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Segmentation of liver tumors plays an important role in the choice of therapeutic strategies for liver disease and treatment
monitoring. In this paper, we generalize the process of a level set with a novel algorithm of dynamic regulation to energy
functional parameters. The presented method is fully automatic once the tumor has been detected. First, a 3D convolutional neural
network with dense layers for classification is used to estimate current contour location relative to the tumor boundary. Second,
the output 3D CNN probabilities can dynamically regulate parameters of the level set functional over the process of segmentation.
Finally, for full automation, appropriate initializations and local window size are generated based on the current contour position
probabilities. We demonstrate the proposed method on the dataset of MICCAI 2017 LiTS Challenge and 3DIRCADD that include
low contrast and heterogeneous tumors as well as noisy images. To illustrate the strength of our method, we evaluated it against the
state-of-the-art methods. Compared with the level set framework with fixed parameters, our method performed better sig-
nificantly with an average DICE improvement of 0.15. We also analyzed a challenging dataset 3DIRCADD of tumors and obtained

a competitive DICE of 0.85 + 0.06 with the proposed method.

1. Introduction

The segmentation of liver tumors in computed tomography
(CT) is required for assessment on tumor load, prevention of
liver diseases, treatment planning, prognosis, and moni-
toring of treatment response [1, 2]. Heterogeneity in the
shape and texture of the liver and visible tumors in CT scans
are significant biomarkers for diseases progression [3]. In
clinical routine, manual techniques are applied, but cost and
amount of tedious time are unacceptable [4]. Therefore, it is
highly desirable to have approaches that can automatically
perform segmentation. However, there are some challenges
in automatic algorithms such as low contrast between tu-
mors and liver, different levels of contrast, inhomogeneous
shapes, and locations of tumors. Thus, accurate delineation
of malignant tissue by computer assistance remains difficult.

Several state-of-the-art algorithms, including thresh-
olding, region-based method, active contour models, graph
cut, and machine learning, have been introduced to solve
this problem [5]. For instance, Moltz et al. combined a

threshold-based idea with model-based morphological
processing adapted to liver tumor segmentation [6]. Cao
et al. proposed a simple and fast method based on iterative
relative fuzzy connectedness (IRFC) derived from region
growing [7]. Yan et al. used a marker-controlled watershed
transformation to segment 3D liver metastases in volumetric
CT images [8]. These methods are efficient but too sensitive
to noise and incompetent for delineation of complex shape
or texture of objects. Recently, active contour based on curve
evolution is popular because of its adaptiveness to complex
shapes [9]. Some models, like SNAKE [10], transform curve
motion into discrete points’, which leads to a poor seg-
mentation especially in the narrow or sharp region. To
overcome these difficulties, the level set is proposed and
considered on a higher level dimension. It has the ability of
handling image noise, intensity heterogeneity, and discon-
tinuous object boundaries. Level set methods include models
based on edge [11-13] or region [14-16]. Edge-based ones
are good at dealing with irregular boundaries and low
contrast texture. Region-based ones study spatial statistics of
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areas but pay not enough attentions for details. Lankton and
Tannenbaum gave a novel algorithm relying on the local
point region to build an energy model which reflects specific
features of the object and serves the confused condition
properly [17]. Li et al. introduced another hybrid model
integrating edge and region models. These hybrid models are
more competitive and preferred by most researchers, pro-
viding a more credible segmentation.

In level set works, the choice of energy functional pa-
rameters causes troubles. Inappropriate parameters result in
disabled automatic segmentation [18]. Lankton et al. argued
that parameters have close relationships with direction and
speed of curve evolution, and fixed ones limit performance
of level set segmentation. Even though some researches tried
to test the selected value over a series of the training set for
the entire dataset, it is hard to maximize the effect of seg-
mentation on all of them. Choice by a trial is time-
consuming and laborious. At present, this work entirely
depends on expert experience. Some papers attempted to
estimate them. Li et al. [18] introduced a method to adjust
parameters according to classification of pixels in region of
interest (ROI). Unfortunately, the value is initialized once at
the beginning of work and remains constant. Oliviera et al.
[19] provided a mechanism to evaluate parameters from
analysis of the dataset. But for a specific image, the selected
parameter cannot run primarily. Baillard et al. [20] devised a
solution to take full considerations for every point position.
Over steps, a point on the contour at first determines its
status. If it belongs to the foreground, it locally extends
outwards. And if not, it moves in the opposite direction. This
classification depends on Gaussian and the shifted Rayleigh
statistical distribution models via the training set by max-
imizing the posterior probability. However, because of the
limited effective classifier for tumors in medical imaging, its
prediction accuracy would be doubted. Hoogi et al. [21]
predicted the position of evolving contour using CNN in the
first time. By adaptive parameters, the zero level set is able to
escape from local minima acquiring better results. However,
it lacks the research on 3D segmentation that reflects more
significance in practice.

Furthermore, deep learning techniques have appeared as
a powerful alternative for supervised learning applications
like classification, detection, and segmentation. Convolu-
tional neural network (CNN) [22, 23] can learn highly
discriminative features and have been widespread with
predominance on a variety of problems including medical
imaging. Ciresan et al. [24] adopt classical CNN for the
segmentation of the neural membrane. Obviously, this
strategy has two drawbacks. First, it costs too much com-
puting time since the network runs separately for each pixel,
and then there is a lot of redundancy due to overlapping
patches. In addition, there is a trade-off between localization
accuracy and the use of context. For more accurate locali-
zation, Ronneberger et al. [25] gave a more elegant archi-
tecture U-Net derived from the fully convolutional network
(FCN) [26], which consists of a contracting path to capture
context and a symmetric expanding path. Although the
algorithm gains a certain achievement, the result of the
object specifically in edge is too coarse to be accepted for
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medical image segmentation. Kamnitsas et al. [27] in-
corporated conditional random field (CRF) into FCN.
Details of segmentation are refined by the fuzzy classification
based on features of intensity and pixel position. To deal with
the variations of tumor shape, size, intensity, and texture,
Chlebus et al. [28] proposed an automatic liver tumor
segmentation with random forest-based candidate filtering
that was built on the U-Net. Similarly, Han [29] presented
another algorithm derived from U-Net, which combined the
ResNet model as a part of baseline. Both of them are 2D
networks that pay little attention to features of adjacent slices
and provide lower performance in 3D segmentation. Christ
etal. [30] used cascaded fully convolutional neural networks,
enabling the 3D segmentation for low-contrast CT images.
The first pipeline extracted the liver as volume of interest
(VOI) input, serving for the tumor segmentation via the
second network of FCN. As a result of the limited separate
FCN’s ability, the reported evaluations were not satisfied.
Moghbel et al. gave a fully automatic segmentation without
any interactions, integrating cuckoo optimization and fuzzy
c-means with random walkers. Foruzan and Chen [31] and
Wu et al. [32] presented semiautomatic methods depending
on watershed and graph cut, and they obtained improved
results better than previous ones. The algorithm proposed by
Huang et al. [33] also relied on an accurate eclipse initial-
ization enclosing the tumor. Because these semiautomatic
methods require prior knowledge of accurate initialization,
and a comparable fully automatic segmentation is necessary
in future.

