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Comparative analysis 
of machine learning algorithms 
for computer‑assisted reporting 
based on fully automated 
cross‑lingual RadLex mappings
Máté E. Maros 1,2*, Chang Gyu Cho1,2, Andreas G. Junge1, Benedikt Kämpgen3, 
Victor Saase1, Fabian Siegel2, Frederik Trinkmann2, Thomas Ganslandt2, Christoph Groden1 & 
Holger Wenz1

Computer‑assisted reporting (CAR) tools were suggested to improve radiology report quality by 
context‑sensitively recommending key imaging biomarkers. However, studies evaluating machine 
learning (ML) algorithms on cross‑lingual ontological (RadLex) mappings for developing embedded 
CAR algorithms are lacking. Therefore, we compared ML algorithms developed on human expert‑
annotated features against those developed on fully automated cross‑lingual (German to English) 
RadLex mappings using 206 CT reports of suspected stroke. Target label was whether the Alberta 
Stroke Programme Early CT Score (ASPECTS) should have been provided (yes/no:154/52). We focused 
on probabilistic outputs of ML‑algorithms including tree‑based methods, elastic net, support vector 
machines (SVMs) and fastText (linear classifier), which were evaluated in the same 5 × fivefold nested 
cross‑validation framework. This allowed for model stacking and classifier rankings. Performance 
was evaluated using calibration metrics (AUC, brier score, log loss) and ‑plots. Contextual ML‑based 
assistance recommending ASPECTS was feasible. SVMs showed the highest accuracies both on 
human‑extracted‑ (87%) and RadLex features (findings:82.5%; impressions:85.4%). FastText achieved 
the highest accuracy (89.3%) and AUC (92%) on impressions. Boosted trees fitted on findings had the 
best calibration profile. Our approach provides guidance for choosing ML classifiers for CAR tools in 
fully automated and language‑agnostic fashion using bag‑of‑RadLex terms on limited expert‑labelled 
training data.

There are no studies available that evaluate machine learning (ML) algorithms on cross-lingual RadLex map-
pings to provide guidance when developing context-sensitive radiological reporting tools. Therefore, the goal of 
our study was to compare the performance of ML algorithms developed on features extracted by human experts 
against those developed on fully automated cross-lingual RadLex mappings of German radiological reports 
to  English1, in order to assist radiologists in providing key imaging biomarkers such as The Alberta Stroke 
Programme Early CT Score (APECTS)2. We show that this fully automated RadLex-based approach is highly 
accurate even if the ML models were trained on limited and imbalanced expert labelled data  sets3–6. Hence, 
this work provides a valuable blueprint for developing ML-based embedded applications for context-sensitive 
computer-assisted reporting (CAR)  tools7–10.

RadLex is a comprehensive hierarchical lexicon of radiology terms that can be utilized in reporting, decision 
support and data  mining3. RadLex is freely available (v.4.0, http://radle x.org/) from the Radiological Society of 
North America (RSNA). It provides the foundation for further ontologies and procedural data bases such as the 
LOINC/RSNA Radiology  Playbook11 or Common Data Elements (CDE; RadElement; https ://www.radel ement 
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.org/12. The official translation of RadLex to German by the German Society of Radiology (DRG) was made public 
in January 2018 and contained over 45,000 concepts.

ASPECTS was chosen for this study as a key radiological biomarker, as it is widely used in neurological 
emergencies to assess the extent of early ischemic changes on pretreatment non-contrast CT studies of the brain 
in patients with acute ischemic stroke of the anterior  circulation2. It proved to be a robust and highly significant 
independent imaging biomarker to select patients for neurointerventional  procedures13. Radiological textual 
metadata is of crucial importance when selecting patient cohorts for clinical trials or extracting their imaging 
retrospectively to develop applications using artificial intelligence (AI)14–17. Hence, it is in the best interest of 
radiologists to report key radiological biomarkers like ASPECTS or other scoring systems to optimize down-
stream analytics and software  development18,19. Nonetheless, these key predictors are frequently missing from 
radiological reports as their overwhelming majority is still created as conventional narrative “free-text”1,20,21. In 
this work, we aim to provide blueprints for creating ML-based CAR tools using a domain-specific ontology to 
help radiologists improve the content of key biomarkers without disrupting their preferred “free-text” reporting 
workflow.

ML methods have been introduced as powerful computer-aided diagnostic (CAD)  tools9,15,22 in medical image 
analysis and in radiological  reporting23,24. Recently, complex deep transformer-based language models (TLM) are 
becoming the state-of-the-art (SOTA) in natural language processing (NLP)25–29. However, these models need 
considerable amount of general and domain specific corpora for training, which are scarce for languages other 
than English, particularly in the medical domain where creating expert-labelled high-quality training data is 
extremely resource  intensive30–33. Despite achieving SOTA on certain classification tasks, TLMs represent black 
box methods and show susceptibility to subtle  perturbances31,32. Additionally, TLMs are seldom compared to 
baseline information retrieval methods such as shallow ML algorithms or linear classifiers (fastText) developed on 
bag-of-words (BOW)34–36. Therefore, we performed comprehensive analyses using an ensemble learning frame-
work (Fig. 1) that combined well-established ML algorithms as base classifiers including random forests (RF)37, 
regularized logistic regression (ELNET)38,39, support vector machines (SVM)40 and classification- (CART)41 and 
boosted trees (XGBoost)42 as well as  fastText36 on German computed tomography (CT) reports with suspected 
stroke and on their cross-lingual English RadLex mappings using  NLP43.

Our goal was to evaluate a flexible open-source pipeline to swiftly develop robust ML classifiers for CAR 
tools in a language-agnostic fashion by using cross-lingual bag-of-RadLex mappings on limited expert labelled 
training data. We aimed to demonstrate the feasibility of our approach by automatically developing production-
ready ASPECTS classifiers for CT stroke workups (“MyReportCheck”, Suppl. Fig. S1 online) and compare its 
performance to ML models that were developed on human expert annotations.

Results
Inter‑rater reliability of human experts. Providing ASPECTS in the report would have been recom-
mended by R1 in 156 (75.7%), by R2 in 154 (74.8%) and by R3 in 155/206 (75.2%) of the cases. The overall agree-
ment between the three readers for “ASPECTS recommended” was  kappaLight = 0.747 (n = 206, z = 4.6, p = 4.3 × 
 10–6). The pairwise Cohen’s kappa between R1 and R2 was 0.635 (p < 2 ×  10–16), which corresponded to 86.4% 
agreement. Between R1 and R3 it was 0.62 (p < 2 ×  10–16) corresponding to 85.9% agreement. Ratings of two 
(R2 and R3) experienced readers showed an almost perfect alignment kappa = 0.987 (p < 2 ×  10–16) with 99.5% 
overall agreement.

Reliability between automated RadLex mappings and expert‑annotated labels. In this ran-
dom subsample, which represents a robust cross-section of the daily praxis, ASPECTS was reported extremely 
rarely in 4/206 (1.9%). Three of which occurred both in the findings and impressions (3/4, 75%) section and one 
of which was only reported in the impression (1/4, 25%). The RASP tool correctly annotated all ASPECTS-neg-
ative (203/203) and ASPECTS-positive (3/3) finding sections. In the impressions, it misclassified one ASPECTS-
positive (1/4, 25%) report as negative (1/206, 0.49%).

Figure 1.  The 5 × fivefold nested cross validation setup, which was used to evaluate all machine learning (ML) 
algorithms and to train the second layer model as a meta/ensemble-learner on top of the combined predictions 
of these base ML classifiers. Human experts had access to both the findings and impression sections as well as 
the clinical question field of the reports to generate target labels ASPECTS recommended “yes” (n = 154) vs. 
“no” (n = 52) and to extract clinico-radiologically relevant features (HEAF). The findings and the impressions 
were each passed through a fully automated cross-lingual (German-English) natural language processing (NLP) 
pipeline to generating RadLex mappings. The pipeline can be accessed at https ://mmatt .shiny apps.io/rasp/. In 
order to prevent information leakage, the second layer meta/ensemble models (random forests [RF] and boosted 
trees [XGBoost]) were trained on the combined inner fold test (i.e. sum of nested validation ΣNtest_1.1–1.5) sets. 
These second layer models were used to derive objective importance rankings of the individual ML classifiers. 
To ensure direct comparability between the investigated ML-algorithms, the data partitioning was identical 
(i.e. each model was trained and fitted on the very same subsamples of the data). However, fastText was fitted 
directly on German report texts (*), whereas other ML-algorithms were fitted on both HEAF and NLP-based 
RadLex mappings. The final performance measure of the classifiers was calculated as the fivefold cross-validated 
average on the outer folds (see Tables 1, 2 and 3).

