neurons also have these

properties. Their unitary (single fibre) EPSPs are of the

order of 25–120 lV (Asanuma et al. 1979; Porter 1985):

much less than corticocortical unitary EPSPs which are

more often[1 mV (Avermann et al. 2012; Andersen et al.

1990; Sáez and Friedlander 2009; Zilberter et al. 2009).

Furthermore, on repeated corticospinal stimulation, the

motor neuron unitary EPSPs show facilitation (Jankowska

et al. 1975; Shapovalov 1975).

It is also established that the targets of corticospinal pro-

jections express NMDA receptors: for instance, spinal inter-

neurons and Renshaw cells (McCulloch et al. 1974; Lamotte

d’Incamps and Ascher 2008) and also motor neurons (Tölle

et al. 1993), which have been shown to contain the more non-

linear NR2B subunit (Mutel et al. 1998; Palecek et al. 1999).

This provides a synaptic mechanism for the contextual (non-

linear gain control) nature of descending predictions from

corticospinal motor neurons. Note that neither conventional

motor control models nor optimal control schemes would

predict that corticospinal projections should have modulatory

properties (as a motor command must be driving, not modu-

latory). Active inference, by contrast, allows a mixture of

modulatory and driving capabilities in its descending

projections, which (as noted in the previous section) can both

be compatible with backward connections.

A summary of our analysis can be found in Table 1. It is

clear that with some minor adjustment of the criteria for

forward and backward connections, ascending and

descending connections in the motor hierarchy should be

classified as forward and backward types, respectively.

This supports our contention that somatomotor system may

implement active inference, in which backward connec-

tions provide predictions and forward connections convey

prediction errors.

Discussion

We started by motivating the importance of classifying

motor efferents as forward or backward by appealing to the

competing theoretical predictions of active inference and

conventional motor control. The weight of empirical evi-

dence suggests that descending connections in the so-

matomotor system are of the backward type, as would be

required by active inference. In this section, we review the

anatomical implications of active inference for the func-

tional anatomy of the motor system, including the unique

cytoarchitectonic feature of motor cortex (Brodmann’s area

4 and area 6): its curious regression of a granular layer 4.

Active inference and sensory reafference

From the point of view of active inference, motor cortex

occupies a relatively high level in a predictive coding

hierarchy (see Fig. 4a), providing predictions of sensory

input to several subordinate structures, ranging from spinal

circuits to sensory cortex. The graphical representation of

this view, shown in Fig. 9, highlights the distinction

between somatomotor prediction errors which result in

movement, and somatosensory prediction errors that

inform percepts. In the somatomotor system (left panel),

descending corticospinal projections encode predictions of

proprioceptive input; i.e. muscular (muscle spindle), ten-

don (Golgi tendon organ) and articular states. Together,

these signals predict the sensory consequences of a

movement trajectory; i.e. changes in proprioception or

kinaesthesia during the course of the movement and the

proprioceptive state at its conclusion. Comparison of these

predictive signals with the proprioceptive states encoded

by sensory receptors generates proprioceptive prediction

errors that—uniquely in the nervous system—can be

resolved by action, via activation of alpha motor neurons in

the spinal reflex arc. The consequences of these actions,

both proprioceptive and somatosensory, are then trans-

mitted back to sensorimotor cortex as various forms of

sensory reafference.
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The descending projections from motor cortex to the

somatosensory system (not shown) encode predictions of a

broader set of afferent inputs: proprioception plus cutaneous

sensations (pressure receptor and light touch receptor states).

Because it generates predictions in both proprioceptive and

exteroceptive modalities, motor cortex can thus be regarded

as a multimodal sensorimotor area rather than a purely motor

area (Hatsopoulos and Suminski 2011).

Sensory reafference can become sensory prediction

error at various levels in the nervous system (right panel,

Fig. 9 Somatomotor and somatosensory connections in active infer-

ence: In this figure, we have focused on monosynaptic reflex arcs and

have therefore treated alpha motor neurons as prediction error units.