In this paper, we propose a significant improvement on
the traditional level set process, a novel algorithm of dy-
namic regulation to functional parameters over iterations
using the 3D convolutional neural network (DRLS). Our
method is a multistage process. A 3D convolutional neural
network is designed and trained for identifying the current
contour (actually a volume in the 3D level set) position. Its
output probabilities were used to estimate various param-
eters during the process of the level set. At first, for fully
automatic segmentation, an appropriate initialization is
given by 3D CNN which helps to select an initial contour
close to tumor boundary relatively. In addition, compared
with the level set with fixed functional parameters, the
proposed method can regulate parameters dynamically
based on contour location information. Local window size
plays a crucial role in zero level set evolution. In our work, a
proper size is reestimated in each iteration. If it is far away
from the tumor boundary, the window size should be en-
larged comparatively. When combined with estimation of
level set multiparameters, we supply a generalization of the
segmentation process, applying the same energy model of
the popular level set framework and deep learning skills for
any given dataset. Our method requires only a proper VOI to
produce candidate initializations. There is no need of a more
accurate initial contour manually with expertise. Contrary to
current level set frameworks, the proposed method has little
sensitivity to accurate initialization and does not include any
assumptions about tumor characteristics. Consequently, its
performance is better in highly diverse datasets that include
low contrast, noisy, and heterogeneous tumors. Experiment
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results demonstrated that the method runs stable and
competitive to state-of-the-art methods, which showed the
strength of ours.

To the best of our knowledge, this is the first use of 3D
CNN to join in the level set for 3D segmentation. Through
dynamic parameters, the proposed hybrid method of the 3D
level set and deep learning is able to resolve the problems of
low contrast, abnormal shape, and variant features of texture
tumors, resulting in a generalized segmentation solution
than methods available to date.

The rest of this paper is organized as follows. Section 2
introduces the details of the proposed method. Sections 3
and 4 present the experimental results and related
discussions. Finally, the conclusion is summarized in
Section 5.

2. Materials and Methods
2.1. Energy Models

2.1.1. Uniform Modeling (UM) Energy. In the development
history of the active contour method, lots of energy models
were proposed for special application. A well-known ex-
ample of an energy that uses a constant intensity model is the
Chan-Vese energy [14], which we will refer to as the uni-
form modeling energy:

Eym = JQ H¢(y)(1(}’)—1/l)2 +(1 _H¢(y))(1(y)—v)2 dy,
(1)

Fou = hHo(y (1) =) + A, (1= Hy ) ) (1) - v,) dy.
@

This energy equation (1) models the foreground and
background as constant intensities represented by their
means, # and v. By replacing u and v with corresponding u,,
and v, as equation (2), we obtain the speed iterative formula
of the local version UM model written as

)
2= 8¢<x)jQyB(x, DTG =) =1, (1) =v,))

N y&/a(x)div( Vo () )

V¢ (x)l
(3)

where u, and v, are mean intensities of point’s local region.
The minimum is obtained when each point on the curve has
moved such that the local interior and exterior about every
point along the curve is best approximated. A, and A, control
two subregions energies trade-off.

2.1.2. Mean Separation (MS) Energy. Another important
global region-based energy that relies on mean intensities is
proposed by Yezzi et al. [34], which is determined by the
discrepancy between foreground and background, referred
to as mean separate (MS) energy:

Eyis = JQ (u—v)~ (4)

y

This energy has the important basis that foreground and
background regions should have maximally separate mean
intensities. Minimizing the energy causes the curve to evolve
so that interior and exterior means have the largest differ-
ence possible. u and v are mean intensity of foreground and
background in the image. MS model encounters difficulties
in complex texture like the medical image since the energy
functional tends to be trapped in local minima. Lankton
et al. came up with a local model, converting Yezzi’s model
into point’s local region on the curve [17]:

0
2= 5¢(x)JQyB(x, D) Voo FA(L$ () dy
) ”
[ Vé(x
+ [46¢(x)dlv<|v¢ (x)I)’

Fys = _(Mux —)Lsz) ) (Al (I (j:) _MX) + b (Il(qx) ~ VX)).

in out

(6)

Equation (5) is the speed iterative formula of Lankton’s
standard deduction. B(x, y) represents the local region of a
point on the contour, like a rectangular or circle. The
function F gives a generic internal energy measure used to
describe local adherence to a given model. If MS model is
chosen, F could be replaced with F, ;s equation (6), where A;,
and A, are areas about interior and exterior, respectively.
Meanwhile, A, and A, control the magnitude of two forces in
opposite directions. In order to keep the curve smooth as
possible, a regularization term is added. For the 3D level set,
B(x, y,z) and F (x, y, z) join instead of the previous relative
ones. Equation (7) is the result by inserting equation (6) to
equation (5):

a¢ _ A (I(y)_ux)z AZ(I(y)_Vx)z
E(X)—M(JC)J%B(% y>< B
[ Vé(x)
+ y&/)(x)dlv(lv(p(x)').