▸
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Performance of machine learning algorithms developed on human expert‑annotated features 
(HEAF). CART demonstrated a fivefold CV accuracy of 73.3% with the worst 63% AUC, BS (0.37) and LL 
(0.87) values among the tested ML-classifiers (Table 1).

The default (“vanilla”) RF classifier fitted on the 28 HEAF achieved a fivefold CV accuracy of 81.5% with 
an AUC of 82% and corresponding BS and LL of 0.27 and 0.44, respectively (Table 1). Drastically reducing the 
feature space of vRF to only the nine (9/28: 32.1%) or five (5/28; 17.9%) most important predictors, had a compa-
rably limited effect on the predictive performance of vRF: its accuracies decreased 12.8% and 7.7%, respectively; 
AUC decreased by ~ 16%; while BS (~ 37%) and LL (~ 27%) scores increased (Table 1).

Fine tuning the RF classifier using the BS  (tRFBS) and LL  (tRFLL) metrics slightly improved the overall accu-
racy without relevantly changing the calibration metrics of the vRF algorithm (Table 1). On the outer folds, both 
 tRFBS and  tRFLL limited the feature space similarly – to the 14 or 25–28 most important variables. Interestingly, 
ME-optimized RF  (tRFME) achieved a slightly worse overall performance profile. Notably, on the outer fold 4.0, 
it limited the feature space to only the five RadLex terms.

ELNET showed a similar performance profile to RFs when fitted on the 28 HEAF but it achieved a narrower 
fivefold CV confidence range of its accuracies (78–86%) while obtaining similar AUC, BS and LL scores (Table 1). 
The mixing parameter alpha (α) was chosen 3 out of 5 times to fit ridge (0) or ridge-like (0.1, 0.1) models while 
twice to fit lasso (1) or lasso-like (0.8) models on the outer folds.

On HEAF linear kernel SVMs (SVM-LK) achieved the highest fivefold CV accuracy (87.4%) and lowest BS 
(0.22) and LL (0.37) scores while obtaining a similar AUC of ~ 80% to other ML classifiers (Table 1). The tuning 

Table 1.  Summary table of performance measures of the investigated ML algorithms developed on human 
expert-annotated features (HEAF). Accuracy#: the averaged fivefold CV accuracy is calculated, ACC: accuracy, 
AUC: multiclass area under the ROC after Hand and Till (that can only be calculated if probabilities are 
scaled to 1), BS: Brier score, ME: misclassification error, LL: multiclass log loss, vRF and tRF: vanilla- and 
tuned random forests, ELNET: elastic net penalized multinomial logistic regression, SVM: support vector 
machines, LK: linear kernel SVM; XGBoost: extreme gradient boosting using trees as base learners, BT: 
boosted trees, CART: classification and regression trees; CT: classification tree; cp: complexity parameter used 
for CART node splitting (for this no optimization (pruning) was performed); ln(2) ~ RF: column sampling (i.e. 
bootstrap) representing the settings equivalent to running RF in the xgboost library, [R]: R statistical software 
environment.

Report section Method ML Classifier
HEAF feature 
space Rank Software

Optimized 
metric

Tested 
hyperparameter 
space

Selected 
number of 
features or 
hyperparameter 
settings on 
outer fold 
1.0–5.0

Accuracy# 
[min–max; %] ME AUC BS LL

Human Expert-
Annotated Fea-
tures (HEAF)

CART CT p = 28 (all) rpart [R] ACC 

rpart.con-
trol = default; 
cp = 0.01 no 
optimization (no 
pruning)

28 73.3 [66.7–79.2] 0.27 0.63 0.37 0.87

vRF RF p = 28 (all) 4 randomForest [R] ME ntree = 500, 
mtry = 5,  pvarsel = 28 28 81.5 [73.8–92.7] 0.18 0.82 0.27 0.44

vRF RF p = 28 (all) randomForest[R] ME ntree = 500, 
mtry = 5,  pvarsel = 9 9 71.0 [59.5–82.9] 0.29 0.69 0.37 0.56

vRF RF p = 28 (all) randomForest[R] ME ntree = 500, 
mtry = 5,  pvarsel = 5 5 75.2 [68.3–83.3] 0.25 0.69 0.36 0.54

tRFBS RF p = 28 (all) 2 randomForest[R] BS
ntree = [100, 200, 
300, … , 900, 
1000]

28, 14, 14, 14, 14 83.1 [76.2–90.2] 0.17 0.81 0.27 0.44

tRFME RF p = 28 (all) randomForest[R] ME mtry = [3, 4, 5, 6, 7] 28, 28, 14, 5, 14 79.6 [68.3–90.2] 0.20 0.79 0.29 0.46

tRFLL RF p = 28 (all) 2 randomForest[R] LL pvarsel = [3, 5, 10, 14, 
20, 25, 28] 25, 14, 14, 14, 14 83.1 [76.2–90.2] 0.17 0.81 0.27 0.44

ELNET ELNET p = 28 (all) 3 glmnet[R] ME
α = [0, 0.1, 0.2, … , 
0.8, 0.9, 1] λ = ten-
fold CV with 
default hot-start

α = [0.1, 0.8, 0, 1, 
0.1] λ = [0.195, 
0.0688, 0.208, 
0.0301, 0.1632]

82.0 [78.6–85.4] 0.18 0.79 0.27 0.43

SVM-LK SVM p = 28 (all) 1 e1071[R] ME
C = [0.001, 0.01, 
0.1, 1, 10, 100, 
1000]

C = [1, 1, 100, 
10, 10] 87.4 [82.9–90.2] 0.13 0.79 0.22 0.37

XGBoost BT p = 28 (all) 5 xgboost[R] ME

nrouds/ntree = 100, nrouds = 100

80.6 [75.0–85.7] 0.19 0.70 0.30 0.48

max_depth = [3, 
5, 6, 8]

max_depth = [5, 
3, 5, 8, 3]

eta = [0.1, 0.3] eta = [0.1, 0.1, 
0.1, 0.3, 0.1]

gamma = [0, 0.5, 
1.0]

gamma = [0, 0.5, 
1, 0.5, 1]

colsam-
ple_bytree = [0.1, 
0.25, 0.5, 0.693 
(ln2) ~ RF, 1]

colsample_
bytree = [1, 1, 
0.5, 1, 0.5]
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Report 
section Method

ML 
Classifier

RadLex 
feature 
space Rank Software

Optimized 
metric

Tested 
hyperparameter 
space

Selected number 
of features or 
hyperparameter 
settings on outer 
fold 1.0–5.0

Accuracy# 
[min–max; 
%] ME AUC BS LL

Findings

CART CT p = 907 5 rpart [R] ACC 
rpart.con-
trol = default; 
cp = 0.01

p = 907 77.2 
[70.8–82.7] 0.23 0.74 0.32 0.66

vRF RF p = 300 (us 
var.filt.) randomForest [R] ME

ntree = 500, 
mtry = 30, 
 pvarsel = 200

pvarsel = 200 76.2 
[71.4–85.4] 0.24 0.78 0.33 0.51

vRF RF p = 907 (all) randomForest[R] ME
ntree = 500, 
mtry = 30, 
 pvarsel = 200

pvarsel = 200 72.8 
[67.5–78.6] 0.27 0.78 0.33 0.50

vRF RF p = 907 (all) randomForest[R] ME
ntree = 500, 
mtry = 30, 
 pvarsel = 20

pvarsel = 20 71.4 
[62.5–75.6] 0.29 0.74 0.40 0.63

tRFBS RF p = 907 (all) randomForest[R] BS
ntree = [200, 400, 
600, … , 1400, 
1600]

pvarsel = [500, 50, 
100, 100, 50]

75.2 
[71.4–81.0] 0.25 0.76 0.33 0.51

tRFME RF p = 907 (all) randomForest[R] ME mtry = [20, 25, 30, 
35, 40]

pvarsel = [907, 907, 
907, 907, 907]