In this scheme, descending (corticospinal) proprioceptive predictions

(from upper motor neurons in M1) and (primary sensory) proprio-

ceptive afferents from muscle spindles converge on alpha motor

neurones on the ventral horn of the spinal cord. The comparison of

these signals generates a prediction error. The gain of this prediction

error is in part dependent upon descending predictions of its precision

(for further explanation see ‘CM neurons and predictions of precision’

in the ‘‘Discussion’’). The associated alpha motor neuron discharges

elicit (extrafusal) muscle fibre contractions until prediction error is

suppressed. Ascending proprioceptive and somatosensory information

does not become a prediction error until it encounters descending

predictions, whether in the (ventral posterior nucleus of the) thalamus,

the dorsal column nuclei, or much earlier in the dorsal horn. In the

cortex, error units at a given level receive predictions from that level

and the level above, and project to prediction units at that level and

the level above (only two levels are shown). In this way, discrep-

ancies between actual and predicted inputs—resulting in prediction

errors—can either be resolved at that level or passed further up the

hierarchy (Friston et al. 2006). Prediction units project to error units at

their level and the level below, attempting to explain away their

activity. Crucially, active inference suggests that both proprioceptive

(motor) and somatosensory systems use a similar architecture. It is

generally thought that prediction units correspond to principal cells in

infragranular layers (deep pyramidal cells) that are the origin of

backward connections; while prediction error units are principal cells

in supragranular layers (superficial pyramidal cells) that elaborate

forward projections (Mumford 1992; Friston and Kiebel 2009). Note

that we have implicitly duplicated proprioceptive prediction errors at

the spinal (somatomotor) and thalamic (somatosensory) levels. This is

because the gain of central (somatosensory) principal units encoding

prediction error is set by neuromodulation (e.g. synchronous gain or

dopamine), while the gain of peripheral (somatomotor) prediction

error units is set by NMDA-Rs and gamma motor neuron activity. In

predictive coding, this gain encodes the precision (inverse variance)

of prediction errors (see Feldman and Friston 2010). Algorithmically,

the duplication of prediction errors reflects the fact that somatomotor

prediction errors drive action, while somatosensory prediction errors

drive (Bayes-optimal) predictions. For reasons of clarity we have

omitted connections ascending the cord in the somatomotor system,

e.g. spinal projections to M1 and the transcortical reflex pathway from

S1 (in particular the proprioceptive area 3a) to M1: these are

described in the ‘‘Discussion’’
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Fig. 9). The majority of afferents interact at an early stage

with corticospinal input to the dorsal horn (Lemon and

Griffiths 2005), where prediction errors can be generated

by the presynaptic inhibition of primary afferents (Wall

and Lidierth 1997). Lemon and Griffiths (2005) suggest, in

fact, that this predictive modulation of sensory input is the

evolutionary precursor to direct corticospinal control of

motor neurons (see below). The remaining primary affer-

ents in the dorsal columns (15 % of the fibres) may then

encounter descending predictions at the level of the dorsal

column nuclei (via branches of corticospinal axons (Che-

ema et al. 1985; Bentivoglio and Rustioni 1986), and

subsequently at the thalamus. Note that the corticospinal

tract is one likely source of the attenuation of spinal sen-

sory reafference during movement (also seen in sensori-

motor cortices); uniquely, the sensory reafference to M1 is

also inhibited during motor planning (Seki and Fetz 2012).

Proprioceptive reafference to precentral motor cortex

(not shown) is conveyed via the spinothalamic tract, which

projects to the motor thalamus (the ventral lateral posterior

thalamic nucleus, VLp)3 and then to primary motor cortex

(Stepniewska et al. 2003). Retrograde tracing techniques

show that the origin of spinothalamic inputs to VLp are

separate clusters of interneurons sited in layers V and VII

of the spinal grey matter (Craig 2008). Both groups are

thought to integrate primary afferent sensory signals with

descending motor signals—layers V and VII processing

cutaneous and proprioceptive signals, respectively—which

Craig succinctly summarises as an ascending projection

‘‘conveying activity that represents the state of the

segmental interneuronal pools that are used for motor

control’’. Another pathway likely to carry ascending pro-

prioceptive prediction errors is the set of dorsal spinocer-

ebellar tract neurons that constitute the thoracolumbar

nucleus known as ‘Clarke’s column’. This nucleus, known

to receive proprioceptive input from the hind limb, has

recently been shown (in the mouse) to interact with signals

carried by descending corticospinal axons (Hantman and

Jessell 2010); the interaction has both excitatory and

inhibitory components (mediated by local interneurons),

which could potentially generate a proprioceptive predic-

tion error. Once again, these signals reach motor cortex via

VLp (not shown in Fig. 9).