(7)

In practice, the local MS model has a better performance
than the UM model in medical image segmentation espe-
cially for irregular shape and texture features. To evaluate
our proposed method, all datasets were tested on the MS
energy model.

2.2. The Proposed Method. Our proposed method is a hybrid
combination of the 3D level set and deep learning with 3D
convolutional neural network. Entire procedure of the al-
gorithm is interactive with each other. The proposed liver
tumor segmentation framework is illustrated in Figure 1,
which consists of four major modules: (1) automatic ini-
tialization, (2) dynamic regulation of parameters, (3) 3D
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Automatic initialization

Original CT volume

Liver VOI extraction

Selected initialization

Multi-initialization

>
Training

Estimation

>
Dynamic|regulation
parameters

Level-set function evolving

v

Postprocessing
“«

Final result

DRLS

F1GURE 1: The proposed liver tumor segmentation framework that consists of four modules automatic initialization, dynamic regulation of
parameters, 3D level set process, and 3D CNN training and prediction.

level set process, and (4) 3D CNN training and prediction.
Besides, there is also a required VOI for segmentation, which
can be obtained by some effective tumor detection methods
[35]. Our proposed 3D CNN model is able to output the
position probability of 3D evolving contour relative to the
liver tumor boundary. Since a proper initialization helps the
level set framework to acquire a more accurate segmenta-
tion, our proposed model can identify many candidates
which are closer to the boundary. After automatic initiali-
zation, as a result of the level set framework with fixed
parameters that causes a poor performance, the probabilities
are used to update the parameters of the energy functional in
the iterative process. Dynamically regulated parameters tend
to lead the evolving contour to ground truth in low contrast
and noisy texture. The entire process of our proposed DRLS
method is automatic, and its components will be discussed
as follows.

2.2.1. Dynamic Regulation of Parameters. There are three
parameters weighting the level set functional in equation (7).
For one thing, u is responsible for the smoothness of the
evolving contour. In practice, we usually set 4 = 0.1, and the
value of 4 has few impactions on segmentation performance.
For another thing, on the model of the local level set [17],
interior and exterior texture features of the local region

decide the points’ movement. Therefore, the value and ratio
of A, and A, play a crucial role in the direction and mag-
nitude of curve evolution over iterations. Therefore, we
design a 3D CNN to estimate the location of the zero level set
contour relative to the tumor. Outputs of probabilities p,,
p»> and p; express three possible locations: inside, near, or
outside the tumor boundary, respectively. By the following
equation, we use the 3D CNN outputs value to set the
weighting parameters A, and A, of speed equation (7):

Ay = exp l+pi+ps
' L+p,+ps)

Ay = exp(i1 TP +p3>.
L+ pi+ps

As Lankton and Tannenbaum proved [17], A, and A,
actually controls two mutual restricted forces within opposite
directions. If p; > p,, then A,>1,, and the contour has a
tendency to expand. Conversely, if p, > ps, then A, > 1,, and
the contour is more likely to contract. When p, > p,, p;, it
denotes the evolving contour is close to the boundary, and
two parameters are similar. The exponential function is used
to increase the range of values and ratios that A, and A, can
benefit from. Figure 2 illustrates the predictions to evolve
contour positions by our designed 3D CNN model.
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FIGURE 2: Estimated probabilities of evolving contours position in adjacent slices. (a)-(e) Contour inside the tumor with p, = 0.78,
P, = 0.14, and p; = 0.08, displayed by selected adjacent slices in a volume. (f)-(j) Evolving contour outside the tumor boundary p, = 0.1,
p, =0.17, and p; = 0.73. Green circles are the zero level set contour in the 3D grid.

2.2.2. Automatic Initializations. Active contour and related
curve evolution segmentation methods are dependent on
proper initializations. For fully automatic segmentation, we
give a self-adaptive solution to search an appropriate initial
contour close to the tumor boundary. Before segmentation,
several initializations with different radii were provided, for
example, 6, 10, 20, 30, and 40 pixels in our work. To every
scale of contours, we use the 3D CNN classifier to predict
each location probabilities. The one nearest to the tumor
boundary with the maximum of p, is selected as the ultimate
initialized approach.

2.2.3. 3D CNN Architecture. 3D CNN produces estimates
for the classification of input interesting volume by taking
local contextual image information into account. This is
achieved by sequential convolutions of the input with
multiple filters at the cascaded layers of the network. Each
layer I € [1,L] consists of feature maps produced by a
nonlinearity function:

Cry
' =f<zk§"’"*)’71 +b§">, (9)

n=1

where C; is referred to as number of channels or feature
maps in the [y, layer. Equation (9) is the result of convolving
each of the previous layer’s channels with a learned kernel
k™", adding a bias b}" and applying a nonlinearity f. y, is
believed a particular pattern, i.e., a feature, associated with
the FMs. These learned features reflect the predominance of
the deep learning technique being good at detecting po-
tential and complex rule among the training sets. Appro-
priate convolutional kernels decide the effect of CNN.
Traditional 2D convolution has paid no consideration on
adjacent slices relationships, with difficulties to serve three-
dimensional data for classification. Therefore, we prefer the

3D convolution kernel to extract features efficiently and
predict the 3D evolving contour positions over iterations.

The baseline network of the proposed method is depicted
in Figure 3. Our architecture consists of four convolutional
layers followed by three fully connected layers, including the
final three-node layer. All convolutional layers use 3 x 3 x 3
kernels for feature extraction and 2 x 2 x 2 for max pooling
except the first layer. Too large 3D kernel size costs massive
time, and the smaller does not take accept effects. We set the
depths of the convolutional layers 16, 32, 64, and 128, re-
spectively. The depth and filter size can be tuned if necessary,
but these parameters were chosen based on examination of
highly diverse tumor datasets. In nonlinearity function f,
each convolutional layer consists of addition filters: batch
norm and PReLU. Batch norm is a solution of distribution
imbalance in the training set [36], which can learn inherent
features and rules of collected data. PReLU is a kind of
nonlinear function ReLU:

X if x;>0,

PReLU (x;) = { (10)

a;x;, if x;<0,

where if a; = 0, PReLU equals ReLU. If g; is close to zero like
0.01, PReLU is replaced with leaky ReLU. PReLU has ob-
vious advantages of fast convergence and low error rates,
avoiding from early zeroing that causes inactive neurons
when training [37]. Max pooling is the final step of the
convolutional block. We take a 2 x 2 x 2, except the 1st layer,
pixels subregion from the PReLU output representing the
region by its maximum value, thus reducing the di-
mensionality of the dataset.

