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Growth-transform (GT) neurons and their population models allow for independent

control over the spiking statistics and the transient population dynamics while optimizing

a physically plausible distributed energy functional involving continuous-valued neural

variables. In this paper we describe a backpropagation-less learning approach to train a

network of spiking GT neurons by enforcing sparsity constraints on the overall network

spiking activity. The key features of the model and the proposed learning framework

are: (a) spike responses are generated as a result of constraint violation and hence

can be viewed as Lagrangian parameters; (b) the optimal parameters for a given task

can be learned using neurally relevant local learning rules and in an online manner;

(c) the network optimizes itself to encode the solution with as few spikes as possible

(sparsity); (d) the network optimizes itself to operate at a solution with the maximum

dynamic range and away from saturation; and (e) the framework is flexible enough to

incorporate additional structural and connectivity constraints on the network. As a result,

the proposed formulation is attractive for designing neuromorphic tinyML systems that

are constrained in energy, resources, and network structure. In this paper, we show

how the approach could be used for unsupervised and supervised learning such that

minimizing a training error is equivalent to minimizing the overall spiking activity across the

network. We then build on this framework to implement three different multi-layer spiking

network architectures with progressively increasing flexibility in training and consequently,

sparsity. We demonstrate the applicability of the proposed algorithm for resource-efficient

learning using a publicly available machine olfaction dataset with unique challenges like

sensor drift and a wide range of stimulus concentrations. In all of these case studies

we show that a GT network trained using the proposed learning approach is able to

minimize the network-level spiking activity while producing classification accuracy that

are comparable to standard approaches on the same dataset.

Keywords: energy-based learning, spiking neural network, neuromorphic machine learning, supervised leaning,

domain description, spike rates, sparsity, unsupervised learning
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1. INTRODUCTION

As the deployment of miniaturized and battery-powered sensors
and devices becomes ubiquitous, computation is increasingly

moving from the cloud to the source of data collection. With it,
there is a growing demand for specialized algorithms, hardware,

and software—collectively termed as tinyML systems—that can
perform learning and inference at the edge under energy and

resource-constrained environments. Recent efforts at reducing

the energy requirements of classical machine learning algorithms
include network architecture search (Cai et al., 2018), model
compression through energy-aware pruning and quantization
(Molchanov et al., 2016; Yang et al., 2017; Oh et al., 2018), model
partitioning (Kang et al., 2017), and many more.

Neuromorphic systems, on the other hand, naturally
lend themselves to resource-efficient computation, deriving
inspiration from tiny brains (insect brains) that not only
occupy a small form-factor but also exhibit high energy-
efficiency (Chittka and Niven, 2009; Theobald, 2014). Over the
last few years, neuromorphic algorithms using event-driven
communication on specialized hardware have been claimed to
outperform their classical counterparts running on traditional
hardware in energy costs by orders of magnitude in bench-
marking tests across applications (Stromatias et al., 2015; Marti
et al., 2016; Blouw et al., 2019; Tang et al., 2019). However, like
traditional ML approaches, these advantages in energy-efficiency
were demonstrated only during inference. Implementing spike-
based learning and training has proven to be a challenge and in
literature one of the following approaches have been reported:

• For a vast majority of energy-based learning models,
backpropagation remains the tool of choice for training
spiking neural networks. In order to resolve differences due
to continuous-valued neural outputs in traditional neural
networks and discrete outputs generated by spiking neurons
in their neuromorphic counterparts, transfer techniques that
map deep neural nets to their spiking counterparts through
rate-based conversions are widely used (O’Connor et al., 2013;
Diehl et al., 2015; Rueckauer et al., 2016). Other approaches
use temporal coding to formulate loss functions that penalize
the difference between actual and desired spike-times (Xin and
Embrechts, 2001; Bohte et al., 2002; Belatreche et al., 2003;
Mostafa, 2017; Zhou et al., 2021), or approximate derivatives
of spike signals through various means to calculate error
gradients for backpropagation (Lee et al., 2016; Shrestha and
Orchard, 2018; Zenke and Ganguli, 2018).

• On the other hand there are neuromorphic algorithms
that use local learning rules like the Synaptic Time-
Dependent Plasticity (STDP) for learning lower-level feature
representations in spiking neural networks. Some of these are
unsupervised algorithms that combine the learned features
with an additional layer of supervision using separate
classifiers or spike counts (Masquelier and Thorpe, 2007; Diehl
and Cook, 2015; Kheradpisheh et al., 2016). Yet others adapt
weights in specific directions to reproduce desired output
patterns or templates in the decision layer, for example,
a spike (or high firing rate) in response to a positive

pattern and silence (or low firing rate) otherwise. Examples
include supervised synaptic learning rules like the tempotron
(Gütig and Sompolinsky, 2006) implementing temporal credit
assignments according to elicited output responses; and
algorithms using teaching signals to drive outputs in the
decision layer (Brader et al., 2007; Beyeler et al., 2013).

From the perspective of tinyML systems, each of these family
of approaches have their own shortcomings. Backpropagation
(BP) has long been criticized due to issues arising from weight
transport and update locking—both of which, aside from their
biological implausibility, pose serious limitations for resource
constrained computing platforms (Crafton et al., 2019). Weight
transport problem refers to the perfect symmetry requirement
between feed-forward and feedback weights in backpropagation,
making weight updates non-local and requiring each layer to
have complete information about all weights from downstream
layers. This reliance on global information leads to significant
energy and latency overheads in hardware implementations.
Update locking implies that backpropagation has to wait for a full
forward pass before weight updates can occur in the backward
pass, causing high memory overhead due to the necessity of
buffering inputs and activations corresponding to all layers.
On the other hand, neuromorphic algorithms relying on local
learning rules do not require global information and buffering
of intermediate values for performing weight updates. However,
these algorithms are not optimized w.r.t. a network objective,
and it is difficult to interpret their dynamics and fully optimize
the network parameters for solving a certain task. Additionally,
neither of these existing approaches inherently incorporates
optimization for sparsity within the learning framework. This
is an important aspect for tinyML systems, because similar
to biological systems (Attwell and Laughlin, 2001), generation
and transmission of spike information from one part of the
network to the other consumes the maximum amount of
power in neuromorphic systems (Sorbaro et al., 2020). Even
though Time-to-First-Spike (TTFS) SNNs (Mostafa, 2017; Zhou
et al., 2021) have been shown to be sparser and more energy-
efficient in comparison to their rate-coded counterparts, these
networks still use backpropagation using non-spiking variables
(floating-point numbers) and as such inherit the limitations
of BP-based approaches when used in the context of tinyML
applications. In absence of a direct control over sparsity, energy-
efficiency in neuromorphic machine learning has largely been a
secondary consideration, achieved through external constraints
on network connectivity and/or quantization level of its neurons
and synapses (Esser et al., 2016), or through additional penalty
terms that regularize some statistical measure of spiking activity
like firing rates (Neil et al., 2016), or the total number of synaptic
operations (Sorbaro et al., 2020). This is illustrated in Figure 1A

where finding optimal weight parameters w∗ for a given task
is then equivalent to finding a solution that simultaneously
minimizes a training loss L and a second cost function �

which favors sparser solutions, with the relative importance being
determined by a regularization hyper-parameter β .

In order to truly exploit neuromorphic principles for tinyML
architectures, we would need to design energy-based learning
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FIGURE 1 | (A) Energy-efficiency in energy-based neuromorphic machine learning, where L is the loss function for training and � is an additional loss for enforcing

sparsity. (B) Proposed sparsity-driven energy-based neuromorphic machine learning where L and � are equivalent.

models that are also neurally relevant or backpropagation-less
and at the same time enforce sparsity in the network’s spiking
activity. Over the last few years, there has been a growing
interest in developing algorithms for training neural networks
that overcomes one or more constraints of the backpropagation
algorithm. One well-known method is feedback alignment—also
known as randombackpropagation—which eradicates the weight
transport problem by using fixed randomweights in the feedback
path for propagating error gradient information (Liao et al., 2016;
Lillicrap et al., 2016). Subsequent research showed that directly
propagating the output error (Nøkland and Eidnes, 2019) or
even the raw one-hot encoded targets (Frenkel et al., 2021) is
sufficient to maintain feedback alignment, and in case of the
latter, also eradicates update locking by allowing simultaneous
and independent weight updates at each layer. Equilibrium
propagation (Scellier and Bengio, 2017) is another biologically
relevant algorithm for training energy-based models, where the
network initially relaxes to a fixed-point of its energy function
in response to an external input. In the subsequent phase when
the corresponding target is revealed, the output units are nudged
toward the target in an attempt to reduce prediction error,
and the resulting perturbations rippling backward through the
hidden layers were shown to contain error gradient information
akin to backpropagation. Yet another class of algorithms are
predictive coding frameworks, which use local learning rules
to hierarchically minimize prediction errors (Whittington and
Bogacz, 2017; Millidge et al., 2020). However, it is not clear
how we can design such systems within a neuromorphic tinyML
framework which can (a) generate spiking responses within an
energy-based model; (b) learn optimal parameters for a given
task using local learning rules; and (c) additionally optimize itself
for sparsity such that it is able to encode the solution with the
fewest number of spikes possible without relying on additional
regularizing terms.