Figure 9 is intended to highlight the distinction between

somatomotor prediction errors that result in movement, and

somatosensory prediction errors that inform percepts. Of

course, the distinction between the somatomotor and

somatosensory systems themselves is not so easily made:

as we mention above, motor cortex might best be regarded

as a multimodal sensorimotor area. One could view some

sensory cortices in the same light: for example, the border

(proprioceptive) area 3a likely receives descending pro-

prioceptive predictions from M1 (Witham et al. 2010)—

rather than efference copy—and ascending proprioceptive

information from the motor nuclei of the thalamus (Huff-

man and Krubitzer 2001). At the same time it is embedded

within the somatosensory system, receiving somatosensory

thalamic input. Somatomotor (proprioceptive) prediction

errors in this area could either be resolved by movement

via projections to gamma motor neurons (see next section),

or they could inform proprioception via projections to

secondary sensory cortices. Likewise, it is notable that S1

cortex drives whisker retraction in the mouse (Matyas et al.

2010).

Corticomotor (CM) neurons and predictions

of precision (gain)

As noted above, the beauty of the spinal reflex arc is that

proprioceptive prediction errors can be resolved simply,

quickly and automatically by agonist and antagonist mus-

cles. But there is an additional longer-latency, transcortical

component to many reflexes (particularly hand and finger

reflexes) that is known to exhibit a higher degree of

intermuscular coordination, thereby being ‘more intelligent

than reflexive’ according to some authors (Matthews 1991;

Kurtzer et al. 2008; Shemmell et al. 2010; Pruszynski et al.

2011). Neurons in motor thalamus (VLp) and motor cortex

are known to be capable of short latency sensory responses

to limb movement (Herter et al. 2009; Hummelsheim et al.

1988; Lemon and Porter 1976; Vitek et al. 1994) although

the particular anatomical pathway providing short latency

input has been difficult to establish, as there is no ana-

tomical confirmation of lemniscal input to VLp.4 None-

theless, however mediated, this rapid cortical sensory

response can be interpreted analogously to the spinal reflex,

as a proprioceptive prediction eliciting a motor response,

and movement, such as to quash an error signal. How so?

One component of long-latency reflexes is mediated by

the specific subpopulation of corticospinal neurons (known

as ‘CM’ neurons) that make direct contact with spinal

motor neurons, and whose sensory activity (i.e. response to

an unexpected torque perturbation of a wrist muscle)

formed an appropriate match to the timing of the late (M2)

3 Thalamic terminology follows the scheme of Macchi and Jones

(1997).

4 An earlier body of work employing peripheral nerve stimulation

provided substantial indirect evidence that sensory input could be

conveyed to M1 via dorsal column (lemniscal) input to thalamic VLp

nucleus; especially a subnucleus known as VPLo (Asanuma et al.

1980; Horne and Tracey 1979; Lemon and van der Burg 1979). But,

conversely, several anatomical studies specifically failed to offer any

evidence for such lemniscal input to VPLo (Asanuma et al. 1980,

1983; Hirai and Jones 1988; Kalil 1981; Tracey et al. 1980). The

conflict in these observations has yet to be satisfactorily resolved.
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component of the wrist stretch reflex (Cheney and Fetz

1984). The distribution of CM neurons is now known to be

quite limited in its extent, occupying the caudal part of M1

and extending into the adjacent component of S1, area 3a

(Rathelot and Strick 2006, 2009). CM neurons have their

greatest influence upon muscles of the distal forelimb, in

both man (de Noordhout et al. 1999; Palmer and Ashby

1992) and rhesus monkeys (McKiernan et al. 1998), and

are considered the anatomical substrate for the evolution of

manual dexterity in higher primates (Lemon 2008).

CM neurons include both ‘fast’ and ‘slow’ units (as

gauged by soma size) and the former, located in M1, likely

convey proprioceptive predictions directly to alpha motor

neurons. In the case of these direct (AMPA-R mediated)

contacts with motor neurons, prediction errors could only

be generated by post-synaptic inhibition of those motor

neurons by sensory afferent interneurons: see for example

the left panel of Fig. 2. These descending fast CM neurons

could not themselves carry prediction errors, because they

(probably) also synapse with spinal interneurons, implying

integration with local sensory input (Kasser and Cheney,

1985): these are descending prediction-type properties, and

the same signal cannot be both prediction and error. We

propose that the majority of CM neurons, however, medi-

ate a different kind of prediction: not of sensory input

itself, but its precision.