2.2.4. Training of the 3D CNN. The cost function of 3D CNN
is the cross entropy loss, minimizing the log likelihood of the
volume input:
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80 x 80 x 40 Convolution 3 x 3 x 3 Convolution 3 x 3 x 3
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F1GURE 3: Our baseline 3D CNN consists of four layers with 3* kernels for feature extraction, leading to a receptive field of size 46 x 46 x 23.
The classification layer is implemented as convolutional with 2 fully connected layers, which enable dense-inference. When the network is
fed an input of 80 x 80 x 40, it predicts three classes simultaneously, one for each shift of its receptive field over the input. Number of FMs,
convolutional filters, and their sizes are depicted as number@size, respectively.

1
N

M=

M
Lo (T £ (@0,2)) = =< Y Ty, 108(pye) + Sl

m=1
(11)

Unlike 2D CNN training, a batch of the training set
contains only one individual volume CT images. In equation
(11), T'tells the true label for the example of every batch and
f (w,x) is the prediction via 3D CNN. When the current
contour of the 3D level set is located inside the tumor, T, ,
equals 0. If near the tumor boundary, the value is 1. Oth-
erwise, T, , equals 2. p, . gives the probability of the ny,
example being classified into the my, class as the output of
f (w, x). (17/2)||a)||2 penalizes the size of the weights in the
model, where the coefficient of regularization selects
1 = 0.00004. Stochastic gradient descent with momentum is
applied to update the weights (ww;) of the network [23]:

S
I
—

Vs = (v, —aVw; - naw;,
(12)
Wiy = W; +Viyys

where i is the iteration step, v is the previous gradient, and 7 is
the same value of the regularization coeflicient that appears in
equation (11). { is initialized to 0.9 for decay. Momentum-
based methods damp the gradient and provide better con-
vergence rates for deep networks. For weights of initialization,
we use truncated normal distribution to make sure they are
within a reasonable range of normal distribution N (0, 1072).
The learning rate is initialized at 0.01. For every global step
(100), the learning rate is adjusted with decay factor 0.1 ex-
ponentially. In order to preserve identical distribution of 3D
examples, we use batch normalization preventing internal
covariate shift when training [36]. The coefficient of decay is
same as before and ¢ = 0.001. Meanwhile, the rate of drop out
is set to 0.7 against overfitting.

2.2.5. Dynamic Regulation of Local Window Size. The seg-
mentation performance of the local region level set model has

a close relationship with the local window size of points on the
contour. If the size is relatively small, the points cannot be
aware of enough areas, which lead to a failure of curve
evolution. Instead, overlarge window may cause unexpected
segmentation completely. Hoogi et al. presented an algorithm
of adaptive local window for the 2D level set [21]. The method
considered the object scale, the spatial texture, and the
changes of the energy functional over iterations. The values of
local window size were calculated with the current gray level
cooccurrence matrices (GLCM). The authors had proved its
effectiveness compared with traditional ones. However, in the
3D level set, computing of GLCM is too time-consuming and
terrible. Moreover, it requires prior knowledge of tumor size
in three dimensions which causes a semiautomatic seg-
mentation. Therefore, we propose a lightweight and fully
automatic framework to dynamically regulate the local
window size based on contour position probabilities, which is
calculated using the following equation:

d=8, 0.4< <0.6,
{ra |p2| (13)
rad = 5 x [5 x|py _P3|],

otherwise.

where rad represents the local window size that is updated
synchronously over iterations. The condition of 0.4<
|p,| < 0.6 denotes that when evolving contour is located near
the tumor boundary, and 8 pixels is provided that achieved
better results on average during testing. Otherwise, the
contour has a high possibility inside or outside the tumor. To
this case, based on the distance between p, and p;, we give a
dynamic value. If the contour is farther away the tumor
boundary, rad would be increased relatively, and vice versa.
Sufficient window size guarantees the point could move
toward target in the right way and converge quickly.

2.3. Implementation Details

2.3.1. Reinitialization. The level set function (LSF) often
becomes very flat or steep near the zero level set in the



Journal of Healthcare Engineering

evolution process and this will affect the numerical stability.
A remedy procedure of reinitialization is applied periodi-
cally to enforce the degraded LSF being an signed distance
function (SDF). Higher dimensional level set function tends
to more unstable numerical, where the reinitialization plays
a crucial role. We tried several classical methods that failed
to deal with 3D LSF evolution in segmentation. For example,
the method proposed by Sussman et al. [38] has difficulties
to preserve the shape of SDF in 3D LSF. Giovanni et al. used
a true upwind discretization to make the interface locali-
zation accurate [39]. Although LSF is kept more stable, it
limits possible evolution and prevents new zero contours
from emerging. In recent years, the idea of regularizing
evolution results in the eliminating reinitialization pro-
cedure [12, 40, 41]. These methods have many advantages
over traditional ones with higher efficiency and easier
implementation, but they can only be applied to some
variational LSF in specific forms out of three dimensions. In
this work, we apply the reaction-diffusion (RD) method to
maintain the numerical stability of the level set without
reinitialization [42]. Through experiments, RD had a better
performance on the MS model.

2.3.2. Building of Training Sets. In our work, the evolving
contour is an individual volume which requires prediction of
its current position by 3D CNN. To build training sets, we
sampled examples of volume located inside the tumor as the
“inside” label, which has an obvious distance away the
boundaries and got the volumes close to tumor boundary
labeled “boundary” class. Similarly, ones that have a larger
radii are classified to “outside.” Figure 4 describes classes of the
training set in adjacent slices. Because the proposed 3D CNN
has fully connected layers, it requires the fixed size of inputs for
learning and prediction. The extracted training examples are
resampled to 80 x 80 x 40. Although most of tumor’s thick-
ness is under 20, for enhancing features, depth of 40 makes a
tradeoff between computing efficiency and learning effects.