In this work we propose a framework for designing
neuromorphic tinyML systems that is backpropagation-less but
is also able to enforce sparsity in network spiking activity in
addition to conforming to additional structural or connectivity
constraints imposed on the network. The framework builds upon
our previously proposed spiking neuron and population model
based on a Growth Transform dynamical system (Gangopadhyay

et al., 2020), where the dynamical and spiking responses of
a neuron are derived directly from an energy functional of
continuous-valued neural variables (membrane potentials). This
provides the model with enough granularity to independently
control different neuro-dynamical parameters, e.g., the shape
of action potentials or transient population dynamics like
bursting, spike frequency adaptation, etc. However, in the
previous framework (Gangopadhyay et al., 2020), the model
had a fixed energy landscape with constant synaptic weights.
In this work we extend the framework to incorporate learning
or synaptic adaptation, which will play a pivotal role in
determining the optimal network configuration. Specifically, in
this paper we address learning/adaptation to reshape the energy
landscape optimally for solving standard machine learning
tasks. We moreover show how we can exploit the inherent
dynamics of Growth Transform neurons to design networks
where learning the optimal parameters for a learning task
simultaneously minimizes an important energy metric for the
system—the sum-total of spiking activity across the network.
This is illustrated in Figure 1B, where the energy function
for reducing the training error also represents the network-
level spiking activity, such that minimizing one is equivalent to
minimizing the other. Moreover, since the energy functionals
for deriving the optimal neural responses as well as weight
parameters are directly expressible in terms of continuous-
valued membrane potentials, the Growth Transform (GT)
neuron model can implement energy-based learning using
the neural variables themselves, without requiring to resort
to rate-based representations, spike-time conversions, output
approximations, or the use of external classifiers. Additionally,
we present a multi-layered network architecture where lateral
connections within a layer allow each layer to learn a non-
linear encoding of its input, whereas the connections between
layers could remain static. This allows us to design networks
where weight adaptation only happens between neurons on the
same layer, which could be locally implemented on hardware.
We also show in this paper that the sparsity constraints on the
network’s spiking activity acts as a regularizer that improves
the Growth Transform neural network’s (GTNN’s) generalization
performance when learning with few training samples (few-
shot learning).
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The paper is organized as follows. Section 2 derives the energy
function for minimizing the average power dissipation in a
generic neuron model under specified constraints, and shows
how spike generation can be framed as a constraint violation
in such a network. We show that the energy function has the
same form as the network objective we derived for the spiking
neuron and populationmodel in Gangopadhyay et al. (2020), and
could therefore be optimized using the continuous-time Growth
Transform dynamical system presented previously. We exploit
the properties of GT neurons to design a differential network
configuration consisting of ON-OFF neuron pairs which always
satisfies a linear relationship between the input and response
variables. We then present a learning framework which adapts
weights in the network such that the linear relationship is satisfied
with the highest network sparsity possible, i.e., the minimum
number of spikes elicited across the network. In section 3, we
show how appropriate choices of network architectures enable
us to solve standard unsupervised and supervised machine
learning tasks using the GT network, while simultaneously
optimizing for sparsity. We further extend the previous results
to solve non-linearly separable classification problems using
three different end-to-end spiking networks with progressively
increasing flexibility in training (and consequently, sparsity),
and present the results for few-shot and one-shot learning on a
benchmark machine olfaction dataset, as well as results on other
benchmark datasets. Finally, section 4 concludes the paper with a
discussion about the scope of future research in this area.

2. MATERIALS AND METHODS

Throughout the paper we will conform to the mathematical
notations summarized below. Also, unless specified all quantities
considered in the methods will be unit-less or in the form
of ratios.

Notations

x Real scalar variable

x Real-valued vector with xi as its i-th element

X Real-valued matrix with Xij as the element at the i-th row and the j-th

column

xi (t) i-th element of real-valued vector x at time t

x̄(t) Empirical expectation of the time-varying signal x(t) estimated over an

asymptotically infinite window, i.e., lim
T→∞

1
T

∫ T

0 x(t)dt

R
M Vector space spanned by M-dimensional real vectors

|x| Absolute value of a scalar

||x||p lp-norm of an M-dimensional vector, defined as (
M
∑

i=1

|xi |
p)1/p

xT Transpose of the vector x

∂H
∂x

Gradient vector [ ∂H
∂x1

, ∂H
∂x2

, ..., ∂H
∂xM

]T

2.1. Spike Generation Viewed as A
Constraint Violation
Consider a general circuit model of a single neuron as shown in
Figure 2A, whose intra-cellular membrane potential is denoted
by v ∈ R. It receives an external stimulus as current input b.

Then, the average power P ∈ R dissipated by the neuron is given
by

P =
1

2
Qv2 − bv, (1)

whereQ ∈ R
+ captures the effect of leakage impedance, as shown

in Figure 2A. We will impose biophysical constraints that the
membrane potential v be bounded as

− vc ≤ v ≤ 0, (2)

where vc > 0 is a constant potential acting as a lower-bound,
and 0 is a reference potential acting as a threshold voltage.
Minimizing the average power dissipation of the neuron under
the bound constraint in (2) is equivalent to solving the following
optimization problem

min
−vc≤v≤0

P = min
−vc≤v≤0

1

2
Qv2 − bv. (3)

Let 9 ≥ 0 be the KKT (Karush-Kuhn-Tucker) multiplier
corresponding to the inequality constraint v ≤ 0, then the
optimization in (3) is equivalent to

min
|v|≤vc ,9

H
(

v
)

= min
|v|≤vc ,9

1

2
Qv2 − bv+ 9v (4)

where 9 ≥ 0, and 9v∗ = 0 satisfy the KKT complementary
slackness criterion for the optimal solution v∗ (Kuhn and Tucker,
1951). The solution to the optimization problem in (4) satisfies
the following first-order condition

9 = −Qv∗ + b

9v∗ = 0; 9 ≥ 0; |v∗| ≤ vc. (5)

The first-order condition in (5) could be extended to time-
varying input b(t) where (5) can be expressed in terms of the
temporal expectation (defined in the Notations table) of the
optimization variables as

9̄ ≈ −Qv̄+ b̄

9v = 0; 9 ≥ 0; |v| ≤ vc. (6)

Note that here the KKT constraints 9v = 0;9 ≥ 0 need to be
satisfied for all instantaneous values and at all times, and not only
at the optimal solution v∗. Thus, 9 acts as a switching function
which results from the violation of the constraint v ≤ 0. In the
next section we show that a dynamical systemwith a specific form
of 9(.) and satisfying the KKT constraints, naturally defines the
process of spike-generation.