In predictive coding, there are two kinds of descending

predictions (shown in Fig. 9). First order predictions are of

sensory input, and therefore drive (or inhibit) prediction

error units in the level below, as we described in the first

section. Second order predictions are of the precision

(inverse variance) of sensory input, and they optimise the

post-synaptic gain of the prediction error units below. This

is classically a slower process than the first order one,

which uses neuromodulators (e.g. NMDA-R’s, acetylcho-

line or dopamine) rather than fast-on/fast-off transmission

(Feldman and Friston 2010). These processes are exactly

analogous to the statistical method of weighting the (first

order) mean of an experimental observation according to

its (second order) standard error: an experimental ‘predic-

tion error’ of high precision will compel a change in the

null ‘prediction’. In the cortex, the top-down process of

optimising the precision (gain) of prediction error units is

called ‘attention’ (Feldman and Friston 2010). Attention

should not only optimally increase the gain of sensory

signals during perception, but also of proprioceptive sig-

nals during movement (Brown et al. 2011).

Two ways in which the precision (gain) of propriocep-

tive prediction errors can be enhanced are: (1) by

increasing the gain of alpha motor neurons via NMDA-Rs,

and (2) by increasing the gain of sensory afferents, via the

gamma motor neuron drive to intrafusal muscle fibres (see

Fig. 2). It is likely that CM neurons fulfil both of these

roles [other descending neuromodulatory (e.g. aminergic)

systems that we do not review here will also contribute

significantly to the gain of prediction errors].

Why do we say that the majority of CM neurons could

mediate predictions of precision (gain)? First, this is a

possible role for the 15 % of CM neurons located in area

3a, if they project to gamma motor neurons as Rathelot

and Strick (2006) surmise, although this has not yet been

demonstrated. Second, this could also be the case for the

‘slow’ CM neurons in M1 (the majority), as predictions of

precision are slower than first order predictions, as out-

lined above. Third, it is notable that CM neurons’ EPSPs

are greatest in the very places where the (spinal) stretch

reflex gain is weakest and most in need of supplementa-

tion—the intrinsic muscles of the hand (McKiernan et al.

1998; Ziemann et al. 2004). Last, we would argue that

most of the CM system allows the specification of fine-

grained, fractionated patterns of motor gain (as well as its

first order predictions), in contrast to the diffuse

descending neuromodulation found in other systems

(Heckman et al. 2008). This proposal integrates observa-

tions of the selectivity and focus of CM projections (Buys

et al. 1986; Kuypers 1981) with the gain-like qualities

listed above. Finally, note that like first order proprio-

ceptive predictions, second order predictions of gain will

also be modulated by context, e.g. limb position (Gin-

anneschi et al. 2005).

Sensorimotor cortex: granular versus agranular

The concept of an anatomically discrete ‘motor cortex’,

localised to the precentral gyrus in anthropoid apes by

Sherrington, was first established by Campbell (1905),

using the brain of a chimpanzee that had been one of

Sherrington’s subjects (Macmillan 2012). Campbell ini-

tially studied cerebral myeloarchitecture, noting the

prominent wealth of fibres within motor cortex, and

although he later included cytoarchitectural features, it was

Brodmann’s description of the cytoarchitecture of precen-

tral cortex that gave rise to the description of motor cortex

(areas 4 and 6) as ‘agranular’—i.e. lacking the inner

granular layer, or layer 4 in his terminology (Brodmann

1909/1994). Although the regression of layer 4 has since

been identified as incomplete (Sloper et al. 1979), the gross

architecture of motor cortex is evidently highly differen-

tiated from the adjacent postcentral and frontal cortices.