2.3.3. Data Augmentation. Deep neural network, due to its
scale and complexity, typically requires substantial datasets
to perform optimally. The proposed 3D CNN is sensitive to
directions of the training set, which needs data augmenta-
tion and multiorientation pooling in the 3D grid. Therefore,
we applied rotation stochastically around an axis by
(—45 < 0 <45) with an uniform scaling factor (0.8 <e<1.2).
Then, translations (-2<x<2,-2<y<2,-1<z<1) were
made on images.

3. Results

3.1. Data. We trained the proposed 3D CNN model and
tested our method on the competitive datasets of MICCAI
2017 LiTS Challenge and 3DIRCADbD. The LiTS dataset
contains 131 and 70 contrast-enhanced 3D abdominal CT
scans for training and testing, respectively. They were ac-
quired by different scanners and protocols from six different
clinical sites, with a largely varying in-plane resolution from
0.55mm to 1.0mm and slice spacing from 0.45mm to

6.0mm. 3DIRCADb includes 15 CT volume images in-
volving 120 liver tumors of different sizes. The pixel spacing,
slice thickness, and number of slices varied from 0.56 to
0.87 mm, 1 to 4 mm, and 74 to 260, respectively, with the in-
plane resolution of 512 x 512 pixels in all cases. Tumors
manually segmented by clinical experts were also provided
and considered as ground truth. In our experiment, we
exclude tumors with short axis less than 5 pixels, since they
are too small and only visible in several slices. In in-
vestigation of all cases, tumor size varied widely. Their
textures were highly diverse in terms of spatial homogeneity
and contrast, which increases the significance of dynamically
regularizing parameters in the process of the level set. We
used images with the original resolution to avoid possible
artifacts from image resampling, employing distinct details
for accurate tumor segmentation.

3.2. Evaluation Metrics. Our segmentation method was
evaluated using six quantitative metrics, including dice
similarity coefficient (DICE) [43], volumetric overlap error
(VOE), relative volume difference (RVD), average symmetric
surface distance (ASD), and average symmetric RMS surface
distance (RMSD) [3]. The DICE is used for precise evaluation
of the segmentation results, with a higher number indicating a
better result. The VOE is the nonoverlapping ratio of the
segmentation result and ground truth data. It is also used to
evaluate the precision of the results, with a lower number
indicating a better result. The RVD is used to evaluate whether
the algorithm tends to oversegmentation or under-
segmentation. RVD is negative if the algorithm underseg-
ments the object, and 0 is optimal. ASD and RMSD (in
millimeters) evaluate the distance of the border voxels of
segmentation and ground truth in different measurements.
For both of them, a lower value denotes a better segmentation.

3.3. Volume of Interest and Initial Distance Map. To evaluate
DRLS performance on dynamic regularizing parameters, we
selected 40 and 20 tumor volumes from the LiTS dataset with
different sizes for training and testing. In testing, for the
definition of the volume of interest to the level set process,
we invited experienced radiologists to mark the center point
on the short axis and extract VOI. The testing dataset had an
average short axis of 23.3 + 6.85 pixels. A bounding box was
then generated of size 80 x 80 x 60, which makes sure the
entire tumor and its surroundings were included in the
segmentation process. To construct distance map ¢ (x, y, z),
zero level set were initialized using radii of 6, 10, 15, 20, and
30 pixels, respectively. These radii generated initial contours
that were balls located inside or outside the tumors, while
others were close to the tumor boundaries. Conventional
level sets are sensitive to different initializations. The broad
range of initializations allowed us to evaluate the strength of
our method in dealing with initial contours far away from
the tumor in either direction.

3.4. Segmentation Performance. Traditional 3D level set is
sensitive to two things: texture or contrast features of
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F1GURre 4: Construction of the training sets in series. The first row (a)-(e) is the set of label “outside,” where the contour is far away from and
out of the tumor boundary. The second row (f)-(j) of adjacent slices is labeled as “inside.” Two classes have distinct features for learning.

foreground and background and a wide range of optional
initial contours. We test 20 3D CT tumor scans with our
proposed method dynamic regulation level set (DRLS). For
all five different initializations, average DICE and standard
deviation of 0.76 + 0.10 were found on the MS energy
model. Figure 5 shows some examples of adjacent slices in
volumes.

3.5. Dynamic Regulation Process. As Lankton and Tannen-
baum [17] described, parameters of A, and A, control a
couple of mutual restrictive inward and outward forces. If
inward force weights more heavily, the evolving contour has
a stronger tendency to contract, and vice versa. When the
current evolving contour has a long distance out of the
tumor boundary, a relatively larger A, could help the zero
level set move toward the target. In addition, in Lankton’s
model, each point’s force is decided by local region texture.
As a result of heterogeneous intensity existing widely in
tumor CT images, each local motive force is different, and
fixed parameters tend to make level set functional trapped
into local minima, providing worse results. Consequently,
the dynamic parameters based on the specific texture feature
have the potential to resolve this problem. In usual, an initial
contour close to the tumor boundary always obtains a better
segmentation. In order to evaluate the robustness of our
method, we chose two initial contours outside or inside far
away the tumor boundaries. Figure 6 illustrates two ex-
amples of the parameters evolution process. At the begin-
ning, A, and A, had a large difference because of an explicit
contour position classification, with a strong motional
tendency. When close to boundaries, similar A, and A, were
similar and local textures decided the final result.

3.6. Energy and Dice Convergence. Figure 7 demonstrates the
convergence of the DICE and energy functional over 200

iterations for one case with our proposed method. In
Figure 7(a), after a short part of increasing, the energy
decreased with increasing iterations, converging on a very
narrow interval. In the right one, DICE increased rapidly
when the automated segmentation converged on a result
that matched the manual segmentation. On different texture
features, as expected, both metrics obtained substantial
convergence after 40 steps and there were only minor
fluctuations around their final values over later iterations.