2.2. Growth Transform Neuron Model
One way to satisfy the first-order conditions (6) using a
dynamical systems approach would be to define 9 as a
barrier function

9 =

{

I9 ; v > 0
0 ; v ≤ 0

}

. (7)
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FIGURE 2 | (A) Circuit model for a single neuron model with external current input. (B) Oscillatory dynamics in GT neuron model when the optimal solution v∗ goes

above the spike threshold, and the composite spike signal upon addition of spikes. (C) Plot of 9̄ vs. b̄, for two different values of Q. (D) Error introduced as a result of

approximating 9 by 9̄ for different values of Q and two different current inputs.

with I9 ≥ 0 denotes a hyperpolarization parameter. Such
a barrier function ensures that the complementary slackness
condition holds at all times, and as we show later, the temporal
expectation (as defined in Notations) 9̄ → 9 in the limit as
Q → 0. For the form of the spike function in (7), we can write

9v =

v
∫

−∞

9(η)dη. (8)

Thus the optimization problem in (9) can be rewritten as

min
|v|≤vc

H
(

v
)

= min
|v|≤vc

1

2
Qv2 − bv+

v
∫

−∞

9(η)dη. (9)

The cost function H can be optimized under the bound
constraints |v| ≤ vc using a dynamical systems approach like
the Growth Transform (GT) neuronmodel (Gangopadhyay et al.,
2020). The mathematical derivation and the properties of the GT
neuron model can be found in Gangopadhyay et al. (2020) and
here we summarize the model for the sake of completeness. For
the GT neuron, the membrane potential v evolves according to
the following first-order non-linear differential equation

τ (t)
dv

dt
+ v = vc

−gvc + λv

−gv+ λvc
, (10)

where

g = Qv− b+ 9 . (11)

Here λ is a fixed hyper-parameter that is chosen such that λ > |g|,
and 0 ≤ τ (t) < ∞ is a modulation function that can be tuned
individually for each neuron and models the excitability of the
neuron to external stimulation. It was shown in Gangopadhyay
et al. (2020) that for non-saturating neurons with responses
−vc < v (which includes spiking neurons as well as non-spiking
neurons that do not cross the threshold), Equation (10) evolves
the dynamical system such that H is minimized, irrespective of
the choice of τ (t). Figure 2B shows a sample membrane potential
and spike function trace of a single GT neuron in response to
a fixed stimulus. The neuron model has a spiking threshold at
0 V, which corresponds to the discontinuity in the spike function
9(.). When the neuron receives a positive input, the optimal
solution, v∗, shifts above the threshold to a level that is a function
of the stimulus magnitude. When v tries to exceed the threshold
in an attempt to reach the optimal solution, 9(.) penalizes the
energy functional, forcing v to reset below the threshold. The
stimulus and the barrier function introduce opposing tendencies
as long as the stimulus is present, making v oscillate back and
forth around the discontinuity (spike threshold). During the brief
period when v reaches the threshold, we assume that the neuron
enters into a runaway state leading to a voltage spike, shown by
gray bars in the figure. In Gangopadhyay et al. (2020), we showed
that the modulation function τ (.) in (10) provides another degree
of freedom that can be varied to model different transient firing
statistics based on local and/or global variables. For example, it
was shown how the modulation function can be varied based
on local variables like membrane potentials or local firing rates
to reproduce single-neuron response characteristics like tonic
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spiking, bursting, spike-frequency adaptation, etc., or based on
global properties like the state of convergence of the network to
yield different population-level dynamics.

2.2.1. Orthogonal, Mixed-Signal, and ReLU Encoding

of A Single GT Neuron
The GT neuronmodel satisfies the following first order condition

9̄ ≈ −Qv̄+ b̄

9v = 0; 9 ≥ 0; |v| ≤ vc. (12)

Then as Q → 0,

9̄ → ReLU
(

b̄
)

, (13)

where

ReLU(z) =

{

z ; z > 0
0 ; z ≤ 0

}

. (14)

Figure 2C demonstrates (13) for two different values of Q. Since
I9 also controls the refractory period of the GT neuron and the
temporal expectation is computed over a finite time window,
there exists an upper-bound on the maximum firing rate as
shown in Figure 2C. Note that 9̄ corresponds to an averaging
over discrete events, thus the result (13) exhibits quantization
effects. But in the limit Q → 0, 9̄ converges toward the floating-
point solution9 in (5). This is demonstrated in Figure 2Dwhich
plots the absolute difference between 9 and 9̄ (normalized by
I9 ) for different values of the leakage impedance. Note that the
quantization step of 0.001 in this plot arises due to a finite number
of spikes that can occur within a finite window size (1,000 time-
steps for the plot shown). This quantization error could be further
reduced by considering a larger window size. For the rest of
this paper, we will use the variables 9 , v and their temporal
expectation 9̄ , v̄ interchangeably with the understanding that
they converge toward each other in the limit Q → 0. This also
implies we will interchangeably use optimizations (4) and (9) to
understand the asymptotic properties of the solution.

An interesting observation about the response of a single GT
neuron from the first-order condition in (6) is

9 + Qv = b (15)

9v = 0. (16)

Thus, all GT neurons are encoding the input stimuli as two
orthogonal components, one being the discrete (or digital) spike-
function9 and the other being the analog membrane potential v.
We extend this concept in the next section to a network of ON-
OFF neurons that can produce coupled orthogonal trajectories.

2.2.2. An ON-OFF GT Neuron Model for Stimulus

Encoding
The fundamental building block in the proposed GTNN learning
framework is an ON-OFF GT neuron model which we describe
here. Consider a GT network as shown in Figure 3A, comprising
of a pair of neurons, an ON neuron and an OFF neuron. We
will denote the respectivemembrane potentials of the ON neuron

and OFF neuron as v+ and v−. The external input b is presented
differentially to the neuron pair, where the ON neuron receives a
positive input stimulus b and the OFF neuron receives a negative
input stimulus −b. We will assume for now that the neurons
do not have any synaptic projections to each other, as shown in
the Figure 3A. The optimization problem (4) decomposes into
two uncoupled cost functions corresponding to the ON and OFF
neurons, respectively as

min
|v+|≤vc

H
(

v+
)

= min
|v+|≤vc

1

2
Qv+

2
− bv+ + 9+v+, and (17)

min
|v−|≤vc

H
(

v−
)

= min
|v−|≤vc

1

2
Qv−

2
+ bv− + 9−v− (18)

This corresponds to the following first-order conditions for the
differential pair

Qv+ + 9+ = b, and (19)

Qv− + 9− = −b, (20)

along with the non-negativity and complementary conditions for
the respective spike functions as

9+ ≥ 0; 9+v+ = 0, and

9− ≥ 0; 9−v− = 0. (21)

Let us consider two cases based on the sign of the input b.
Case 1. b ≥ 0: When b is positive, we obtain the following set of
solutions to (19)–(20) under the above constraints

v+ = 0, 9+ = b, and (22)

Qv− = −b,9− = 0. (23)

Case 2. b < 0: When b is negative, the corresponding solutions
are as follows

Qv+ = b, 9+ = 0, and (24)

v− = 0, 9− = −b. (25)

Combining the two cases, the ON-OFF variables v+, v− satisfy
the following important properties:

v+v− = 0, (26)

Q
(

v+ − v−
)

= 9+ − 9− = b (27)

9+ + 9− = −Q
(

v+ + v−
)

. (28)

Property (26) show that the membrane voltages v+ and v−

are always orthogonal to each other. Figure 3B shows that the
orthogonality also holds for their respective temporal dynamics
as well when the input stimulus is turned ON and OFF. This
temporal ON-OFF responses have been well documented for
networks of biological neurons as well (Hubel and Wiesel, 1962;
Behnia et al., 2014; Moustafa, 2015; Saha et al., 2017). Property
(27) show that the ON-OFF neurons together faithfully encode
the input stimuli. In this regard, the pair behaves as an analog-
to-digital converter (ADC) which maps the time-varying analog
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FIGURE 3 | (A) An ON-OFF neuron pair. (B) Temporal dynamics of an ON-OFF neuron pair in response to positive and negative stimuli. (C) Coupled differential GT

network. (D) Firing rate minimization through weight adaptation in a coupled differential network. (E) Template projection using a GT network.

input into a train of output binary spikes. Property (28) in
conjunction with Property (26) leads to

(9+ + 9−) = −Q(v+ + v−) (29)

= Q|v+ − v−| (30)

which states that the average spiking rate of an ON-OFF network
encodes the norm of the differential membrane potential v =

v+ − v−. This property has been used in the next section to
simultaneously enforce sparsity and solve a learning task.