And yet, however impressive this may be as a carto-

graphical feature, its functional significance has remained

obscure. Why does motor function apparently eliminate

(attenuate) the role played by layer 4? With the foregoing

discussion in mind, we are now in position to examine the

contrasting structure–function relationships within so-

matomotor cortex, granular S1 versus agranular M1.
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The obvious starting point is that loss of layer 4 betrays

the absence of a typical ascending pathway, as seen in

sensory cortices (Shipp 2005). All the sub-areas of S1 (3a,

3b, 1 and 2), for instance, receive various forms of

somatosensory thalamic input in their granular layer

(Padberg et al. 2009). In terms of active inference, sensory

reafference constitutes prediction errors that serve to cor-

rect high-level representations, so refining top-down pre-

dictions and leading to sensory percepts. This is a

hierarchical process, involving repeated input to layer 4 of

the area in a higher tier, and reciprocal feedback of pre-

dictions, as we have previously described. Motor cortex

activity, by contrast, specifies an intended or predicted

movement (goal); this is a fixed entity, relatively resistant

to change, except in its fine details or when expectations

are violated. Proprioceptive predictions become fulfilled in

the course of the movement and thus—in the simplest

possible state—there is no prediction error to travel over an

ascending motor pathway.

This basic intuition has to be qualified, of course, by

the existence of the reafferent sensory pathways to M1

that we have noted above, and the fact that connections

between motor areas are indeed reciprocal. The next step

is therefore to consider how the operations conducted by

these pathways may differ from the standard model set by

sensory cortex. Clearly, it is misleading to suggest that

there is an absence of prediction error reaching motor

cortex, and this is not our intention. Anything about the

motor environment that is inherently unpredictable

(unexpected impacts, deceptively heavy weights, unstable

footing, etc.) will cause error in motor predictions, which

requires correction. Transcortical reflexes, discussed pre-

viously, provide an obvious example. The point to note is

that the motor system strategy is not to pass the sensory

prediction error up through a chain of cortical areas (as if

to modify the intended goal of the movement), but to

react rapidly and reissue modified predictions of the

intermediate states leading to the same ultimate end state.

Let us reiterate the spinal anatomy. M1 does not receive

direct afferents from the alpha motor neurons or inter-

neurons that its corticospinal projections target (as would

be analogous to the descending projections in a sensory

system); rather the proprioceptive reafference percolates

through a complex set of spinothalamic and spino-cere-

bellothalamic circuits, not yet thoroughly documented, but

which would seem to offer a wealth of opportunity for it

to modify descending predictions at a subcortical level; in

other words, the set of spinal and supraspinal reflex arcs

that control muscular tension. This forms a rather marked

contrast to the more direct route followed by primary

afferents along the lemniscal pathway for sensory reaf-

ference to S1. This is the message of Fig. 9: the priority

of somatomotor prediction errors is to cause movement;

the priority of somatosensory prediction errors is to

inform percepts.

In passing, it is also important to note that much of the

corticothalamic traffic in the motor system involves loops

formed with the basal ganglia, and the cerebellum. The

former may operate as an action selection system (Gurney

et al. 2001), and the latter as an integral part of the forward

generative model (see next section). Neither of these loops

is operative within sensory systems, and neither may

require the fine-grained input analysis associated with a

granular layer 4.

Active inference versus optimal control

So what does the active inference formulation offer, in

relation to classical models? One key contribution is to

resolve the hard problem of converting desired (expected)

movement trajectories in extrinsic coordinates into motor

commands in intrinsic coordinates. This hard problem is an

ill-posed inverse problem, conventionally ascribed to an

inverse model in M1. Active inference dispenses with this

hard problem by noting that a hierarchical generative

model can map predictions in extrinsic coordinates to an

intrinsic (proprioceptive) frame of reference. This means

the inverse problem becomes almost trivial—to elicit firing

in a particular stretch receptor one simply contracts the

corresponding muscle fibre. In brief, the inverse problem

can be relegated to the spinal level, rendering descending

afferents from M1 predictions as opposed to commands—

and rendering M1 part of a hierarchical generative model,

as opposed to an inverse model (see Fig. 1).

This division of labour mirrors the distinction made by

Krakauer et al. (1999) between the internal (forward)

model necessary for computing movement kinematics in

vectorial coordinates, and the (inverse) model required for

computing movement dynamics, which takes account of

the biomechanical properties of the arm; e.g. interactional

torques produced by movement of multiple limb segments.