74.3 
[67.5–83.3] 0.26 0.77 0.33 0.50

tRFLL RF p = 907 (all) randomForest[R] LL
pvarsel = [10; 20; 
50; 100; 200; 500; 
907]

pvarsel = [50, 50, 
50, 50]

75.7 
[70.7–85.7] 0.24 0.77 0.33 0.52

ELNET ELNET p = 907 (all) 4 glmnet[R] ME

α = [0, 0.1, 0.2, 
…, 0.8, 0.9, 1] 
λ = tenfold CV 
with default 
hot-start

α = [0.2, 0.7, 
0.9, 1, 0.1] 
λ = [0.2685, 0.134, 
0.0793, 0.114, 
0.397]

79.6 
[76.2–82.9] 0.20 0.75 0.29 0.46

SVM-LK SVM p = 907 (all) 3 e1071[R] ME C = [0.001, 0.01, 
0.1, 1, 10]

C = [0.1, 0.1, 0.1, 
0.1, 0.1]

82.5 
[78.6–85.4] 0.18 0.80 0.27 0.43

XGBoost BT p = 907 (all) 1 xgboost[R] ME

nrouds/
ntree = 100, nrouds = 100

85.4 
[80.9–90.2] 0.15 0.78 0.25 0.45

max_depth = [3, 
5, 6, 8]

max_depth = [5, 
8, 5, 8, 3]

eta = [0.1, 0.3] eta = [0.1, 0.1, 0.1, 
0.3, 0.1]

gamma = [0, 0.5, 
1.0]

gamma = [0, 0.5, 
1, 0.5, 1]

colsample_
bytree = [0.1, 
0.25, 0.5, 0.693 
(ln2) ~ RF, 1]

colsample_
bytree = [1, 1, 0.5, 
1, 0.5]

fastText linear direct fit on 
text 2 Fasttext [Python] ACC & LL default – 83.0 

[81.0–85.4] 0.17 0.81 0.29 0.98

Continued
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parameter of C was selected as 1 on two outer folds suggesting a larger margin for the separating hyperplane while 
larger values of 10 or 100 were selected on the remaining three outer folds, suggesting a smaller-margin classifier.

Boosted decision trees were similarly accurate (80.6%) like tuned RF and ELNET. Despite the detailed tun-
ing grid, XGBoost had overall somewhat worse performance profile than the other investigated ML algorithms, 
particularly AUC was lower at 70% for which we do not have a clear explanation.

Performance of machine learning algorithms developed on fully automated RadLex map‑
pings. Directly applying a single classification tree (CART) without optimizing its tree complexity (i.e. no 
pruning) showed on the findings similar overall accuracy (77.2%) to vRF with similar AUC and BS (Table 2) but 

Report 
section Method

ML 
Classifier

RadLex 
feature 
space Rank Software

Optimized 
metric

Tested 
hyperparameter 
space

Selected number 
of features or 
hyperparameter 
settings on outer 
fold 1.0–5.0

Accuracy# 
[min–max; 
%] ME AUC BS LL

Impressions

CART CT p = 675 4 rpart [R] ACC 
rpart.con-
trol = default; 
cp = 0.01

p = 675 85.0 
[79.3–89.5] 0.15 0.75 0.26 0.58

vRF RF p = 300 (us 
var.filt.) randomForest [R] ME

ntree = 500, 
mtry = 26, 
 pvarsel = 200

pvarsel = 200 83.0 
[71.4–88.1] 0.17 0.87 0.25 0.39

vRF RF p = 675 (all) randomForest [R] ME
ntree = 500, 
mtry = 26, 
 pvarsel = 200

pvarsel = 200 82.5 
[71.4–88.1] 0.17 0.87 0.25 0.39

vRF RF p = 675 (all) randomForest [R] ME
ntree = 500, 
mtry = 26, 
 pvarsel = 20

pvarsel = 20 78.2 
[70–85.4] 0.22 0.81 0.30 0.49

tRFBS RF randomForest [R] BS
ntree = [200, 400, 
600, …, 1400, 
1600]

pvarsel = [200, 100, 
200, 500, 200]

80.0 
[69.0–87.8] 0.20 0.85 0.26 0.41

tRFME RF p = 675 (all) randomForest [R] ME mtry = [21, 26, 31, 
36, 41]

pvarsel = [200, 675, 
200, 675, 500]

83.0 
[69.0–90.5] 0.17 0.85 0.25 0.41

tRFLL RF randomForest [R] LL

pvarsel = [10; 20; 
50; 100; 200; 500; 
675] pvarsel = [50, 100, 

50, 500, 50]
79.6 
[71.4–87.8] 0.20 0.84 0.27 0.42

nodesize = [1; 2 
(1%); 10 (5%)]

ELNET ELNET p = 675 (all) 3 Glmnet [R] ME

α = [0, 0.1, 0.2, …, 
0.8, 0.9, 1]

α = [0.9, 0.4, 1, 
0, 0.9]

85.0 
[82.9–88.1] 0.15 0.85 0.22 0.37λ = tenfold CV 

with default 
hot-start

λ = [0.056–2.01]

SVM-LK SVM p = 675 (all) 2 e1071 [R] ME C = [0.001, 0.01, 
0.1, 1, 10]

C = [0.1, 0.1, 0.01, 
0.1, 0.01]

85.4 
[80.0–90.2] 0.15 0.86 0.21 0.36

XGBoost BT p = 675 (all) 5 xgboost [R] ME

nrouds/
ntree = 100, nrouds = 100

83.0 
[71.4–90.2] 0.17 0.83 0.26 0.44

max_depth = [3, 
5, 6, 8]

max_depth = [5, 
3, 6, 5, 6]

eta = [0.1, 0.3] eta = [0.3, 0.3, 0.1, 
0.1, 0.3]

gamma = [0, 0.5, 
1.0]

gamma = [0, 0, 1, 
0.5, 0.5]

colsample_
bytree = [0.1, 
0.25, 0.5, 0.693 
(ln2) ~ RF, 1.0]

colsample_
bytree = [0.1, 0.25, 
0.1, 1, 0.1]

fastText linear direct fit on 
text 1 Fasttext [Py] ACC & LL default – 89.3 [832

.3–97.6] 0.11 0.92 0.18 0.55

Table 2.  Summary table of performance measures of the investigated ML algorithms on the NLP-annotated 
bag-of-RadLex features of the findings and impressions sections. Accuracy#: the averaged fivefold CV 
accuracy is calculated, ACC: accuracy, AUC: multiclass area under the ROC after Hand and Till (that can only 
be calculated if probabilities are scaled to 1), us var.filt: unsupervised variance filtering using p = 300 most 
variable RadLex terms -this step was previous of training to prevent information leakage, BS: Brier score, 
ME: misclassification error, LL: multiclass log loss, vRF and tRF: vanilla- and tuned random forests, ELNET: 
elastic net penalized multinomial logistic regression, SVM: support vector machines, LK: linear kernel SVM; 
XGBoost: extreme gradient boosting using trees as base learners, BT: boosted trees, CART: classification and 
regression trees; CT: classification tree; cp: complexity parameter used for CART node splitting (for this no 
optimization (pruning) was performed); ln(2) ~ RF: column sampling (i.e. bootstrap) representing the settings 
equivalent to running RF in the xgboost library, [R]: R statistical software environment; [Py] Python v3.7 
programming language.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5529  | https://doi.org/10.1038/s41598-021-85016-9

www.nature.com/scientificreports/

with worse LL metrics. On the impressions, however, CART was tied for the  3rd best accuracy (85.0%) but still it 
showed low AUC (0.75) and high LL (0.58) values.

As for RF, applying unsupervised variance filtering to select the top 33% most variable RadLex mappings of 
the findings sections, improved the fivefold CV accuracy of vRF by ~ 4.7%. In contrast, the same variance filter-
ing on the impression sections did not relevantly (0.6%) improve vRF’s accuracy (Table 2). Tuned RF models 
were slightly more accurate than the default vRF, however, tuning did not improve much upon the remaining 
calibration metrics.