2.3. A Sparsity-Driven Learning Framework
to Adapt Q
We now extend the ON-OFF neuron pair to a generic network
comprising M neuron pairs, as shown in Figure 3C. The i-th
neuron pair is coupled differentially to the j-th neuron pair
through a trans-conductance synapse denoted by its weightQij ∈

R. The differential stimuli to the ON-OFF network in (19)–(20)
can be generalized to comprise the external input bi and inputs
from other ON-OFF neuron pairs as

bi −
∑

j 6=i

Qij(v
+
j − v−j ). (31)

Denoting the Q in (19)–(20) by Qii leads to the first-order
conditions for the i-th ON-OFF neuron pair as

Qiiv
+
i + 9+

i = −
∑

j 6=i

Qij(v
+
j − v−j )+ bi, and (32)

Qiiv
−
i + 9−

i =
∑

j 6=i

Qij(v
+
j − v−j )− bi. (33)

As before, each neuron in the network satisfies

Qii

(

v+i − v−i
)

= bi −
∑

j 6=i

Qij(v
+
j − v−j ), or (34)

M
∑

j=1
Qij(v

+
j − v−j ) = bi, (35)

Equation (35) can be written in a matrix form as a
linear constraint

Qv = b, (36)

where Q = {Qij} ∈ R
M × R

M is the synaptic matrix, v =

{v+i − v−i } ∈ R
M is the ON-OFF membrane potential vector

and b = {bi} ∈ R
M is the input stimuli vector. Note that the
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linear constraint (36) arose as a result of each neuron optimizing
its local power dissipation as

min
v+ ,v−

H(v+)+H(v−), (37)

with the synaptic connections given by Q. In addition to each
of the neurons minimizing its respective power dissipation with
respect to the membrane potentials v+i , v

−
i , the total spiking

activity of the network could be minimized with respect to Q as

min
Q

L(Q) = min
Q

M
∑

i=1

(

9+
i + 9−

i

)

. (38)

From (30),

L(Q) =

M
∑

i=1

Qii|v
+
i − v−i |

= ||3v||1, (39)

where3 ∈ R
M×R

M is a diagonal matrix with3ii = Qii; 3ij =

0 ∀i 6= j. Hence, solving the optimization problems in (37)
and (38) simultaneously is equivalent to solving the following
L1 optimization

min
Q

||3v||1 (40)

s.t. Qv = b. (41)

Note that the L1 optimization bears similarity to compressive
sensing formulations (Candès and Wakin, 2008). However, in
this case, the objective is to find the sparsest membrane potential
vector by adapting the synaptic weight matrixQ in a manner that
the information encoded by the input stimuli is captured by the
linear constraint in (41). This rules out the trivial sparse solution
v∗ = 0 for a non-zero input stimuli. A gradient descent approach
is applied to the cost-function L(.) in (38) to update the synaptic
weight Qij according to

1Qij = −η
∂L

∂Qij
, (42)

where η > 0 is the learning rate. Using the property (13), one
obtains the following spike-based local update rule

1Qij = η

(

9+
i

(

v+j − v−j
)

− 9−
i

(

v+j − v−j
)

)

(43)

= η
(

9+
i − 9−

i

)(

v+j − v−j
)

, i 6= j. (44)

Note that since there are no synaptic connections between the
ON-OFF neurons of the same pair,

1Qii = η

(

9+
i v

+
i + 9−

i v
−
i

)

= 0, (45)

implying that the self-connections in GTNN do not change
during the adaptation. This feature is important because Qii

can be adapted independently to adjust the precision of the
approximation in (13). For the rest of the paper, we will fix Qii =

1 so that 3 is an identity matrix. Also, note that the synaptic
matrix Q need not be symmetric which makes the framework
more general than conventional energy-based optimization.

Figure 3D pictorially depicts how the sparsest solution is
achieved through firing rate minimization for a differential
network where M = 2. We assume for this exposition
that the matrix Q is symmetric and hence the solution can
be visualized using energy contours. The figure shows energy
contours in absence of the barrier function for the positive and
negative parts of the network superimposed on the same graph.
The corresponding optimal solutions (v+∗

1 , v+∗
2 ) and (v−∗

1 , v−∗
2 ),

denoted by P and N, respectively, satisfy v+∗
i = −v−∗

i , i = 1, 2.
As discussed previously, the presence of the barrier function
prohibits the membrane potentials from reaching the optimal
solutions. Instead, the membrane potentials exhibit steady-state
spiking dynamics around the spike thresholds. These steady-state
dynamics corresponding to the positive and negative networks
are shown in the figure as lines at points A and C where the
two coupled networks breach the spiking threshold under the
respective energy contours in steady-state.

During weight adaptation since 9+
i is minimized ∀i, network

weights evolve such that the membrane potentials breach the
spiking threshold less often, which essentially pushes the optimal
solution for the positive network toward A. However, since the
two networks (and hence their solutions) are differential, the
optimal solution for the negative network is pushed toward
B. Similarly during the weight adaptation process since 9−

i is
also minimized ∀i, optimal solution for the negative network is
pushed toward C such that its own spike threshold constraints
are violated less frequently, which in turn pushes the optimal
solution for the positive network toward D. The positive network
therefore moves toward the path

# –

P0 given by the vector sum of
paths

#  –

PD and
#  –

PA. Similarly, the negative network moves toward
the path

#   –

NO, given by the vector sum of paths
#   –

NC and
#  –

NB.
This minimizes the overall firing rate of the network and drives
the membrane potentials of each differential pair toward zero,
while simultaneously ensuring that the linear constraint in (36)
is always satisfied.

2.3.1. Linear Projection Using Sparse GT Network
The L1 optimization framework described by (40) provides a
mechanism to synthesize and understand the solution of different
variants of GTNN. For instance, if input stimulus vector b is
replaced by

b = b0 − Qt. (46)

where t ∈ R
M is a fixed template vector then according to (40),

the equivalent L1 optimization leads to

min
Q

||v||1 s.t. Qv = b0 − Qt. (47)

The L1 optimization chooses the solution Qt = b0 such that
||v||1 → 0. Thus,

min
Q

||v||1 H⇒ min
Q

||b0 − Qt||1. (48)
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The synaptic update rule corresponding to the modified loss
function is given by

1Qij = η
(

9+
i − 9−

i

)(

v+j − v−j + tj
)

. (49)

This is depicted in Figure 3E, which shows that the projection
of the template vector, Qt, evolves toward b0 with synaptic
adaptation. In section 3, we show how this could be used to
solve unsupervised learning problems like domain description
and anomaly detection.

2.3.2. Inference Using Network Sparsity
The sparsity in network spiking activity could directly be used
for optimal inference. The rationale is that the L1 optimization
in (40) and (47) chooses the synaptic weights Q that exploits
the dependence (statistical or temporal) between the different
elements of the stimulus vector b to reduce the norm of
membrane potential vector ||v||1 and hence the spiking activity.
Thus, the process of inference involves choosing the stimulus that
produces the least normalized network spiking activity defined as

argmin
b

ρb =
1

2M

M
∑

i=1

(

s+
bi
+ s−

bi

)

, (50)

where M denotes the total number of differential pairs in the
network and s+

bi
, s−

bi
are the average spike counts of the i-th ON-

OFF pair, given by s
γ

bi
= 9

γ

bi
/I9 , γ = +,−, when the stimulus

b is presented as input.

3. RESULTS

In this section, we apply the learning framework introduced
previously to standardmachine learning tasks.We first show how
different choices of neural parameters and network architectures
lend themselves to solving standard unsupervised and supervised
learning problems, and finally extend our findings to build end-
to-end spiking networks for solving an odor recognition problem
on a benchmark machine olfaction dataset.

3.1. Weight Adaptation Leads to Sparsity
Figure 4 illustrates sparsity-driven weight adaptation using a
differential network with two neuron pairs presented with
a constant external input vector. Figures 4A,B show the
spike responses corresponding to the ON and OFF networks
respectively, before any weight adaptation has taken place.
Figures 4C,D present the same plots post-training. Training
evolves the weights such that as many elements of the vector
of membrane potentials as possible can approach zero while
the network still satisfies the linear constraint in (36). We see
that weight adaptation is accompanied by a decline in the firing
rates for neuron pair 2, while firing rates for neuron pair 1
remains largely unchanged. This is expected for a network with
2 differential pairs, since at least one neuron pair needs to
spike in order to satisfy (36). Figures 4E–G plot the decrease
in cost function, ||v||1 and total spike count across the network
respectively as weight adaptation progresses. Figure 4H shows

that ||Qv − b||1 remains close to zero throughout the training
process. For Figures 4E–H, solid lines indicate mean values
across five runs with different initial conditions, while the shaded
regions indicate standard deviation about the mean.

3.2. Unsupervised Learning Using
Template Projection
In this section, we formulate unsupervised machine learning
tasks like domain description and anomaly detection as a
template projection problem, and show how the GT network
can be applied to solve them using the framework introduced
in section 2.3.1. Let xk ∈ R

D, k = 1, ...,K, be data points
drawn independently from a fixed distribution P(x) where D is
the dimension of the feature space, and let t ∈ R

D be a fixed
template vector. Then from (48), weight adaptation gives us

min
Q

L(Q) H⇒ min
Q

1

K

K
∑

k=1

||Qt − xk||1, (51)

where L(.) has the same form as in (38). Thus, minimizing
the network-level spiking activity evolves weights in the
transformation matrix Q such that the projection of the template
vector can represent the given set of data points with the
minimum mean absolute error.