A key difference between our positions is that we locate the

inverse mapping in the spinal cord. The location of an

inverse model in M1 appeals to evidence that M1 neurons

perform computations that are compatible with the outputs

of an optimal controller or inverse model; for example,

some M1 neurons have been shown to integrate multi-joint

torque information (Pruszynski et al. 2011). However,

evidence of this sort does not disambiguate between M1 as

an inverse model and M1’s pivotal role in a hierarchical

generative model. The key distinction is not about mapping

from desired states in an extrinsic (kinematic) frame to an

intrinsic (dynamic) frame of reference, but the mapping

from desired states (in either frame) to motor commands.

Evidence against an inverse mapping occurring in M1 is

provided by Raptis et al. (2010), who elicited different
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EMG patterns following the application of TMS to M1,

while the wrist was maintained in flexion or extension

positions. If M1 produced motor commands—as an inverse

model should—then identical TMS pulses should not elicit

the position-dependent EMG patterns observed by Raptis

et al (although identical pulses might not produce identical

outputs from M1 if the effects of TMS are being modulated

by direct proprioceptive feedback to M1). From the point

of view of active inference, TMS could be regarded as

activating latent (if transient and ill-formed) goals and

subsequent predictions—encoded by populations in M1—

eliciting position-dependent myoclonic responses, via

reflex arcs (and the monosynaptic activation of motor

neurons). The crucial point here is that active inference

works by providing proprioceptive predictions (from a

forward model) to reflex arcs (the inverse mapping), which

automatically generate motor commands.

The idea that neuronal activity in motor cortex encodes

predicted motor trajectories in extrinsic (3D vectorial)

coordinates—as one would expect from a forward model—

is supported by studies which extract kinematic informa-

tion from monkey or human M1 in real time for the control

of computer cursors or robotic devices. One of many

examples is that of Velliste et al. (2008), who controlled

robotic arm movements with electrodes implanted in

macaque M1, using the population vector of neuronal

activity to represent proprioceptive predictions, from which

a robot-derived motor commands to drive movement of its

shoulder, elbow and wrist using inverse kinematics. In

active inference, this inverse process occurs in the spinal

cord—in optimal control, this inversion is assigned to the

cortex. Note that correlations between EMG signals and

M1 activity (e.g. Cherian et al. 2011) do not necessarily

indicate the presence of an inverse model in M1, because

these might be expected if CM (and other) M1 neurons

mediate predictions of motor precision (gain), as discussed

previously.

The circuitry mediating the forward model is potentially

rather broad, utilising the cortico-cerebellar thalamic loop

that includes not only motor and premotor cortex, but also

substantial parts of postcentral cortex, such as area MIP,

recently discovered to receive disynaptic input from cere-

bellum relating to gaze and reach coordination (Prevosto

et al. 2010). The potential role of parieto-cerebellar cir-

cuitry in a forward model of motor control has been well

versed previously (Blakemore and Sirigu 2003; Mulliken

et al. 2008). Interestingly, Mulliken et al. (2008) comment

that ‘‘the encoding of space and time that we observe in

posterior parietal cortex may best reflect a visuomotor

representation of the [movement] trajectory’’ [emphasis

added]: this point supports the active inference view that

the generative model must generate movement trajectories,

not just end-points.

The initial impetus for the development of forward

models in motor control was the realisation that real-time

feedback issuing from S1 to M1 would be too slow to

influence the control of rapid movements. It also follows

that this sensory input to M1 could be of greater impor-

tance in motor planning than in online motor control. One

way of characterising the interplay between S1 and M1 is

that the former models the current body state and the

latter the future (intended) body state; if so, the backward

connections from motor to sensory cortex could aptly be

described as predictions. This could equally include

feedback from premotor cortices to superior parietal

visual areas, predicting the future location of moving

limbs in visual space. A similar argument might account

for the fact that as much as 25 % of the corticospinal tract

originates from postcentral, sensory areas of cortex (Galea

and Darian-Smith 1994). Much of this will represent

descending predictions of cutaneous sensation, and may

act to cancel or attenuate sensations caused by the body’s

own movements, in order to distinguish sensations

resulting from external agencies (Blakemore et al. 2000;

Cullen 2004).