ELNET was the  3rd best-performing ML algorithm on the RadLex features of the findings sections behind 
SVMs and XGBoost with similar BS and LL metrics but lower accuracy  (pAcc.vs.NIR = 0.061) and AUC (Table 2). On 
the impression, it achieved the second highest fivefold CV accuracy (85.0%; 95%CI: 79.3–89.5%;  pAcc.vs.NIR = 2.8 × 
 10–4) with corresponding second-best calibration profile (AUC: 86%; BS: 0.22; and LL: 037). On the outer folds 
of the impressions lasso or lasso-like settings (0.9–1) dominated the tuned α settings. ELNET had a better visual 
calibration profile on the impressions than on the findings (Fig. 2a).

Linear kernel SVMs (SVM-LK) were the only classifiers that performed in the top 2 on the RadLex feature 
spaces of both the findings  (pAcc.vs.NIR = 5.1 ×  10–3) and impressions  (pAcc.vs.NIR = 1.4 ×  10–4) sections (Table 2). 

Figure 2.  The calibration profiles of the best performing machine learning classifiers (a–d) fitted on the RadLex 
mappings and of the random forests meta/ensemble learner (e,f) fitted on the predicted probabilities of the 
ML-algorithms as features on all outer folds combined (N = 206). Probability estimates for each report by each 
ML classifier were recorded i.e. how likely it is that the predicted target label is “ASPECTS: yes”. The reliability 
of these predictions can be assessed visually on calibration plots. Calibration curves are created by grouping 
reports into discrete bins based on their assigned probability estimates by the ML-model. Thus, the probability 
space [0–1] gets discretized into bins (i.e. 0–0.1, 0.1–0.2, …, 0.8–0.9, 0.9–1.0; grey grid). The points represent 
the mean predicted probability (x-axis) and the observed fraction (y-axis) of true (“yes”) labels for the subset 
of reports falling in that respective range. For ideally calibrated models, the mean predicted probability and 
observed fraction should be identical within each bin, hence the calibration curve would lie on the diagonal 
(grey line). Rug plots (blue lines, findings; red lines, impressions) indicate the axis-values of the aforementioned 
aggregated bin measures (thick lines) and probability estimates of single reports (thin lines). ELNET (a) was 
more suitable for the impressions (red) particularly in the 0.50–0.75 range, corresponding to its top 3 ranked 
accuracy. Linear kernel SVMs (b) showed well-calibrated estimates for the 0.50–1.0 probability domain for 
both the findings (blue) and impressions (red). XGBoost (c) presented an almost ideal calibration curve on the 
findings (blue) while being the most accurate ML classifier (Table 2). FastText (d) achieved the highest overall 
accuracy when trained on the impressions (red) with partly well-calibrated estimates (0.75–1) but it was poorly 
calibrated on the findings (blue). The RF meta/ensemble learner (e) showed a reasonably well-calibrated profile 
when trained on probability outputs of all ML-algorithms (16 × ML models both findings and impressions; 
see Table 3). The histogram inset displays the bimodal distribution of its probability estimates. It showed (f) 
similar calibration profiles when trained either only on 8–8 ML model estimates of the findings (blue) or the 
impressions (red), respectively.
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SVM-LK had the highest AUC and lowest LL on the findings while on the impressions, it was overall the best-
performing base ML-classifier. SVMs were comparably well-calibrated for both the findings and impressions, 
especially in the 0.5–1.0 probability domain (Fig. 2b).

XGBoost performed particularly well on the RadLex mappings of the findings – where the other ML algo-
rithms (including fastText) struggled (Table 2). It showed the highest accuracy  (pAcc.vs.NIR = 1.4 ×  10–4) and low-
est BS with corresponding slightly worse AUC and LL metrics (than the runner-up SVM-LK). Nevertheless, 
it had the best overall visual calibration profile on the reliability diagrams for the whole probability domain 
(Fig. 2c). Compared to the findings, on the impressions XGBoost tuning implied a stronger subsampling of the 
features when constructing each tree, thereby strongly limiting the available predictor space. On the impressions, 
XGBoost performed similar to RF classifiers.

Linear models (fastText) fitted directly on German report text. When directly fitting the findings 
sections of the reports, the fastText algorithm showed a fivefold CV accuracy of 83.0% (95%CI: 77.2–87.9%; 
 pAcc.vs.NIR = 0.0030) with sensitivity of 94.8%, and specificity of 48.1% (PPV 84.4%, NPV: 75.8%), which cor-
responded to 84.4% precision and 89.3% F1 score. It achieved comparable AUC (81.1%) and BS (0.29) to other 
shallow ML-models trained on RadLex mappings but showed markedly worse LL profile (0.98) suggesting 
“more certain” misclassifications.

FastText achieved the best results across all investigated ML algorithms fitted on the impressions sections of 
the reports. It showed a fivefold CV accuracy of 89.3% (95%CI: 84.3–93.2%;  pAcc.vs.NIR = 1.35 ×  10–7) with a bal-
anced accuracy of 82.0%. Its predictive profile was in the 87–97% range (sensitivity: 96.8%; specificity: 67.3%; 
PPV 89.8%, NPV: 87.5%) with precision of 89.8% and F1 score of 93.1%. Furthermore, it showed the highest AUC 
(91.7%) with lowest BS (0.18) but yet again somewhat worse LL (0.55) than the RadLex-based ML algorithms. 
FastText showed poor visual calibration profiles for both the findings and impressions in the lower probability 
domains (0–0.5), however it was almost ideally calibrated in the 0.75–1.0 domain of the impressions (Fig. 2d).

Performance of the second layer meta/ensemble‑learners. The second layer meta/ensemble RF 
learner, which was trained on predictions of the ML-classifiers of the findings sections, showed similar per-
formance metrics (Table 3) as the top single ML-classifiers like SVM-LK, fastText and XGBoost (Table 2). Its 
accuracy was in the 77–88% 95%CI range  (pAcc.vs.NIR = 1.8 ×  10–4) with 89.6% sensitivity; 65.3% specificity; 88.5% 
PPV; and 68% NPV which corresponded to a precision of 88.5% and F1 score of 89.6%. SVM-LK was chosen 
twice as the most important classifier while vRF, ELNET and XGBoost were each selected once on the five other 
folds (Fig. 3a,d).

The fivefold CV accuracy (89.3%) of the ensemble RF (Table 3), when using only the ML-models of the 
impressions as input features, was identical to the best predictor (fastText). But the 95% confidence interval got 
narrower and the LL score got considerably reduced (by 38%). This solely impressions-based ensemble achieved 
the following metrics: sensitivity 92.2%; specificity 80.8%; PPV 93.4%, NPV 77.8% with corresponding preci-
sion of 93.4% and F1 score of 92.8%. FastText was chosen as the most important predictor for all outer fold test 
sets while as top  2nd predictor XGBoost was chosen twice; ELNET, SVM-LK and  tRFBS were each selected once, 
respectively (Table 3; Fig. 3b,e).

When the ML-classifier predictions of both the findings and impressions were the combined input for the 
second layer RF model, its accuracy, BS and LL slightly got worse (5–6%). The confusion matrix derivates were 
as follows: sensitivity 91.6%; specificity 80.8%; PPV 93.4%, NPV 76.4% with corresponding precision of 93.4% 
and F1 score of 92.5%. The variable importance rankings were dominated by ML-classifiers developed on the 
impression sections (Table 3; Fig. 3c,f). The visual calibration profile of the RF ensemble developed on all ML-
models (both findings and impressions; p = 16) are presented in (Fig. 2e,f).

On this same combined feature space (p = 16), the second layer XGBoost ensemble showed a slightly reduced 
accuracy and worse calibration profiles than the RF ensemble (Table 3). Its predictive profile was in the 82–92% 
range  (pAcc.vs.NIR = 6 ×  10–6; sensitivity: 93.5%; specificity: 69.2%; PPV 90.0%, NPV: 78.3%) with precision of 90% 
and F1 score of 91.7%. XGBoost selected fastText impressions 3 × and SVM impressions 2 × out of 5 on the outer 
folds as the most important variable based on the gain metric.

Discussion
In this work, we present a resource effective approach to develop production-ready embedded ML models for 
CAR tools, in order to assist radiologists in providing clinically relevant key  biomarkers9,20,44,45. To our knowl-
edge, this is the first study that uses fully automated cross-lingual (German to English) RadLex mappings-
based machine learning to improve radiological reports by suggesting the key predictor ASPECTS in CT stroke 
workups. We demonstrated the feasibility of our automated RadLex framework (“MyReportCheck”, Supplemen-
tary Fig. S1 online) by comparing it to ML classifiers developed on human expert annotations. Furthermore, our 
ensemble learning setup provides objective rankings and a generalizable blueprint for choosing ML algorithms 
when developing classifiers for similar context-sensitive recommendation  tasks44,46.