3.2.1. Domain Description
In a domain description problem, we aspire to describe a set
of objects or data points given by the training set so that we
can faithfully distinguish them from all other data points in the
vector space (Tax and Duin, 1999). Using the template projection
framework introduced above, we can train a GT network to
evolve toward a set of data points such that its overall spiking
activity is lower for these points, indicating that it is able to
describe the domain and distinguish it from others.

We demonstrate the equivalence between firing rate
minimization across the network and the L1 loss minimization
in (51) for a series of toy problems where D = 2. We first
consider the simplest case with a single data point and a fixed
threshold vector, as shown in Figure 5A. As training progresses,
Qt evolves along the trajectory shown by black dots from the
initial condition indicated by a green circle toward the data
point indicated by a blue circle. Figure 5B plots the mean and
standard deviation of the loss function L(.) for the problem in
Figure 5A across 5 experiments with randomly selected initial
conditions. The average loss decreases with the number of
training iterations until a small baseline firing rate is reached
upon convergence. Figures 5C,D plot the corresponding L1
norm of the vector of mean membrane potentials and the L1 loss
in (51), respectively. We see that the L1 loss goes to zero with
training, while ||v||1 approaches near zero. Figure 5E presents a
case when the network is trained with multiple data points in an
online manner. The network trajectory in this case evolves from
the initial point to a point that lies near the median of the cluster.
Figures 5F–H are the corresponding plots for the loss function,
L1 norm of mean membrane potential vector and the L1 loss in
(51) vs. epochs, where one epoch refers to training the network
on all points in the dataset once in a sequential manner. Since
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FIGURE 4 | (A,B) Spike responses for the ON and OFF neurons respectively of a differential network with two neuron pairs for a fixed input vector before weight

adaptation. (C,D) Corresponding plots after weight adaptation. (E) Evolution of the loss function with the number of training iterations for the differential network in

(A–D) averaged over five different initial conditions. (F–H) Evolution of ||v||1, spike count across the network and ||Qv − b||1 with the number of training iterations for

the same problem.

here a single template vector tries to explain or approximate
all data points in the cluster, the L1 loss in Figure 5H does not
reach zero. However, the network adapts its weights such that it
responds with the fewest number of spikes overall for the data
points it sees during training, such that the network-level spiking
activity is minimized for the dataset.

3.2.2. Anomaly Detection
The unsupervised loss minimization framework in the preceding
section drives the GT network to spike less when presented
with a data point it has seen during training in comparison to
an unseen data point. We can seamlessly extend this to apply
to outlier or anomaly detection problems, as described in this
section. When the network is trained with an unlabeled training
set xk ∈ R

D, k = 1, ...,K, it adapts its weights so that it fires

less for data points it sees during training (or data points that
are “similar” to these), referred to as members, and fires more
for points that are far away (or dissimilar) to them, referred to
as anomalies. Template vectors in this case are random-valued
vectors held constant throughout the training procedure.

After training, we determine the mean firing rates of the
network for each data point in the training dataset and set the
maximum mean firing rate as the threshold. During inference,
any data point that causes the network to fire at a rate equal
to or lower than this threshold is considered to be a member,
otherwise it is an outlier or anomaly. In Figure 6, blue circles
correspond to the training data points. Based on the firing rate
threshold computed, the network learns to classify data points
similar to the training set as members (indicated by the region
shaded in blue in Figure 6A, and others as anomalies (indicated
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FIGURE 5 | (A) Evolution of network trajectory with training when there is a single data point. (B–D) Evolution of the loss function L(.), the L1 norm of the vector of

mean membrane potentials and the L1 loss respectively for the problem in (A) plotted against the number of training iterations. (E) Evolution of the network trajectory

with training when there are multiple data points. (F–H) Plots corresponding to (B–D) averaged over the training dataset.

by the region shaded in gray). We can also tune the firing
rate threshold appropriately in order to reject a pre-determined
fraction of training data points as outliers. Figures 6B,C show the
contraction in the domain described by the anomaly detection
network when the threshold was progressively reduced to reject
25 and 50% of the training data points as outliers.

3.3. Supervised Learning
In this section, we exploit the framework outlined in (40) to
design networks that can solve linear classification problems

using the GT network. Consider a binary classification problem
given by the training dataset (xk, yk), k = 1, ...,K, drawn
independently from a fixed distribution P(x, y) defined over
R
D × {−1,+1}. The vector xk is denoted as the k-th training

vector and yk is the corresponding binary label indicating
class membership (+1 or -1). We consider two network
architectures for solving this supervised learning problem—
one, a minimalist feed-forward network, and the other, a fully-
connected recurrent network, and compare the properties of the
two architectures.
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FIGURE 6 | Domain described by the network when the upper bound on the number of training data points rejected as outliers is (A) 0%, (B) 25%, and (C) 50% of

the training dataset. Blue circles indicate training data points, and blue and gray shaded regions indicate the areas identified as members and anomalies, respectively.

3.3.1. Linear Feed-Forward Network
Define the following loss function for solving a linear
classification problem

min
ai ,b

Llinear = min
ai ,b

|y−

D
∑

i=1

aixi − b| (52)

where ai ∈ R, i = 1, ...,D, are the feed-forward weights
connecting the input features to the output, and b ∈ R is the
bias term. We can minimize this loss function by considering
a feed-forward network only consisting of synaptic projections
from input neuron pairs to the output neuron pair. Let the i-
th input neuron pair be denoted by (i+, i−), i = 1, ...,D, and
the output neuron pair be denoted by (y+, y−). The network
also has a bias neuron pair denoted by (b+, b−) which receives
a constant positive input equal to 1 for each data point. Feed-
forward synaptic connections from the feature neuron pairs to
the output neuron pair are then given by

Qyi = ai, i = 1, ...,D,

Qyb = b. (53)

Self-synaptic connections Qii are kept constant at 1 throughout
training, while all remaining connections are set to zero. When
we present a data point (x, y) to the network, from (35) we have

(v+i − v−i ) = xi, i = 1, ...,D, and (54)

(v+
b
− v−

b
) = 1. (55)

For the output neuron pair, we similarly have

v+y − v−y = y−
∑

j 6=y

Qij(v
+
j − v−j )

= y−

D
∑

i=1

ai(v
+
i − v−i )− b(v+

b
− v−

b
)

= y−

D
∑

i=1

aixi − b. (56)

Then, minimizing the sum of mean firing rates for the output
neuron pair gives us

min
Qyi ,Qyb

Lff (Qyi,Qyb) = min
Qyi ,Qyb

(

9+
y + 9−

y

)

= min
Qyi ,Qyb

|v+y − v−y |

= min
ai ,b

|y−

D
∑

i=1

aixi − b|

= min
ai ,b

Llinear (57)

The linear classification framework with the feed-forward
architecture is verified in Figure 7A for a synthetic two-
dimensional binary dataset, where training data points belonging
to the two classes are plotted as gray and blue circles. During
inference, both possible labels are presented to the network along
with each test data point, and the data point is assigned to the
class that produces the least number of spikes across the output
neurons, according to the inference procedure outlined in section
2.3.2. Figure 7A also shows the classification boundary produced
by the GT network after training.

3.3.2. Linear Recurrent Network
We also considered a fully-connected network architecture for
linear classification, where the feature and bias neuron pairs were
not only connected to the output pair, but to each other. There
were also trainable recurrent connections from the output pair to
the rest of the network. Then from (35) we can write

Qv = x′, (58)

where x′ = [y, x1, x2, ..., xD, 1]
T is the augmented vector of inputs.

We solve the following optimization problem for the recurrent
network, which minimizes sum of firing rates for all neuron pairs
across the network

min
Q

Lfc(Q) = min
Q

M
∑

i=1

(

9+
i + 9−

i

)

. (59)

Weight adaptation in the fully-connected network ensures that
(58) is satisfied with the minimum norm on the vector of
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FIGURE 7 | (A,B) Classification boundaries for a linearly separable, synthetic, two-dimensional binary dataset learned by a feed-forward network and a recurrently

connected network respectively, with the two classes plotted in blue and gray. (C) Evolution of training accuracy with number of epochs for the two networks. (D)

Evolution of the sparsity metric defined in (60) with number of epochs for the two networks. (E,F) Spike rasters and post-stimulus time histogram (PSTH) plots for one

training data point after weight adaptation corresponding to the feed-forward and recurrent networks, respectively.

membrane potentials, i.e., the lowest spiking activity across
the network, as opposed to enforcing the sparsity constraint
only on the output neuron pair in the previous case. The
inference phase then proceeds as before by presenting each
possible label to the network, and assigning the data point
to the class that produces the least number of spikes across
the network.