The above argument is based upon the assumption that

pyramidal cells in motor cortex sending predictions to

spinal motor neurons (which do not reciprocate a pre-

diction error) are distinct from those sending predictions

to somatosensory cortex (which do). This is a sensible

assumption in that corticospinal conduction delays require

pyramidal cells driving alpha motor neurons to encode the

causes of sensory consequences in the near future. Con-

versely, the principal cells predicting somatosensory

consequences in somatosensory cortex have to encode

their causes in the recent past. As an aside, these con-

siderations implicitly finesse the problem of conduction

delays in motor control by incorporating them into the

generative or forward model. This is an established

technique in the Bayesian analysis of time series data

(Kiebel et al. 2007). One prediction of this separate pro-

spective and retrospective encoding of movements is that

the prospective predictions, originating in motor cortex

layer 5 pyramidal cells, should not project to sensorimotor

cortex or ventrolateral thalamus. In other words, these

cells should send direct and monosynaptic connections to

the spinal cord and brain stem. This is because the pro-

spective predictions are not suitable for creating predic-

tions of (delayed) sensory input at the thalamic or cortical

level. We could find no empirical evidence that refutes

this prediction.

Active inference and complex movements

It may be thought that active inference implies a stimulus-

driven account of action. However, most behaviour
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comprises spontaneous, itinerant movements—like walk-

ing and talking. Stimulus-driven behaviours provide intu-

itive examples of active inference at work, but endogenous

and complicated sequences of motor behaviour emerge

naturally from priors in hierarchical generative models of

movement trajectories. One example—of generating itin-

erant movement—is that of an agent which learns (and then

reproduces) the doodling-type repetitive movements of a

Lorentz attractor (Figs 14 and 15 in Friston et al. 2010).

Gestures (especially iconic gestures) are a good example

of movements that can be understood under active infer-

ence. A related example here is handwriting (handwriting

is a difficult behaviour to explain using minimisation of

cost functions in optimal control, Friston 2011). Hand-

writing has been simulated using active inference (Friston

et al. 2011), using a simple central pattern generator to

produce prior beliefs that an agent’s finger will be drawn to

an invisible moving target. An interesting aspect of this

simulation was the demonstration that the same central

pattern generator was used to infer movement trajectories

during action observation. In other words, ‘‘exactly the

same neuronal representation can serve as a prescription

for self-generated action, while, in another context, it

encodes a perceptual representation of the intentions of

another’’—as ‘mirror’ neurons do (Friston et al. 2011).

Conclusion

In conclusion, we have argued that the cortex is best regarded

as embodying a hierarchical generative model, whose

descending (efferent) projections predict and explain sen-

sory inputs, thus minimising ascending (afferent) prediction

errors. This view holds that connections mediating predic-

tions should be more modulatory than those conveying

prediction errors, and they should have a similar laminar

organisation, irrespective of the sensory modality being

predicted. These properties accord well with those of

descending projections (from associational to primary cor-

tex) in both sensory and motor systems. This suggests that

descending signals in the motor system are not motor com-

mands but proprioceptive predictions—which are realised at

the spinal level by classical reflex arcs.
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Appendix 1: Clinical insights from active inference

This appendix highlights some clinical phenomena that

shed light on the functional anatomy of motor control. We

do not review motor pathology comprehensively but con-

centrate on areas which could inform—or be informed

by—active inference.

Flaccid and spastic paralyses

Two kinds of paralysis illustrate pathologies of the two

types of descending projections in predictive coding net-

works: those mediating predictions, and those mediating

precision (inverse variance of prediction error) or synaptic

gain.

A severe neck injury can completely obliterate

descending connections from the CNS. The acute conse-

quence is ‘spinal shock’—a flaccid paralysis. In this

instance, both proprioceptive predictions (in the cortico-

spinal tract) and predictions of precision (e.g. innervation

of gamma motor neurons) are completely lost (Brown

1994). Computationally, the absence of precise proprio-

ceptive prediction errors leads to a loss of lower motor

neuron drive and flaccid paralysis.

Conversely, lesions in the cerebral cortex or internal

capsule can result in a spastic paresis, in which some

muscle power is preserved, but—at rest—patients are

hypertonic and hyper-reflexic. In this case, some proprio-

ceptive predictions may reach the ventral horn, but the gain

of the stretch reflex is increased due to a loss of supraspinal

inhibition. Computationally, proprioceptive prediction

errors retain a high precision but are not properly informed

by descending predictions—leading to spastic paralysis. It

should be noted that an increased stretch reflex gain

(mediated by gamma motor neurons) is not the only cause

of spasticity; other causes include mechanical changes in

the muscle itself (Dietz and Sinkjaer 2007) and increases in

the gain of motor neurons (Mottram et al. 2009) following

spinal cord injury.