Although reporting templates have been developed to promote and standardize the best practice of radio-
logical  reporting47–49, the majority of radiology reports are still created in free-text  format50,51. This limits the 
use of radiology reports in clinical research and algorithm  development45,49,51. To overcome this, NLP pipelines 
including ML proved to be effective to annotate and to extract recommendations from  reports51,52. Nonetheless, 
studies dealing with ML algorithm development particularly for real-time context-sensitive assistance of radiolo-
gists while writing reports are  scarce46,53. Therefore, in this work, we focused on comprehensive and objective 
comparison of ML algorithms to provide technical guidance for developing these algorithms on limited (non-
English) training data. For this, we have put an emphasis on the probabilistic evaluation and ranking of ML 
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Table 3.  Summary table of performance measures of the second layer meta/ensemble learners (random forests 
and boosted trees) combining the predictions of all RadLex-based ML base classifiers from the findings and 
impression sections. AUC: multiclass area under the ROC after Hand and Till (that can only be calculated if 
probabilities are scaled to 1), us var.filt: unsupervised variance filtering using p = 300 most variable RadLex 
terms -this step was previous of training to prevent information leakage, BS: Brier score, ME: misclassification 
error, LL: multiclass log loss, vRF and tRF: vanilla- and tuned random forests, ELNET: elastic net penalized 
multinomial logistic regression, SVM: support vector machines, LK: linear kernel SVM, n.SV: number of 
support vectors; XGBoost: extreme gradient boosting using trees as base learners, BT: boosted trees.

Ensemble 
ML-algorithm Classifiers

Number 
of features 
(ML-model 
outputs)

Most important 
ML-classifiers/
outer fold

Optimized 
metric Hyperparameters

Selected number 
of features or 
hyperparameter 
settings on outer 
fold 1.0–5.0

Accuracy# 
[95%CI] ME AUC BS LL

vRF

vRF

8 × ML-models 
(findings)

Top 1:

ME ntree = 500, 
mtry = 2,  pvarsel = 8 pvarsel = 8 83.5 [77.7–88.3] 0.17 0.83 0.29 0.47

tRFBS, vRF-find 1/5

tRFME, SVM-find 2/5

tRFLL, ELNET-find 1/5

ELNET, XGBoost 1/5

SVM-LK, 
XGBoost, fast-
Text

Top 2:

XGBoost-find 
1/5

tRF-ME-find 
2/5

fasstext-find 1/5

ELNET-find 1/5

vRF

vRF

8 × ML-models 
(impressions)

Top 1:

ME ntree = 500, 
mtry = 2,  pvarsel = 8 pvarsel = 8 89.3 [84.3–93.2] 0.11 0.90 0.19 0.34

tRFBS,
fasstext-impr 
5/5

tRFME, Top 2:

tRFLL, svm-impr 1/5

ELNET, XGBoost-impr 
2/5

SVM-LK, 
XGBoost, fast-
Text

tRF-BS-impr 1/5

ELNET-impr 
1/5

vRF

vRF 16 × ML-models Top 1:

ME ntree = 500, 
mtry = 4,  pvarsel = 16 pvarsel = 16 88.8 [83.7–92.8] 0.11 0.90 0.20 0.36

tRFBS, (8 × findings & fasstext-impr 
5/5

tRFME,

8 × impressions)

Top 2:

tRFLL, svm-impr 3/5

ELNET, tRF-BS-impr 1/5

SVM-LK, 
XGBoost, fast-
Text

ELNET-impr 
1/5

XGBoost

vRF 16 × ML-models Top 1:

ME

nrouds/ntree = [5, 
10, 25, 50, 75, 100]

nrounds = [75, 5, 
75, 5, 10]

87.4 [82.0–91.6] 0.13 0.87 0.30 0.46

tRFBS,

(findings & 
impressions)

fasstext-impr 
3/5

max_depth = [3, 
5, 6, 8]

max_depth = [3, 
6, 5, 3, 5]

tRFME, svm-impr 2/5 eta = [0.01, 0.1, 0.3]

eta = [0.3, 0.01, 
0.1, 0.01, 0.1]
gamma = [1, 0.01, 
0.1, 0, 0.5]
colsample_
bytree = [0.1, 0.5, 
 ln2~RF, 0.1, 0.25]

tRFLL, Top 2: gamma = [0, 0.001, 
0.01, 0.1, 0.5, 1]

ELNET, fasstext-impr 
2/5

colsample_
bytree = [0.1, 0.25, 
0.5, 0.693 (ln2) ~ RF, 
1.0],

SVM-LK, 
XGBoost, fast-
Text

tRF-BS-impr 2/5 min_child_
weight = 1,

svm-impr 1/5 subsample = 1
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classifiers. This is less relevant for biomarker CAR recommendation systems but crucial for automated inference 
systems for scores such as BI-RADS54 or PI-RADS18.

We used a commercially available NLP pipeline that implements a common  approach8,51 comprised of cleans-
ing, contextualization and concept recognition as well as negation detection trained explicitly for German and 
English RadLex  mappings1,43. This fully automated approach to generate bag-of-RadLex mappings is advan-
tageous compared to standard  BOW35 approaches, as it already captures domain-specific knowledge includ-
ing negation and  affirmation3. Mikolov et al. proposed word2vec to create semantic word embeddings, which 
gained popularity in the field of  radiology5,55. However, word2vec struggles to properly handle out-of-vocabulary 
 words56,57. Thus, it needs to be combined with radiology domain-specific mappings. In contrast, our approach 
directly generates bag-of-RadLex terms for each report. We then combine all binary RadLex term occurrences 
in our corpus (separately for findings and impressions) to generate the RadLex-DTMs. Therefore, our pipeline 
is also more robust for new or missing words e.g. if a new report does not contain certain terms (present in the 
training corpus), these can be easily substituted with 0 or new terms can be added to the DTM and the ML clas-
sifier can be swiftly retrained. This commercial NLP-based RadLex-mapping pipeline for creating DTMs is free 
for research purposes and can be easily utilized through our Shiny application.

Similar to previous  studies47,51, we included all hierarchical parent and child elements of the tree structure of 
RadLex concepts as a flattened feature space and let the ML classifiers select subgroups of terms relevant to the 
classification task automatically during training. For a similar domain-specific semantic-dictionary mapping, 
as part of their hybrid word embedding model, Banerjee et al. created a custom ontology crawler that identi-
fied key terms for pulmonary  embolism57. Another approach by Percha et al. included only partial flattening 
of RadLex. They selected the eight most frequent parent categories that were used to learn word and RadLex 
term vector representations for automatically expanding  ontologies5. We have also found that certain key terms 
are missing from RadLex and manually extended it. Other approaches to mitigate this problem and to increase 
interoperability, aim to combine multiple (both radiology-specific and general medical) ontologies or procedural 
databases such as RadLex, LOINC/RSNA playbook, CDE from the RSNA and Systematized Nomenclature of 
Medicine Clinical Terms (SNOMED CT) as well as the International Classification of Diseases (v.10) Clinical 
Modification (ICD-10-CM)56,58–60.

All investigated ML algorithms were “CPU only” thereby imposing minimal hardware requirements and being 
quick both at train and test  time36. These ML models have proven to be effective on both text  classification8,34,36 
and other high-dimensional medical problems including high-throughput genomic microarray  data6,61. Addition-
ally, we implemented a nested CV learning framework in order to objectively assess the importance of each ML 
base classifier and report section (i.e. findings and impressions) based on their probability estimates of recom-
mending  ASPECTS6. Zinov et al. also used a probabilistic ensemble learning setup to match lung nodule imaging 
features to  text53. It is of note that there is multicollinearity both on the level of RadLex mappings when training 
ML base classifiers and when combining the probability estimates of these ML classifiers on the second layer 
meta/ensemble-learner level. Default settings of RF (both in Python and R) are less robust for these scenarios 
due to the dilution of true  features6,62–64. To counter act dilution, we used the permutation-based importance 
(type = 1) without scaling for all RF models, which were suggested as the most robust settings  in6,63,64. In contrast, 
boosted trees by design are less susceptible to correlation of  features42,65. The performance of the investigated ML 
algorithms is differently sensitive to the number of  features6,61. Based on results by limiting the feature space with 
unsupervised variance filtering, we suggest using all annotated RadLex features as input and treating the num-
ber of features (p) as a tuning parameter during ML-algorithm training to achieve the best possible accuracies.