Figure 7B shows the classification boundary produced by the
fully-connected network for the same two-dimensional binary
dataset. We see that both networks are able to classify the dataset,
although the final classification boundaries are slightly different.
Figure 7C plots the training accuracy vs. number of epochs for
the two networks, where each epoch refers to training on the
entire dataset once. For comparing how the network-level spiking
activity evolves with training for the two networks, we average the

sparsity metric given in (50) over the training dataset

ρtrain =
1

2MK

K
∑

k=1

M
∑

i=1

(

s+
bki

+ s−
bki

)

, (60)

where s+
bki

and s−
bki

are the mean spike counts of the i-th ON-OFF

pair when the k-th training data point is presented to the network
along with the correct label. Figure 7D plots how this metric
evolves with the number of training epochs for the two networks.
Although the fully-connected network has a considerably higher
number of non-zero synaptic connections, the final network
firing activity after training has converged is much lower than
the feed-forward network, indicating that it is able to separate the
classes with a much lower network-level spiking activity across
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the entire training dataset. This is also evident from Figures 7E,F,
which show the spike rasters and post-stimulus time histogram
(PSTH) curves for one representative training data point
corresponding to the feed-forward and fully-connected networks
respectively, after the weights have converged for both networks.
We see that the total spike count across the network is much
lower for the fully-connected network.

3.4. Multi-Layer Spiking GTNN
We can now build up on the results from the previous sections to
construct end-to-end spiking networks for solving more complex
non-linearly separable classification problems. In this section, we
show three different network architectures using one or more of
the components described in the preceding sections.

3.4.1. Network 1: Classification Based on Random

Projections
This network architecture, shown in Figure 8A, consists of an
unsupervised, random projection-based feature transformation
layer followed by a supervised layer at the output. The random
projection layer consists of S independent sub-networks, each
with D differential neuron pairs, where D is the feature
dimensionality of the training set. Let the transformation matrix
for the s-th sub-network be denoted by Qs and its template
vector be denoted by ts, s = 1, ..., S. We consider a network
configuration where each sub-network is densely connected, but
there are no synaptic connections between the sub-networks.
When the k-th training data point xk is presented to the network,
we have from (51)

D
∑

i=1

9+
ski

+ 9−
ski

= −
(

D
∑

i=1

v+
ski

+ v−
ski

)

= ||Qsts − xk||1, (61)

where 9+
ski

and 9−
ski

are the mean values for the spike function
of the i-th differential pair in the s-th sub-network, in response
to the k-th data point, and v+

ski
and v−

ski
are the corresponding

mean membrane potentials. We define the “centroid” for the s-th
sub-network as

cs = Qsts. (62)

Thus, when a new data point xk is presented to the network,
the sum of mean membrane potentials of the s-th sub-network
essentially computes the L1 distance (with a negative sign)
between its centroid cs and the data point. Note that no training
takes place in this layer. The summed membrane potentials
encoding the respective L1 distances for each sub-network serve
as the new set of features for the linear, supervised layer at the
top. Thus, for a network consisting of S sub-networks, the input
to the supervised layer is an S-dimensional vector.

We demonstrate the random projection-based non-linear
classification with the help of an XOR dataset in Figure 8B, which
uses 50 sub-networks in the random projection layer and a fully-
connected architecture in the supervised layer. The figure shows
training data points belonging to the two classes as blue and gray
circles, as well as the classification boundary produced by the
GT network after five rounds of training with different initial

conditions, as decided by a majority vote. Figure 8C plots the
evolution of the mean and standard deviation of the training
accuracy as well as the sparsity metric with each training epoch.
Since training for this network architecture only takes place in the
top layer, the sparsity gain is minimal.

3.4.2. Network 2: Classification Based on Layer-Wise

Training
The second network architecture, shown in Figure 9A, consists
of two fully-connected differential networks stacked on top of
each other, with connection matrices for the two layers denoted
by Q1 and Q2, respectively. The first layer consists of S sub-
networks as in the previous architecture, but with connections
between them. For the first layer, we can rewrite (35) as follows

Q1v1 = x1, or

Q1(v
+
1 − v−1 ) = x1 (63)

where v+1 , v
−
1 ∈ R

M1 are the vectors of mean membrane
potentials for the ON and OFF parts of the differential network
in layer 1, and x1 = [x, x, ..., x]T ∈ R

M1 is the augmented
input vector, M1 = DS being the total number of differential
pairs in layer 1. Since for each neuron pair, only one of v+ and
v− could be non-zero, the mean membrane potentials for either
half of the differential network encodes a non-linear function
of the augmented input vector x1, and can be used as inputs to
the next layer for classification. We considered a fully-connected
network in the second layer for linear classification. Figure 9B
shows the classification boundary for the XOR dataset with this
network architecture.

We can further train the first layer such that it satisfies (63)
withmuch lower overall firing. Figure 9C shows the classification
boundary for a network where synapses in both layers are
adapted simultaneously at first, followed by adaptation only in
the last layer. We see that the network learns a slightly different
boundary, but is able to distinguish between the classes as before.
This is also evident from Figure 9D, which plots the training
accuracy vs. epochs for the two cases without and with adaptation
in layer 1. Figure 9E plots the evolution of the sparsity metric
evaluated on the training dataset for both cases. In the second
case, the network learns to distinguish between the classes with
a lower overall network-level spiking activity. Since both layers
are trainable for this network, it is able to distinguish between
the classes with a much lower network-level spiking activity for
the dataset.

3.4.3. Network 3: Including Target Information in

Layer-Wise Training of Fully-Connected Layers
We can drive the network to be sparser by including information
about class labels in the layer-wise training of fully-connected
layers. This allows the network to exploit any linear relationship
between the elements of the feature and label vectors to further
drive sparsity in the network. The corresponding network
architecture is shown in Figure 10A. Each sub-network in layer
1 receives the external input x ∈ R

D and the corresponding
label vector y ∈ {−1,+1}C, where C is the number of
classes. The top layer receives the DS-dimensional output vector
corresponding to the membrane potentials from the positive
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FIGURE 8 | (A) Network architecture for non-linear classification based on random projections. (B) Classification boundary for a synthetic XOR dataset with a

fully-connected network in the supervised layer, where the two classes are plotted in blue and gray. Contour plot corresponds to a majority vote over five trials with

different initial conditions. (C) Plot of the average training accuracy and sparsity metric vs. number of training epochs over the five trials, with the shaded region

denoting standard deviation about the mean.

part of layer 1 (which as in Network 2 encodes a non-
linear function of its input) as well as the same label vector.
Each layer in the network is trained with the correct class
label. During inference, the network is presented with a new
data point and the network-level spiking activity is recorded
for each possible label vector. The data point is assigned to
the class that produces the lowest firing across all layers of
the network.

This architecture is similar to Direct Random Target
Projection (Frenkel et al., 2021) which projects the one-hot
encoded targets onto the hidden layers for training multi-layer
networks. The notable difference, aside from the neuromorphic
aspect, is that we use the input and target information in each
layer to train the lateral connections within the layer, and not the
feed-forward weights from the preceding layer. All connections
between the layers remain fixed throughout the training process.
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FIGURE 9 | (A) Network architecture for non-linear classification based on layer-wise training. (B,C) Classification boundaries for the same XOR dataset without and

with weight adaptation in layer 1, respectively. Contour plot corresponds to a majority vote over five trials with different initial conditions. (D,E) Mean training accuracy

and mean sparsity metric vs. epochs for the two cases, estimated over five runs with random initializations.
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FIGURE 10 | (A) Network architecture for non-linear classification based on layer-wise training with target information included. (B) Classification boundary for the

XOR dataset where the contour plot corresponds to a majority vote over five trials with different initial conditions. (C) Plot of the average training accuracy and sparsity

metric vs. number of training epochs over the five trials, with the shaded region denoting standard deviation about the mean.

Figure 10B shows the classification boundary for the XOR
dataset with this network architecture, and Figure 10C shows the
evolution of the training accuracy and sparsity metric for this
problem with the number of training epochs.