Proprioceptive deafferentation

One important question for active inference is: if move-

ment depends on spinal reflex arcs, then why can neuro-

pathic patients—who lack Ia afferent feedback from

muscle spindles—still move? Surely, in the absence of

anything to predict there can be no prediction error and no

movement. In fact, the absence of primary afferents does

not mean there is no prediction error—top-down predic-

tions can still elicit alpha motor neuron activity. Under

active inference, a forward model in the brain converts

visuospatial predictions in extrinsic coordinates (low
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dimensional extrapersonal space) to proprioceptive pre-

dictions in intrinsic coordinates (high dimensional propri-

oceptive space). These predictions then leave the brain and

are converted to motor commands by a simple inverse

mapping in the spinal cord (see ‘‘Discussion’’). This spinal

inverse mapping is effectively driven by proprioceptive

prediction errors and corresponds to the classical reflex arc.

A loss of proprioceptive feedback, therefore, will

severely impact upon the spinal inverse mapping, while the

cortical forward model can compensate using visual feed-

back (Bernier et al. 2006). Descending proprioceptive

predictions should still be able to activate motor neurons,

but they can no longer be compared with precise proprio-

ceptive information and cannot be modified by proprio-

ceptive feedback. These predictions are borne out by

empirical studies of deafferented patients:

• Sainburg et al. (1993) showed that two deafferented

patients—miming bread slicing with their eyes

closed—exhibited severely temporally decoupled

movement reversals at the shoulder and elbow joints.

Opening their eyes improved the overall form of the

movement but inter-joint coordination problems

remained.

• Sainburg et al. (1995) demonstrated that the failure to

coordinate the timings of movement reversals was due

to a failure to compensate for interaction torques

transferred to one joint (e.g. the elbow) by changes at

another joint (e.g. the shoulder). They concluded that

the deafferented patients lacked a model of limb

dynamics; i.e. a failure of an inverse mapping.

• Gentilucci et al. (1994) found that a deafferented

patient’s first phase of a reaching and grasping move-

ment was identical to that of control subjects, but the

final phase required frequent movement adjustment.

Furthermore, the patient was unable to compensate for

perturbations applied to the fingers, even with visual

feedback. This indicates that the patient’s movement

planning—i.e. their forward model—is intact, but that

they cannot adjust this plan according to limb kine-

matics, as their inverse mapping is impaired.

Parkinsonian symptoms

We have previously proposed that neuromodulators—such

as dopamine—encode the precision of prediction errors by

altering their synaptic gain (Feldman and Friston 2010),

and hence their ability to effect change within the network.

Depleting dopamine at different levels would alter the

balance of precision at higher (sensorimotor) relative to

lower (primary sensory) levels in the cortical hierarchy. We

have simulated the effects of this loss of precision or gain

in previous publications. These vary according to the site

(hierarchical level) of changes in precision, and include:

• The emergence of quasi-periodic attractors, manifested

as tremor or other repetitive stereotyped movements

(Friston et al. 2010). This model of Parkinsonian tremor

complements that of Helmich et al. (2012), who

propose that Parkinsonian tremor arises from an

interaction between striatal dopaminergic depletion

and a cerebello-thalamo-cortical circuit (the cerebellum

has long been thought to have a role in the temporal

coordination of motor signals).

• A loss of precision of proprioceptive predictions

resulting in smaller movements (hypokinesia), slower

movements (bradykinesia) or loss of movement—

akinesia (Friston et al. 2010; Friston et al. 2012).

• A loss of precision of cue salience can preclude set-

switching, particularly in the context of a hitherto

predictable sequence, resulting in perseveration (Fris-

ton et al. 2012)—also shown in Parkinson’s disease

(Brown and Marsden 1988).

The phenomenon of hypertonia (rigidity) in Parkinson’s

disease is best characterised, conversely, as increased high-

level gain (as opposed to the precision associated with

stretch reflex gain). This could be mediated by a loss of

dopaminergic inhibition of striatal cholinergic interneu-

rons—demonstrated in a mouse model of dystonia by

Pisani et al. (2006)—but there are likely to be other

mechanisms, both spinal and supraspinal (Rodriguez-Oroz

et al. 2009).
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