3.7. Comparison with Fixed Parameters Level Set. We
compared our method (DRLS) with a state-of-the-art local
framework of level set segmentation [17], which uses a pair
of fixed parameters A, A,, and a fixed local window size
(FLS) during the process of segmentation. To determine the
fixed parameter, we tested several values and A, =14, =1
were chosen. In addition, we preferred local window size of
10 pixels for points on the contour. Those fixed parameters
values were selected for FLS since they supplied the average
best performance for 20 testing cases. Figure 8 demonstrates
different tumor characteristics, initial contour sizes, and
final segmentations, using DRLS and FPLS methods. The
first row of adjacent slices shows an approximate result with
the same initial contour radius 6 pixels, where DRLS is better
than FLS obviously. The second and third rows are instances
that reflect our methods’ great advantages. The tumors are
close to the boundaries of the liver, by which evolving
contours tend to be attracted easily using FLS. In contrast,
our proposed algorithm regulates the control parameters in
time and drives contours to the correct direction. For
quantitative analysis, we evaluated DRLS and FLS with 6, 10,
15, 20, and 30 pixels radii of initializations. To have a
comprehensive comparison, we listed the reported tumor
segmentations results on the testing dataset. Results in
Table 1 show that our proposed method achieved better
performance consistently in five initializations. DRLS had
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F1GURre 5: Tumor segmentation using the proposed method DRLS with two different initializations. (a)-(d) Adjacent slice examples—small
initialization (6 pixels radius); (e)-(h) large initialization (20 pixels radius). Cyan: initial contour; green: manual radiologists’ annotation;
yellow: our final segmentation by DRLS.
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FiGure 6: The evolution of parameters A, and A, over iterations of the segmentation process. (a)-(c) Initial contour outside the tumor in
adjacent slices of a volume data; (e)—(f) initial contour inside the tumor. Green: manual radiologists’ annotation; red: initial contour; yellow:
result of our proposed method. (d, h) Statistics of A, and A, over 200 iterations.

average DICE of 0.76 + 0.10 for the MS energy model, and  the ground truth. To verify influences of different initial
FLS had 0.61 + 0.16, respectively. To other metrics, DRLS  contours between DRLS and FLS, we increased DICE
holds significantly lower error values proven to be close to evaluations on more radius sizes (6, 8, 10, 12, 15, 18, 20, 25
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FIGURE 7: (a) The statistics of energy functional and (b) dice similarity coefficient evaluations over 200 iterations.

FIGURE 8: 3D liver tumor segmentation using DRLS and FLS in comparison. (a)-(d), (e)-(h), and (i)-(1) are adjacent slices of three 3D CT
scans. (a)-(d) are located inside the tumor, and the other two are close to or outside the tumor boundary. Cyan: initial contour; green:
manual radiologists’ annotation; red: FLS result; yellow: our proposed method.

and 30 pixels). Results are illustrated in Figure 9. Since the  closer to the tumor boundary acquired better DICE for
testing dataset had an average short axis of 23.3 +£6.85  DRLS and FLS. Besides, it is obviously found that DRLS
pixels, the initial contours with 10 and 12 pixels radii thatare =~ provides more stable performance which is less sensitive to
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TaBLE 1: Comparison of tumor segmentation results on testing datasets of 20 3D CT scans with five initializations.

Method with init VOE (%) RVD (%) ASD (mm) RMSD (mm) DICE
DRLS 6px 35.71 £ 11.94 —-6.13 + 18.58 1.98 + 1.09 2.21 £ 1.45 0.73 £ 0.11
FLS 6px 52.80 + 16.22 -19.2 £ 24.95 3.11 + 1.57 3.95+ 1.85 0.54 £ 0.15
DRLS 10px 29.73 £ 10.85 0.91 + 12.81 1.55 £ 1.19 1.81 £ 1.08 0.79 £ 0.08
FLS 10px 41.37 + 12.80 -4.20 + 20.14 251 £ 1.17 2.85+1.30 0.69 £ 0.11
DRLS 15px 31.35+11.43 2.25 + 14.08 1.49 £ 1.03 1.87 £+ 1.17 0.78 £ 0.08
FLS 15px 44.83 £ 13.19 5.17 £ 19.33 2.66 + 1.28 3.03 £ 1.42 0.67 £ 0.12
DRLS 20px 36.20 + 13.38 10.26 + 19.97 2.01 £ 1.25 2.41 + 1.33 0.72 £ 0.10
FLS 20px 47.03 £ 16.98 28.60 + 24.62 2.89 £ 1.34 3.30 + 1.62 0.61 £ 0.14
DRLS 30px 4291 £+ 16.19 19.83 + 22.34 2.48 + 1.46 2.89 + 1.56 0.68 £ 0.14
FLS 30px 59.72 + 20.63 43.65 + 33.72 391 +1.72 4.46 + 2.13 0.45 £ 0.19
Results are represented as mean + standard deviation.
different initializations. Figure 10 illustrates some examples 1
of 3D reconstruction in comparison of two methods. 0ol

0.8 -
3.8. Comparison to Other State-of-the-Art Methods on
3DIRCADbD. To validate the effectiveness and robustness of 077
our method, we also conducted experiments on the 8 o6l
3DIRCADD dataset, which is publicly available and offers a A
higher variety and complexity of livers and tumors. In ex- 05
periments, we divided the 3DIRCADD testing dataset into 041l
two categories. A tumor with longest axis larger than or
equal to 40 pixels was defined as a large one, and a small 031
tumor, vice versa. Initialization of DRLS and its local 02 . . . . . .
window size was automatically adjusted by contour location > 10 15 20 25 30 35
probabilities. As shown in Table 2, our method achieved an Initialization radius size
average VOE and RVD of 26.93% and 6.55%, an average _5_ DRLS
ASD and RMSD of 1.05 and 1.44 mm, and an average DICE —s— FLS

of 0.85, respectively. For large tumors, a VOE of 22.87%,
RVD of 3.29%, ASD of 1.09 mm, RMSD of 1.52mm, and
DICE of 0.87 were provided. For small tumors, a higher VOE
of 33.29% and a lower DICE of 0.81% were obtained. From
the comparison, it claimed that the performance gain is
mainly attributed to the improvement of the large-scale
tumor segmentation results. This is mainly because that
the 3D CNN classifier is more effective when the receptive
field has more texture information. Once its output prob-
abilities are accurate, the dynamic parameters are estimated
properly so that the large 3D tumor can be improved by a
large margin. Although the hybrid method still benefits
small tumors, the effect is limited since such size contains a
few features which lead to an unstable prediction.