3.5. Incremental, Few-Shot Learning on
Machine Olfaction Dataset
A consequence of choosing the sparsest possible solution to
the machine learning problem in the proposed framework is

that it endows the network with an inherent regularizing effect,
allowing it to generalize rapidly from a few examples. Alongside
the sparsity-driven energy-efficiency, this enables the network
to also be resource-efficient, making it particularly suitable
for few-shot learning applications where there is a dearth of
labeled data (Wang et al., 2020). In order to demonstrate few-
shot learning with the proposed approach, we tested Networks
1–3 on the publicly available UCSD gas sensor drift dataset
(Vergara et al., 2012; Rodriguez-Lujan et al., 2014). This dataset
contains 13,910 measurements from an array of 16 metal-oxide
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gas sensors that were exposed to six different odors (ammonia,
acetaldehyde, acetone, ethylene, ethanol, and toluene) at different
concentrations. The measurements are distributed across 10
batches that were sampled over a period of 3 years, posing
unique challenges for the dataset including sensor drift and
widely varying ranges of odor concentration levels for each batch.
Although the original dataset has eight features per chemosensor
yielding a 128-dimensional feature vector for each measurement,
the present work considers only one feature per chemosensor
(the steady-state response level) resulting in a 16-dimensional
feature vector, similar to other neuromorphic efforts on the
dataset (Borthakur and Cleland, 2019).

3.5.1. Previous Work on This Dataset
Previous efforts using classical machine learning approaches on
this dataset include among others ensembling support vector
machine classifiers trained at different points in time (Vergara
et al., 2012), domain adaptation techniques using extreme
learning machines (Zhang and Zhang, 2014; Ma et al., 2018)
and transfer-sample based multi-task learning across domains
using logistic regression (Yan et al., 2017). More recently,
Borthakur and Cleland (2019) proposed a neuromorphic
machine learning algorithm based on design principles from the
mammalian olfactory circuit to extract relevant features, which
were then assigned classes using a similarity metric based on
Hamming distance.

3.5.2. Our Approach
In order to mitigate challenges due to sensor drift, we followed
the same reset learning approach as in Borthakur and Cleland
(2019), re-training our network from scratch as each new batch
became available using few-shot learning. However, the main
objectives of the experiments in this section differ from previous
work in the following ways:

• We demonstrate the proposed learning framework on a
real-world dataset, where the network learns the optimal
parameters for a supervised task by minimizing spiking
activity across the network. We show that for all three
architectures introduced previously, the network is able to
optimize for both performance and sparsity. Moreover, we
show that this is possible using a generic network that does
not take into account the underlying physics of the problem.

• We showcase end-to-end, backpropagation-less spiking
networks that implements feature extraction as well as
classification within a single framework. Moreover, we
demonstrate SNNs that can encode non-linear functions of
layer-wise inputs using lateral connections within a layer, and
present an approach to train these lateral connections.

For each batch, we selected 10 measurements at random
concentration levels for each odor as training data, and 10%
of the measurements as validation data. The remaining data
points were used as the test set. If a batch had fewer than 10
samples for a particular odor, we included all samples for that
odor within the training set. Input features for the training data
were scaled between [0, 1], and the same scaling parameters were
used to transform the validation and test sets. For Network 1,

we considered 50 sub-networks in the random projection layer,
which produced a 50-dimensional input vector to the supervised
layer. For Networks 2 and 3, the number of sub-networks in
layer 1 was 20, generating a 320-dimensional input vector to layer
2 corresponding to the 16-dimensional input vector to layer 1.
Moreover, for the first layer in Networks 2–3, we considered a
connection probability of 0.5, randomly setting around half of the
synaptic connections to 0. Figures 11A–C plot the evolution of
training accuracy and sparsity metric (evaluated on the training
set) with number of epochs for each phase of re-training for
Networks 1–3, respectively. Green arrows in each plot mark the
onset of a re-training phase, i.e., a new batch.We see that with the
arrival of new training data in each batch and for each network,
the training error as well as the average spiking activity across the
network increases, and subsequently decline with re-training.

To compare the performance of our network with standard
backpropagation, we trained a multi-layer perceptron (MLP)
with 16 inputs and 100 hidden units for the odor classification
problem with a constant learning rate of 0.01 and using the
same validation set as before. The number of hidden neurons
as well as learning rate were selected through hyper-parameter
tuning using only the validation data from Batch 1. Table 1
gives the number of measurements for each batch, as well as
final test accuracies and sparsity metrics (evaluated on the test
sets) for each batch for Networks 1–3 with 10-shot learning,
as well as the final test accuracies for each batch with the
multi-layer perceptron. Figure 12A shows the batch-wise test
accuracies for the three GTNN architectures and the MLP,
and Figure 12B shows the sparsity metrics on test data for
the GTNN architectures. We see that the proposed networks
produce classification performance comparable with classical
backpropagation-based models, while driving sparsity within the
network. The sparsity metrics are highest for Network 1, where
synaptic adaptation takes place only in the top layer. Network 2
has the flexibility of training both layers, leading to a decline in
the values of the sparsity metric for most batches. In Network 3,
synaptic adaptation in both layers coupled with the inclusion of
target information drives the sparsity values to less than half of
Networks 1–2.

When the number of shots, i.e., the number of training
data points per class for each phase of re-training is further
reduced, the classification performance of GTNN declines more
gracefully than standard learning algorithms when no additional
regularizing effect or hyper-parameter tuning was done. This is
demonstrated in Figures 13A,C for two representative batches
(Batch 2 and Batch 7, respectively) where the test accuracy
with Network 3 as well as with MLP is plotted by varying
the number of shots from 1 to 10. Importantly, no hyper-
parameters were changed from the previous experiments in
order to evaluate recognition performance when no such tuning
would be possible under different training scenarios. It is seen
that although MLP yields similar classification performance as
GTNN for a larger number of shots, GTNN has a consistently
higher recognition performance for fewer training data points
per class. Figures 13B,D plot the corresponding test sparsity
metrics, which show that the network becomes sparser as the
network is trained on more and more data points. Figure 13E
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FIGURE 11 | Evolution of the training accuracy and sparsity metric for (A) Network 1, (B) Network 2, and (C) Network 3 with each phase of re-training on the UCSD

gas sensor drift dataset. Green arrows mark the beginning of each phase of re-training.

plots the test accuracy of Batches 1–10 with the same two
networks for one-shot learning. For most of the batches, GTNN
performs significantly better.

3.6. Incremental Learning on Other
Benchmark Datasets
We evaluated the performance of Networks 1–3 on two other
benchmark datasets, “Wisconsin Breast Cancer” (Wolberg and
Mangasarian, 1990) and “Diabetes” from the UCI Machine
Learning Repository (Dua and Graff, 2019). Seventy percent of
the data points were randomly selected for training, and another

20% for validation. Table 2 summarizes the test accuracies and
sparsity metrics (evaluated on test data) using incremental
learning. Each dataset is labeled with attributes (N, D, M), which
refer to the size of dataset, number of dimensions and number of
classes, respectively.

GTNN can also be used as a recurrent network for capturing
dynamic information time-series data by letting the input vector
change slowly over the training duration, while the output
labels are held constant. This is similar to liquid state machines
(Maass et al., 2002), with the difference that the recurrent
connections are adapted here instead of the feed-forward weights
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TABLE 1 | Batch-wise information, final test accuracies, and sparsity metrics evaluated on test data for the UCSD gas sensor drift dataset with Networks 1–3 and with a

Multi-layer Perceptron network.

Batch 1 2 3 4 5 6 7 8 9 10

Data points 445 1,244 1,586 161 197 2,300 3,613 294 470 3,600

N/w 1
Acc. (%) 86.72 94.17 94.55 94.56 94.44 87.20 83.42 84.24 97.50 78.77

ρtest 0.0918 0.1122 0.0926 0.0981 0.0891 0.0915 0.0949 0.1061 0.0927 0.0705

N/w 2
Acc. (%) 90.86 97.55 95.93 98.91 96.83 95.57 90.90 76.85 94.44 80.60

ρtest 0.0832 0.0923 0.0946 0.0941 0.1071 0.0813 0.0886 0.1207 0.0922 0.0760

N/w 3
Acc. (%) 90.26 95.95 92.65 95.65 100.00 96.56 86.42 90.14 95.00 69.34

ρtest 0.0514 0.0631 0.0647 0.0608 0.0930 0.0390 0.0753 0.0924 0.0653 0.0348

MLP Acc. (%) 95.63 95.42 94.53 99.56 99.20 90.27 89.96 86.50 98.11 80.81

FIGURE 12 | (A) Test accuracy on Batches 1–10 with Networks 1–3 and a Multi-layer Perceptron. (B) Sparsity metrics for Batches 1–10 with the three GTNN

architectures.

connecting the recurrent neurons to the output units, as usually
done in reservoir computing-based approaches. To demonstrate
this, we ran experiments with Network 3 using the Activity
Recognition system based on Multisensor data fusion (AReM)
dataset, which contains time-series data generated by a Wireless
Sensor Network (WSN) worn by an user performing seven
different activities (Palumbo et al., 2016). For each data point,
there are six different sequences containing information about
the Received Signal Strength (RSS) values coming from theWSN,
where each sequence consists of 480 time-steps corresponding
to 120 s. The dataset contains 88 such sequences with a total of
42,240 instances. Specifically, we consider three tasks proposed in
(Palumbo et al., 2016), each focusing on discriminating between
smaller sets of similar movements: Task 1 involves Cycling and
Standing, Task 2 involves Bending1, Standing and Walking;

and Task 3 involves Bending2, Lying and Sitting. We used
18, 21, and 20 sequences, respectively for training Network 3
on Tasks 1–3, and another 4, 6, and 6 sequences, respectively
for validation. Each sub-network in Network 3 comprised six
differential neuron pairs to process the sequences corresponding
to each activity. Results on the AReM dataset are also given in
Table 2, where dataset labels (N, D, L, M) refer to the size of
dataset, number of sequences per data point, sequence length,
and number of classes, respectively.