ML models developed on HEAF were similarly accurate (87%) to those developed on fully automated 
cross-lingual RadLex mappings (~ 85%), although the latter models had substantially better calibration profiles 
(especially AUC and BS). This corresponded to results by Tan et al. on lumbar spine imaging when compar-
ing rule-based methods to ML  models66. On the more heterogeneous and larger RadLex feature space of the 

Figure 3.  Two corresponding pairwise versions of multi-way importance plots of the investigated machine 
learning algorithms based on the random forests meta/ensemble learner when fitted on the probability 
estimates of the eight ML models as features (Table 3) based on the findings (a,b), impressions (c,d) and both 
(e,f) report sections. The axes on subplots (a,c,e) measure the prediction related relevance of a variable. Here, 
y-axes (Gini_decrease) display the Gini feature importance-based mean decrease in node impurity while the 
x-axes (Accuracy_decrease) show the more robust mean decrease in accuracy (type = 1) variable importance 
 measure6,62–64. P-values (legend: red, green and blue patches and colored text brackets) were derived from a 
binomial distribution of the number of nodes split on the variable assuming random draws. On subplots (b,d,f), 
y-axes (Times_a_root) show the number of trees in which the root is split on that variable (i.e. ML classifier), 
whereas the x-axes (Mean_minimal_depth) show the mean depth of first split on the variable. Because these 
two measures are negatively associated, most important variables are located in the upper-left corner. Area of 
the points is proportional with the total number of nodes (no_of_nodes) in the forest that split on that variable 
and the points are blue if the variable was used as root (top). When ML classifiers trained only on the findings 
sections were fed to the RF ensemble (a), XGBoost (p < 0.01) was the only significant predictor while linear 
kernel SVM showed a weak trend (p < 0.1). Underscoring XGBoost’s importance (b), it was used in the most 
nodes and as root split. Among the models developed on the impressions (c), fastText (p < 0.01) was the most 
important predictor followed by SVM-LK (p < 0.01) while brier score-tuned RF (tRF-BS) showed a week trend 
(p < 0.1). FastText and SVM-LK (d) were the most relevant classifiers based on tree splitting measures. Likewise, 
when all 16 ML-models were combined (e), fastText (p < 0.01) and SVM-LK (p < 0.01) based on the impressions 
dominated the importance rankings, however, although less relevant findings-based XGBoost still achieved a 
weak trend (p < 0.1). Plots were created on the first outer fold test set  (Ntest.1.0 = 42).
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findings sections, most ML models including fastText struggled but XGBoost performed best with an almost 
ideal calibration profile among all models (including those developed on the impressions). As impressions 
are expert-created condensed extracts of the most relevant information, ML performed substantially better 
(all > 80%). Accordingly, both RF and XGBoost meta/ensemble learners favored ML models that were developed 
on the impressions particularly fastText, SVM-LK and BS-tuned RF. These second layer meta/ensemble models 
achieved precision of 90–93%, recall: 92–94% and F1 score: 91–93%, which was well in line with the performance 
of information extraction model by Hassanpour et al. on a similarly sized (n = 150) test set of multi-institutional 
chest CT  reports51.

The advantage of RadLex-based ML models compared to fastText is that they contain anatomical concepts 
and we can directly access negation information providing human interpretable explanation of the model. For 
fastText, such concepts are not necessarily learnable from limited training data or for more complex decision 
support scenarios other than ASPECTS. This was also supported by the fact that, despite being a baseline model, 
single CART performed remarkable well on the impressions implying that recommending ASPECTS is a less 
complex decision task.

The present study has certain limitations as it was a single-center, retrospective cross-sectional study of limited 
size. Nonetheless, we tried to create a representative cohort of the general daily praxis by selecting a stratified 
random sample of ~ 200 reports from ~ 4000 reports from a period of 4 years, which may robustly represent the 
general daily praxis. Our primary goal was to provide baseline performance metrics for well-established NLP and 
ML algorithms and linear classifiers with respect to radiology-specific biomarker (ASPECTS) recommendation 
tasks. Hence, there are natural extensions to our traditional methodology including the switch to well-known 
neural network architectures at the level of concept recognition to generate RadLex  mappings26,67. Recently, 
DL methods are increasingly used for concept recognition tasks such as long short-term memory (LSTM) and 
variants of bidirectional recurrent neural networks (BiRNN) coupled with conditional random field (CRF) 
 architectures68,69. DL models can also be used to create task-specific classifiers in an end-to-end manner (e.g., 
convolutional neural (CNN)24,  RNN54 or LSTM  networks45,70). However, fastText (with only a single hidden layer) 
has proven to be on a par with these more complex network architectures on several  benchmarks36. Although 
incorporating pre-trained language-specific word representations into fastText was expected to improve its 
accuracy, we chose not to do so to allow for more direct performance comparisons with bag-of-RadLex-based 
ML  classifiers71.

Utilizing large transformer  architectures25,27–29,72 directly on German free-text reports would be a reasonable 
extension, however, sufficiently large non-English public radiology domain-specific corpora for transfer learning 
are lacking and the interpretability of TLMs is  challenging31. Whether TLMs “truly learn” underlying concepts 
as a model of language or just extract spurious statistical correlations is a topic of active  research32,33. Thus, our 
CT stroke corpus can facilitate benchmarking of such models for the German radiological  domain31,67,72.

For recommending ASPECTS we used  pyes > 0.5 probability threshold. Optimizing this cutoff could further 
improve the performance metrics of the ML classifiers – for example by maximizing the Youden  index73.

To counteract class imbalance, we also explored upsampling, downsampling, random over-sampling and 
synthetic minority over-sampling techniques (SMOTE)74, however, they did not improve the accuracy of ML 
classifiers on our data set (data not shown).

Regardless of these limitations, compared to text-based DL methods, our approach has some major advan-
tages: i) building ML classifiers on top of cross-lingual RadLex mappings incorporates domain-specific knowledge 
thereby only requiring a limited amount of expert labeled data – for which simple class labels may be sufficient; 
ii) this approach can be easily adopted to any other language where RadLex was translated by the local radiologi-
cal society; iii) an ultimate benefit of our methodology is that it allows for the instant interoperability between 
languages especially the direct transportability of any ML model created for biomarker recommendation or infer-
ence from one language to another. Furthermore, the investigated ML algorithms has been proven to be effective 
for high-dimensional multiclass classification problems in various scientific  domains6, therefore, are expected 
to generalize well for other (more complex) radiological key biomarkers with multiple outputs (e.g., BI-RADS54, 
PI-RADS18). However, developing classifiers for biomarkers that describe more complicated pathophysiological 
processes or entities (than ASPECTS) will possibly require lager data sets.

In conclusion, we showed that expert-based key information extraction and fully-automated RadLex map-
ping-based machine learning is comparable and requires only a limited amount of expert-labeled training data 
– even for highly imbalanced classification tasks. We performed detailed comparative analyses of well-established 
ML algorithms and identified those, which are best suited for automated rule learning on bag-of-RadLex concepts 
(SVM, XGBoost and RF) and directly on German radiology report texts (fastText) through utilizing a nested 
CV learning framework. This work provides a generalizable probabilistic framework for developing embedded 
ML algorithms for CAR tools to context-sensitively suggest, not just ASPECTS but any required key biomarker 
information. Thereby improving report quality and facilitating cohort identification for downstream analyses.