Table 3 shows the quantitative segmentation results
compared with other state-of-the-art algorithms on the
3DIRCADD dataset. We can see that our method achieved
the better performance on DICE than [29-33, 44-47] on
liver tumor segmentation. In this experiment, we collected
parts of the 2017 LiTS dataset to train the 3D CNN classifier
and used the well-trained model to test DRLS on the
3DIRCADbD dataset directly. The approach of selecting
initialization and local window size adopted the strategy of
initial contour probabilities. The evaluation metrics involved
VOE, RVD, ASD, RMSD, and DICE.

Han [29] presented a model derived from U-Net, which
combined the ResNet model in a number of layers. Similarly,
Chlebus et al. [44] proposed another neural network model

FIGURE 9: Mean = SD of dice coefficients over the whole testing
datasets with different initializations for MS energy.

for segmentation with fuzzy clustering based on random
forest for postprocessing. The backbone of the entire
network depended on the 2D U-Net baseline. Both of
models [29, 44] are 2D networks with fully automatic
detection for tumors, which pay little attention to features
between adjacent slices, providing lower VOEs and DICEs.
Moghbel et al. gave a fully automatic segmentation without
any interactions, integrating cuckoo optimization and
fuzzy c-means with random walkers. The performance of
our method on the 3DIRCADDb dataset was comparable to
that of Moghbel, giving 0.1 DICE improvement on average.
In addition, Foruzan and Chen [31] and Wu et al. [32]
designed semiautomatic segmentation based on topologi-
cal methods like watershed and graph cut. Because of re-
quiring prior knowledge, these semiautomatic algorithms
acquired good results with DICE 0.82 and 0.83, re-
spectively, when VOE or other metrics dropped dramati-
cally. Actually, although semiautomatic ones cannot be
compared directly with fully automatic ones, to some
extent, their reported results on the 3DIRCADD dataset can
give expression to the state-of-the-art performance for the
tumor segmentation task. Christ et al. [30] used cascaded
fully convolutional neural networks enabling the seg-
mentation for low-contrast CT images. The first pipeline
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(b)

(c)

(d)

FIGURE 10: Segmentation results obtained by the FLS and our proposed method DRLS. Each row shows one case of tumor segmentation
results in 3D reconstruction. The left column of tumors (a, c) is processed with FLS and the right (b, d) with DRLS. The surface of the ground
truth is in green. The surface of the segmented tumor by the corresponding method is in red.

TaBLE 2: Quantitative evaluation of the proposed method DRLS on large or small 3D tumor CT scans.

VOE (%) RVD (%) ASD (mm) RMSD (mm) DICE
Large tumor 22.87 £7.25 3.29 £9.92 1.09 £ 0.76 1.52 £ 1.21 0.87 + 0.06
Max. 35.18 16.83 2.26 4.68 0.96
Min. 7.54 -11.50 0.31 0.29 0.70
Small tumor 33.29 £ 7.99 11.60 + 21.33 0.91 £ 0.58 1.30 = 0.99 0.81 + 0.05
Max. 73.8 49.18 3.27 4.81 0.84
Min. 22.95 -13.75 0.31 0.27 0.48
Average 26.93 = 8.51 6.55 £ 14.91 1.05 £ 0.71 1.44 £ 1.13 0.85 £ 0.06

Results are represented as mean + standard deviation.

extracted the liver as the ROI input for the tumor seg-
mentation via second FCN. As a result of the limited sole
FCN'’s ability, this model took DICE of 0.56 only. Huang
etal. [33] also required an accurate initial eclipse, enclosing
the middle slice of 3D tumor scans. Living on desired
initialization, it provided an average of 27.05 VOE and 0.84
DICE. Zheng et al. [46] proposed a level set framework
combining DRLSE [40] and HMREF-EM constraint [48] to
estimate the evolving contour with fixed parameters, which
served a higher VOE, RVD, ASD, and RMSD. Jin et al. [47]

set up a multitasks 3D model for tumor location and
segmentation. The part of network backbone for fully
automatic segmentation was derived from 3D U-Net with
residual block holding a mean DICE score of 0.83. In the
experiment, we collected parts of the LiTS dataset as the
training dataset for the proposed 3D CNN model. As
shown in Table 3, our method achieved DICE 0.85 + 0.06
that had a clear advantage on the 3DIRCADDb dataset, when
VOE, RVD, ASD, and RMSD had a stable performance in
all cases.
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TaBLE 3: Quantitative segmentation results of our method compared to the other novel algorithm on the 3DIRCADD dataset.
Model Year VOE (%) RVD (%) ASD (mm) RMSD (mm) DICE
Moghbel et al. [45] 2016 22.78 + 12.15 8.59 + 18.78 — — 0.75 +0.15
Foruzan and Chen [31] 2016 30.61 + 10.44 15.97 + 12.04 4.18 £ 9.60 5.09 £ 10.71 0.82 £ 0.07
ResNet [29] 2017 56.47 + 13.62 — 6.36 + 3.77 11.69 + 7.60 0.60 = 0.12
Christ et al. [30] 2017 — — — — 0.56 + 0.26
Wu et al. [32] 2017 29.04 + 8.16 —2.20 + 15.88 0.72 £0.33 1.10 £ 0.49 0.83 = 0.06
Chlebus et al. [44] 2018 62.55 + 22.36 - 11.11 + 12.02 16.71 £ 13.81 0.51 +0.25
Huang et al. [33] 2018 27.05 £ 9.19 4.23 £19.28 1.49 £ 1.29 2.03 £1.91 0.84 = 0.07
Zheng et al. [46] 2018 282+ 11.9 -85+ 185 1.8 +1.3 24+ 1.7 —
Jin et al. [47] 2018 — — — — 0.83
Ours 26.93 = 8.51 6.55 £ 14.91 1.05 £ 0.71 1.44 £ 1.13 0.85 = 0.06

Results are represented as mean + standard deviation.