4. DISCUSSION

In this paper we presented a learning framework for the Growth
transform neural network that is able to learn optimal parameters
for a given task while simultaneously minimizing spiking activity
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FIGURE 13 | (A) Test accuracy for Batch 2 with Network 3 and a standard MLP when the number of shots is varied from 1 to 10. (B) Sparsity metrics corresponding

to (A). (C,D) Same plots for Batch 7. (E) Test accuracy for Batches 1–10 with Network 3 and MLP with one-shot learning.

TABLE 2 | Final test accuracies and sparsity metrics evaluated on test data for different datasets.

Dataset
Network 1 Network 2 Network 3

Test accuracy (%) ρtest Test accuracy (%) ρtest Test accuracy (%) ρtest

Breast cancer (699, 9, 2) 98.53 0.0653 95.59 0.0647 97.06 0.0514

Diabetes (768, 8, 2) 73.68 0.0723 73.68 0.0965 73.68 0.0191

AReM task 1 (30, 6, 480, 2) – – – – 100.00 0.0474

AReM task 2 (37, 6, 480, 3) – – – – 100.00 0.0370

AReM task 3 (36, 6, 480, 3) – – – – 90.00 0.0347

Frontiers in Neuroscience | www.frontiersin.org 21 July 2021 | Volume 15 | Article 715451

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Gangopadhyay and Chakrabartty Sparsity-Driven Learning Using GT Neurons

FIGURE 14 | (A) Probability distribution of spike counts of individual neurons across Network 3 for a training data point before training. (B) Same plot post-training.

(C) Evolution of PCA trajectories from normalized binned spike counts corresponding to a single training data point as training progresses in Network 3. (D) Plot of

variance vs. principal component dimension averaged over 6 training data points belonging to six different odors, before and after training. (E,F) PCA trajectories

before and after training for the same data points as in (D).

across the network. We demonstrated how the same framework
could be used in different network configurations and settings to
solve a range of unsupervised and supervised machine learning
tasks, and presented results for benchmark datasets. We also
showed how the sparsity-driven learning endows GT network
with an inherent regularizing effect, enabling it to generalize
rapidly from very few training examples per class. Since only
the lateral connections within each layer are trained, the network
structures considered in this paper are inherently scalable where
each layer can be independently and simultaneously trained,
eradicating the need for propagating error gradients throughout
the network. The sparsity-driven learning also ensures that the
neurons remain within their dynamic ranges and away from
saturation, facilitating the training of larger networks. Moreover,
sparsity optimization not only reduces the number of active
neurons, but also the spiking rates of the active neurons, and as

such could be used to relax the communication bandwidth and
improve network scalability.

A deeper analysis of the network and the synaptic dynamics
reveals several parallels and analogies with dynamics and
statistics observed in biological neural networks. Figure 14 shows
how the population activity evolves in the GT network with
synaptic adaptation using the proposed learning framework.
Figures 14A,B plot the probability histograms of spike counts
elicited by individual neurons in response to the same set of
stimuli before and after training in log-log scale. There is a
distinct shift in the range of spike counts from higher to lower
values observed before and training, as expected in sparsity-
driven learning.

Figures 14C,E,F present how network trajectories evolve
as training progresses. Stimulus encoding by a population of
neurons is often represented in neuroscientific literature by a
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trajectory in high-dimensional space, where each dimension is
given by the time-binned spiking activity of a single neuron. This
time-varying high-dimensional representation can be projected
into two or three critical dimensions using dimensionality
reduction techniques like Principal Component Analysis (PCA)
or Linear Discriminant Analysis (LDA) to uncover valuable
insights about the unfolding of population activity in response
to a stimulus (Friedrich and Laurent, 2001; Stopfer et al.,
2003). In Figure 14C, we plot the evolution of PCA trajectories
of normalized binned spike counts across Network 3 with
training corresponding to a training data point belonging to
odor 1 (Ethanol). The percentages in the axes labels indicate
the percentage of variance explained by the corresponding
principal component. For the sake of clarity, we only show
trajectories at three instances of time—before training, halfway
into training and after training. With synaptic adaptation, the
PCA trajectories are seen to shrink and converge faster to the
steady-state, indicating the network-level spiking has reduced.
This is also evident from Figures 14E,F, which plot network
trajectories for training data points belonging to six different
classes (odors) before and after training, respectively on the
same subspace. Although the trajectories belonging to different
classes are elaborate and clearly distinguishable before training,
they are seen to shrink and become indistinguishable after
training. Moreover, the net percentage of variance explained
by the first 3 principal components decreases from ≈37% to
only≈18%. Together, these indicate that stimulus representation
becomes less compressible with training, relying on fewer spikes
across a larger population of neurons to achieve the optimal
encoding. Figure 14D shows the decay in the eigenspectra
corresponding to the PCA plots shown in Figures 14E,F. Both
the spectra, pre-training and post-training, exhibit a power-law
decay, a property that has been observed in evoked population
activity in biological neurons (Stringer et al., 2019). However, as
shown in Figure 14D, the eigenspectrum post-training reveals
that the network encodes its activity with a code that is
higher-dimensional than pre-training. The tails of the spectrum,
though, decays faster indicating that the trained GTNN network
efficiently utilizes the high-dimensional code to represent
neural activity.

4.1. Implications for Neuromorphic
Hardware
The GT neuron and network model, along with the proposed
learning framework, has unique implications for designing
energy-efficient neuromorphic hardware, some of which are
outlined below:

• Typically in neuromorphic hardware, transmission of spike
information between different parts of the network consumes
most of the active power (Sorbaro et al., 2020). This paper
presents a learning paradigm that can drive the network to
converge to an optimal solution for a learning task while
minimizing firing rates across the network, thereby ensuring
performance and energy optimality at the same time.

• Unlike most spiking neural networks which adapt feed-
forward weights connecting one layer of the network to

the next, the proposed framework presents an algorithm
for weight adaptation between the neurons in each layer,
while keeping inter-layer connections fixed. This could
significantly simplify hardware design as the network size
scales up, where neurons in one layer could be implemented
locally on a single chip, reducing the need for transmitting
weight update information between chips. Moreover, unlike
backpropagation, this algorithm can support simultaneous
and independent weight updates for each layer, eradicating
reliance on global information. This could enable faster
training with less memory access requirements.

4.2. Relation With Balanced Spiking
Networks
The balance between excitation and inhibition has been
widely proposed to justify the temporally irregular nature of
firing in cortical networks frequently observed in experimental
recordings. This balance ensures that the net synaptic input to
a neuron are neither overwhelmingly depolarizing nor hyper-
polarizing, dynamically adjusting themselves such that the
membrane potentials always lie close to the firing thresholds,
primed to respond rapidly to changes in the input (Van Vreeswijk
and Sompolinsky, 1996).

The differential network architecture considered in our paper
is similar in concept, maintaining a tight balance between the
net excitation and inhibition across each differential pair. We
show how designing the network this way always satisfies a
linear relationship between the mean membrane potentials and
the external inputs. Moreover, we propose a learning framework
that adapts the weights of the differential network such that
membrane potentials of both halves of the differential pairs
are driven close to their spike thresholds, minimizing the
network-level spiking activity. By appropriately designing the
network, it was shown how this property could be exploited
to simultaneously minimize a training error to solve machine
learning tasks.
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