Methods
Study cohort. The study was approved by the local ethics committee (Medical Ethics Commission II, Medi-
cal Faculty Mannheim, Heidelberg University, approval nr.: 2017-825R-MA). All methods were carried out in 
accordance with institutional guidelines and regulations. Written informed consents were waived by the ethics 
committee due to the retrospective nature of the analyses. In this single-center retrospective cohort study, con-
secutive (German) radiological reports of cranial CTs with suspected ischemic stroke or hemorrhage between 
01/2015–12/2019 were retrieved from local RIS (Syngo, Siemens, Healthineers, Erlangen, Germany) that con-
tained the following key words in the clinical < request reason > , < request comment > or < request technical 
note > fields: “stroke”, “time window for thrombolysis”, “wake up”, “ischemia” and their (mis)spelling variations. A 
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total of 4022 reports fulfilled the above criteria. After data cleaning, which excluded cases with missing request-
ing department, 3997 reports remained. Next, we generated a stratified random subsample (n = 207, ~ 5.2%) 
based on age (binned into blocks of 10 years), sex (M|F), year (in which the imaging procedure was performed) 
and requesting department. During downstream analyses one report was removed because it contained only a 
reference to another procedure, leaving n = 206 for later analyses (Fig. 1). The extracted reports were all conven-
tional free-texts and were signed off by senior radiologists with at least 4 years of experience in neuroradiology.

Information extraction by human experts. Three independent readers (R1, experience 3yrs; R2, 7yrs; 
R3, 10yrs) assessed the clinical questions, referring departments, findings and impressions of the reports. For 
each report, all readers independently evaluated whether ASPECTS was provided in the report or should have 
been provided in the report text (necessary: 154, 74.7%; not meaningful: 52, 25.3%]). Further, the two senior 
experts (R2 and R3) manually extracted clinico-radiologically relevant key features in the context of whether 
reporting ASPECTS is sensible based on the presence (yes | no) of ischemia (separately for new infarct demarca-
tion and/or chronic post-ischemic defects); bleeding (separately for each of the following entities: intracerebral 
hemorrhage (ICH), epi- (EDH), subdural hematoma (SDH), subarachnoid hemorrhage (SAH)); tumor; proce-
dures including CT-angiography (CTA) or CT-perfusion (CTP); whether cerebral aneurysms or arteriovenous 
malformations (AVM) were detected; previous neurosurgical (clipping, tumor resection) or neurointerven-
tional procedures (coiling); and previous imaging (within the last 1–3 days)75,76. These human expert-annotated 
features (HEAF) were extracted concurrently from both the finding and impression sections and selected in 
accordance with national and international guidelines for diagnosing acute cerebrovascular  diseases75,76. HEAFs 
were used as input for ML algorithm development (Table 1). The feature matrix is available as supplementary 
data (heaf.csv) or GitHub download (https ://githu b.com/memat t/ml4Ra dLexC AD/data).

RadLex mapping pipeline. Both the findings and impression sections of each German report (n = 206) 
were mapped to English RadLex terms using a proprietary NLP tool, the Healthcare Analytics Services (HAS) 
by Empolis Information Management GmbH (Kaiserslautern, Germany; https ://www.empol is.com/en/). As 
previously  described1,43, HAS implements a common NLP pipeline consisting of cleansing (e.g., replacement of 
abbreviations), contextualization (e.g. into segments "clinical information", "findings", and "conclusion"), con-
cept recognition using RadLex, and negation detection ("affirmed", "negated", and "speculated")77. HAS was 
pre-trained on ~ 45 k German radiological  reports1,43. For concept recognition, a full text index and morpho-
syntactic operations such as tokenization, lemmatization, part of speech tagging, decompounding, noun phrase 
extraction and sentence detection were used. The full text index is an own implementation with features such as 
word/phrase search, spell check and ranking via similarity measures such as Levenshtein  distance78 and  BM2579. 
The index is populated with synonyms for all RadLex entities (both from the lexicon and by manual extensions), 
the morpho-syntactic operations are based on Rosette Base Linguistics (RBL) from Basis Technology (Cam-
bridge, MA, USA; https ://www.basis tech.com/text-analy tics/roset te/). For accuracy, RBL uses machine learning 
techniques such as perceptrons, support vector machines, and word embeddings. For negation detection, the 
NegEx algorithm was implemented in UIMA RUTA 77,80. No further pre-processing steps of the text were done.

Our RadLex annotation and scoring pipeline (RASP), which utilizes the aforementioned HAS API, is freely 
available as a Shiny application at https ://mmatt .shiny apps.io/rasp/35. We used RASP to generate the document 
(i.e. report RadLex) term matrix (DTM) of the complete data set over all reports (n = 206) both for the findings 
and impression sections, respectively. In the DTM, each report is represented as a vector (i.e. bag-of-)RadLex 
terms that occurred in the  corpus34,35. All hierarchical parent and child categories of the identified RadLex 
terms were included as features and encoded in a binary fashion (0|1), whether the term was present or not. 
Other kinds of relationships such as “May_Cause” were disregarded. Further, each RadLex term (i.e. feature) 
was annotated with three levels of confirmation or confidence “affirmed”, “speculated”, “negated”, which was 
included in the feature name. Feature names were generated by combining the RadLex ID, preferred name of 
the term and the assigned confirmation level. This DTM provided the basis for fully automated RadLex-based 
ML algorithm development (Table 2). The report-RadLex term-matrices (i.e. DTMs) both for the findings and 
impression sections are available for direct download from our GitHub repository (https ://githu b.com/memat 
t/ml4Ra dLexC AD/data) or as supplementary data (radlex-dtm-findings.csv and radlex-dtm-impressions.csv).

The performances of ML algorithms developed on these automated NLP-RadLex mappings were then com-
pared to those ML algorithms that were developed on the features extracted by human experts (HEAF). It is of 
note, however, that in its current iteration (v4.0) RadLex does not contain certain key terms or concepts, one of 
which is ASPECTS. Although there is a CDE for ASPECTS classification (https ://www.radel ement .org/eleme 
nt/RDE17 3)12. Hence, extended IDs had to be created for such terms in the NLP annotation service, which are 
denoted as RadLex ID Extended (RIDE), for example ASPECTS = RIDE172 in the DTMs.

Classifiers and feature importance. We performed extensive comparative analyses of well-established 
ML algorithms (base classifiers) to automatically learn rules required for ASPECTS reporting including single 
classification (and regression) trees (CART)41, random forests (RF)37, boosted decision trees (XGBoost)42, elas-
tic net-penalized binomial regression (ELNET)38,39 and support vector machines (SVM)40. Single CART was 
used to represent the baseline ML algorithm. A CART has the advantage that human readers can more easily 
interpret it, however its estimates are much less robust than ensembles of trees like  RF41,65,81,82. It is of note that 
RadLex mappings are inherently correlated features due to RadLex’s hierarchical design. This makes RF suscep-
tible to miss the truly relevant terms and dilute the selected  features6,62–64. Therefore, we used the most robust 
metric of permutation-based variable importance (type = 1) without scaling (scale = F) for all RF  models6,62–65. 
Permutation-based variable importance quantifies the importance of a feature by defining a baseline accuracy 

https://github.com/mematt/ml4RadLexCAD/data
https://www.empolis.com/en/
https://www.basistech.com/text-analytics/rosette/
https://mmatt.shinyapps.io/rasp/
https://github.com/mematt/ml4RadLexCAD/data
https://github.com/mematt/ml4RadLexCAD/data
https://www.radelement.org/element/RDE173)
https://www.radelement.org/element/RDE173)
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(for classification tasks) when the initially trained RF model is fitted on the out-of-bag (OOB)  samples62,63. Next, 
all values (observations) of a variable of interest  (Xi) are permuted in the OOB samples thereby breaking down 
any associations between  Xi and the outcome. Then, the initial RF model (i.e. each individual tree in the forest) is 
refitted on this permuted OOB sample and the prediction accuracy is recalculated. The importance of a variable 
is the difference between the baseline and the drop in overall accuracy after permuting the values of  Xi. Notably, 
the RF classifier is not retrained after permutation, but the already trained baseline model is used to predict 
on the perturbed OOB sample. Consequently, calculating permutation-based importance metrics for several 
predictor variables is computationally more expensive than generating the mean decrease in impurity (Gini 
index) but also proved to be more  robust64,83,84. It has also been shown that the raw (unscaled) permutation-
based importance measures have better statistical  properties83, although they are still potentially biased towards 
collinear  features84. Therefore, we also compared RF to boosted trees, which are by design less susceptible to cor-
related  features42,65. Importance ranking of boosted trees models (both at the annotated feature and meta-learner 
levels) were derived using the gain metric.