Figure 11: Continued.

(c)

(k)

(d)
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FIGURE 11: Segmentation results obtained by the proposed method on the 3SDIRCADb dataset. (a)-(p) One case of tumor segmentation
results in adjacent slices and the 3D reconstruction result. (q) 3D reconstruction result of the liver and its entire tumors are inside. Green is
the ground truth annotated by radiologists. Red is the segmentation result by DRLS.

The promising results indicated the effectiveness and
good generalization capability of our method. In other
words, such a good result was benefited from the LiTS
dataset, which contains a great number of cases with large
variations in features of tumor. It is the diversity that devotes
the 3D CNN model to extract discriminative features from
training set more effectively. Figure 11 shows some typical
examples with different sizes, intensities and positions. It can
be seen that our method achieved comparable results to the
ground truth manual segmentation in most cases. However,
relatively large undersegmentation and oversegmentation
errors occurred when the tumor presented ambiguous or
low contrast boundaries.

4. Discussion

For accurate and robust liver tumor segmentation for
clinical diagnosis, we propose a novel method for dynamic
regulation of the A, and A, contour parameters in the level
set model. Meanwhile, automatic initialization and local
window size could be adjusted based on the estimation of the
contour position. Depending on a proper VOI, we provide a
tully automatic and self-adaptive segmentation method for
low-contrast CT scans. The main advantages of the proposed
approach are demonstrated: (1) we introduce the 3D CNN to
estimate 3D evolving contour’s position effectively. The
method uses position probabilities to calculate level set
parameters A;, A,, accurate initialization, and local window

size, respectively. This process can be generalized for seg-
mentation with active contour methods. (2) Adaptiveness to
highly diverse tumor dataset. (3) Less sensitive to accurate
initialization, manual interaction, and parameter fine tun-
ing. (4) Superior performance with high robustness to
complicated conditions like various tumor’s location, shape,
and textures, compared with the state-of-the-art methods.

In addition, the whole baseline of our proposed DRLS is
automatic. At the beginning, the well-trained 3D CNN
model can evaluate the most suitable initial contour from
many candidates. In the iterative process, the fixed pa-
rameters of the level set are regulated dynamically based on
the position probability of 3D evolving contour until energy
convergence. This novel automatic framework combining
hybrid methods provides more accurate liver tumor seg-
mentation especially in low contrast and noisy CT scans. To
show the generalization capability of our method in the
clinical practice, we tested our trained model on the MS
energy functional and a wide range of sizes and locations of
3D initial contours. We compared our proposed method
DRLS with the state-of-the-art level set frameworks and
several methods based on deep learning. Figure 8 illustrates
that our algorithm DRLS method can deal with different
types of 3D tumor scans with low contrast, heterogeneous,
noisy background, or close to liver edge, outperforming
commonly used level set framework with predefined fixed
contour parameters FLS. As proven, Table 1 and Figure 9
demonstrate that DRLS has more accuracy and robustness
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regardless of the initial contour location and size, holding an
average dice 0.76 higher than FLS 0.61 on MS energy. Be-
sides, other metrics like VOE, ARVD, ASD, and RMSD had
an obvious decline. Our proposed classifier based on 3D
CNN is trained by a part of the 3DIRCADbD dataset. Fur-
thermore, we tried DRLS to compete with seven popular
semi- or fully automatic segmentation methods on the
3DIRCADD dataset, and it achieved the state-of-the-art
results on liver tumor segmentation, with 0.85 DICE on
average. These findings indicate two key points. At first,
common methods based on active contour cannot provide
accurate segmentations of such highly diverse tumor
datasets with fixed parameters since different local image
features requires different model constraints. Another point
is that the hybrid method of deep learning and level set
framework can maximize their strengths, detecting region
characteristics and delineating details of tumor boundaries.
Each tumor type needs completely different sets of energy
functional parameters. Using a fixed set of parameters will
result in an inaccurate segmentation of the tumor. On the
contrary, the energy functional always falls into local
minima in the noisy texture. Consequently, our proposed
method that combines the level set and 3D CNN model
overcomes their respective limitations, serving a signifi-
cantly advanced result than either method alone.

The presented work has some limitations. First, VOI for
each tumor is required and may lead to more accurate
segmentation. In the future, we should incorporate the
automatic tumor detection at the beginning of the seg-
mentation, so that the entire process will be fully automated
and independent out of user’s any input. Another future
work may include a cascaded joint network integrating
multimodalities into a single baseline, exerting each specific
advantage. At present, the processes of the level set and deep
learning network are mutually independent. Another pos-
sible extension is to merger level set framework into neural
network as convolutional layers, which implements an end-
to-end training system for tumor segmentation.

5. Conclusions

We present a hybrid method using the level set and 3D
neural network for liver tumor segmentation from CT
scans. 3D CNN is used to estimate the current contour
position outputting probabilities inside, outside, or close to
tumor boundaries. Based on these values, the parameters of
the energy functional can be regularized dynamically in
each iterative step. Meanwhile, accurate initialization and
local window size also can be calculated to improve the
performance of automatic segmentation. Compared with
the level set framework with fixed parameters, our pro-
posed method (DRLS) archived better results and showed
advanced robustness with different initializations. DRLS
has generalized a common level set, giving great potential
to related research work. To further evaluate our proposed
automatic segmentation scheme, we tested DRLS with the
well-trained 3D CNN model on the dataset 3DIRCADD.
After extensive experiments, the competitive result of our
proposed method DRLS was found especially in the
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large-scale tumor. Some limitations about DRLS will be
future work to be optimized.
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MICCATI 2017 LiTS Challenge dataset is shared at https://
competitions.codalab.org/competitions/17094#learn_the_
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www.ircad.fr/research/3dircadb.
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