Machine learning setup. Each ML algorithm was fitted to the i) human expert-annotated features (HEAF; 
Table 1) and to the ii) RadLex mapped DTMs both for the findings and impressions separately (Table 2).

Because the effort of manually annotating the data set is large, especially if multiple experts annotate the 
same reports, we built upon our previously open-sourced protocol of a fivefold nested cross-validation (CV) 
resampling scheme to have an objective and robust metric when comparing the performance of the investigated 
methods (Fig. 1). Nested CV schemes allow for the proper training of secondary (e.g. calibrator or ensemble) 
models, without allowing for information leakage (Fig. 1). To counter act the class imbalance (yes:no = 3:1) dur-
ing CV-fold assignment (nfolds.RData), we performed stratified sampling. Also, RFs were downsampled to the 
minority class during  training62,85.

In brief, the data set (n = 206) was divided into stratified subsamples (outer fold training  [nouter.train =  ~ 164–166] 
– test set pairs  [nouter.test = 40–42]) using fivefold cross-validation (Fig. 1; dashed blue and red boxes). Then, only 
the outer fold training sets were, yet again, subsampled using fivefold CV, in order to create the nested/inner 
fold (training  [ninner.train = 130–134] – test set pairs  [ninner.test = 32–34]; Fig. 1, nested CV). This was performed for 
both the findings and impressions sections using identical fold structures (Fig. 1).

Hyperparameter tuning (i.e. training) of the investigated ML algorithms (base classifier) was performed 
within an extra-nested CV loop on the outer- or inner fold training sets. All models were fitted to the same 
data structure. Also, random seeds were fixed across all ML algorithms, in order to ensure direct comparability 
of their performance measures. ML algorithm training was optimized using either accuracy, brier score or log 
loss, which is indicated along the tuning parameter settings in Tables 2 & 3. For all ML algorithms probability 
outputs were also recorded and used to measure AUC and to create calibration plots. The average fivefold CV 
model performances on the outer fold test sets are provided in Tables 1, 2 & 3.

We chose this nested CV setup to be able to use an independent second layer model. The rationale for this 
was to investigate whether using the probability outputs of the base ML classifiers as input features for a second 
layer ensemble model, it could improve the overall performance of suggesting ASPECTS; and to use this “meta/
ensemble” learner to derive importance rankings of the investigated ML algorithms. Hence, we could objectively 
rank the ML algorithms in addition to comparing their performance metrics. Because these probability esti-
mates represented highly correlated features, we chose RF and XGBoost as meta learners (as described above). 
RF and XGBoost were trained on the combined probability predictions (i.e. “ensemble”) of the base ML models 
(i.e. CART, RF, XGBoost, ELNET, SVM and fastText) on the respective nested/innerfold test sets (Fig. 1). Then, 
this tuned model was evaluated on the corresponding outer fold test set preventing any information  leakage6. 
For RF ensemble, we have used mean decrease in accuracy without scaling that has been suggested as the most 
robust setting when fitting correlated  features6,62–64. Importance ranking of boosted decision trees were gener-
ated by the gain  metric42. Multi-way variable importance plots describing the RF meta learner (Fig. 3) were 
created using default settings of the “plot_multi_way_importance” function in the randomForestExplainer R 
package (v0.10.0.)86. Heretofore, we refer to second layer RF and XGBoost algorithms as meta/ensemble learn-
ers or models.

Text classification directly on German report texts using fastText. We used the open-source, 
lightweight fastText library (v0.9.1; https ://fastt ext.cc/) to learn linear text classifiers for ASPECTS recommen-
dations on our data  set36. The German report texts (both findings and impression sections) were preprocessed 
by excluding the following special characters “([-.!?,’/()])”. It is of note that fastText was only trained “on-the-fly” 
in each resampling loop on the corresponding subset of ~ 130–165 reports and we did not utilize any pre-trained 
word vector model for  German71. This approach ensured a more direct comparability with the ML-classifiers 
developed on bag-of-RadLex mappings. However, pre-trained word vector models for 157 languages, which 
were pre-trained on Common Crawl and Wikipedia by the fastText package authors are available for direct 
download (https ://fastt ext.cc/docs/en/crawl -vecto rs.html)71. We used the Python (v3.7) interface to fastText 
(https ://githu b.com/faceb ookre searc h/fastT ext/tree/maste r/pytho n) on an Ubuntu 19.10 machine. FastText 
models were fitted both on the findings and impression sections respectively, using the same 5 × fivefold nested-
CV scheme as for the other ML algorithms with similar extra-nested CV loop for training on the outer- or inner 
fold training sets. Class label predictions and probability outputs were recorded and evaluated in the same man-
ner as the investigated ML algorithms developed on HEAF and RadLex mappings.

Statistical analyses. All statistical analyses were performed using the R language and environment for 
statistical programming (R v3.6.2, R Core Team 2019, Vienna Austria). The Cohen’s kappa statistic was used to 
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assess inter-rater agreement whether ASPECTS is recommended in a pairwise fashion for each of the two read-
ers. To assess the overall agreement among the three readers, Fleiss’ and Light’s kappa was used.

Performance was evaluated using calibration metrics focusing on the probabilistic output of the ML base 
classifiers including the area under the ROC curve (AUC), brier score (BS) and log loss (LL) measures; and 
derivatives of the confusion matrix: sensitivity, specificity, positive- (PPV) and negative predictive value (NPV) 
as well as precision, recall and F1 scores. P-values  (pAcc.vs.NIR) were provided to quantify the level of accuracy 
achieved by a ML classifier compared to the no-information rate (NIR) i.e. always predicting only the majority 
class (154/206, 74.8%). P-values < 0.05 were considered significant.

Calibration plots. Calibration plots (or reliability diagrams) are useful graphical tools to visually assess 
the quality of the probability output of a  classifier87,88. Custom functions are available on GitHub (https ://githu 
b.com/memat t/ml4Ra dLexC AD/tree/maste r/calib ratio nplot s) to generate calibration plots presented in Fig. 2. 
Briefly, for real-life problems the true conditional probabilities of target classes are often unknown, therefore the 
prediction space needs to be discretized into  bins88,89. A common approach is to use ten bins (e.g., probability 
ranges: 0–0.1, 0.1–0.2, …, 0.9–1.0) and assign cases to the corresponding bin where their predicted probabilities 
by the respective ML classifier fall. Consequently, in each bin there is a distinct subset of the study cohort. For 
each bin the fraction of true positive cases in that subset (y-axis) is plotted against the mean of the predicted 
probabilities of the subset by the classifier (x-axis). Hence, the probability output of an ideally calibrated ML 
classifier would lie on the diagonal  line87,89. For instance, if (hypothetically) ELNET estimated the predicted 
probability of “ASPECTS: yes” between 0.9–1.0 with mean ~ 0.9 for 10 of the reports based on RadLex mappings 
of their findings and impressions sections, respectively (Fig. 2a, x-axis) and if ELNET was well-calibrated, then 
the number of reports in which ASPECTS should be truly provided among these 10 reports, would ideally be 9. 
Hence, the observed fraction of such reports in the cohort (Fig. 2a, y-axis) would be (9/10 = 0.9) identical to the 
mean  prediction6,90. The point coordinates representing the mean predicted probability by ELNET (Fig. 2a) and 
observed fraction in the cohort for this probability bin (0.9–1.0) were, indeed, both very close (red, impressions; 
blue, findings) and lied almost on the diagonal  line87,88. Thus, ELNET was well-calibrated for this bin, but it was 
poorly calibrated (“unsure”) for the 0–0.25 or 0.5–0.75 ranges as the distance from the diagonal line was larger. 
Predictions based on the findings or impression varied substantially even with the same ML model (Fig. 2a–f).

Data availability
Both the human expert annotated features (heaf.csv) and the fully automated NLP-based RadLex mappings 
(term-report-matrices) are provided in our GitHub repository (https ://githu b.com/memat t/ml4Ra dLexC AD/). 
The RadLex annotation and scoring pipeline (RASP) is freely available for research purposes as Shiny application 
at www.mmatt .shiny apps.io/rasp . All tuned ML-model objects including the fold IDs for the 5 × fivefold strati-
fied nested CV scheme (nfolds.RData) are provided on GitHub. Additionally, we provide R code for ML-model 
training and for generating calibration plots presented in Fig. 3.
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