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Women with pathogenic germline mutations in BRCA1 and BRCA2 genes have an
increased risk to develop breast and ovarian cancer. There is, however, a high
interpersonal variability in the modality and timing of tumor onset in those subjects, thus
suggesting a potential role of other individual’s genetic, epigenetic, and environmental risk
factors in modulating the penetrance of BRCA mutations. MicroRNAs (miRNAs) are small
noncoding RNAs that can modulate the expression of several genes involved in cancer
initiation and progression. MiRNAs are dysregulated at all stages of breast cancer and
although they are accessible and evaluable, a standardized method for miRNA
assessment is needed to ensure comparable data analysis and accuracy of results.
The aim of this review was to highlight the role of miRNAs as potential biological markers
for BRCA mutation carriers. In particular, biological and clinical implications of a link
between lifestyle and nutritional modifiable factors, miRNA expression and germline
BRCA1 and BRCA2 mutations are discussed with the knowledge of the best available
scientific evidence.
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INTRODUCTION

Breast cancer (BC) is the most common cancer in women, as the cumulative risk of developing a BC
during all life is calculated to be about 1 case every 8 women worldwide (1) (2). BC is also the
principal cause of cancer death among women worldwide accounting for 25% of cancer cases and
15% of cancer-related deaths (3).

Hereditary breast cancer accounts for about 5-10% of all breast cancers (BCs) and is associated
with an increased risk of ovarian cancer (4, 5).

Hereditary Breast and Ovarian Cancer syndrome (HBOC) is related, in about 50% of cases, to
pathogenic germline mutations of BRCA1 and BRCA2 genes (6, 7). BRCA1/2 genes are onco-
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suppressors involved in homologous recombination repair
(HRR) of DNA double-strand breaks (DSBs) and maintenance
of genome stability (8). Women who inherit BRCA1/2mutations
have a lifetime risk to develop breast and ovarian cancer of 45-
60% and 10-59%, respectively (9) (10). In these cases, viable
prevention strategies include intensive radiologic surveillance,
chemoprevention, and prophylactic surgery of breasts and
ovaries (11).

Although breast and ovarian cancer risk increases considerably,
not all women with BRCA1/2mutations develop a neoplasm. There
is a high interpersonal variability in the modality and timing of
tumor onset in BRCA-mutated subjects, thus suggesting a potential
role of other genetics, epigenetics, or environmental individual risk
factors in modulating the penetrance of BRCA1/2 germline
mutations (12).

Transcribed, non-coding RNAs (ncRNAs) do not encode for
proteins and have a specific biological function (13). NcRNAs
have various transcripts’ lengths: short ncRNAs are <50
nucleotides (nt), as well as microRNAs (miRNAs); midsize
ncRNAs include the ncRNAs between 50 nt and 200 nt.
Finally, long ncRNAs (lncRNAs) have a length over 200 nt
(13–15).

MiRNAs are involved in post-transcriptional, epigenetic
modification of DNA expression (16). They are readily
detectable in tissue and blood samples (17), saliva (18) or urine
(19). While it is difficult to establish cause-and-effect
relationships, several studies indicate that some miRNA
expression patterns may be associated with: i) increased breast/
ovarian cancer risk; ii) some modifiable nutrition/lifestyle risk
factors; iii) BRCA1/2 mutations (12, 17). Gene panels, which
simultaneously evaluate whole miRNAs, are able to identify
different miRNA expression profiles between healthy women,
women with sporadic BC and women with BRCA-mutated BC
(19, 20).
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Basedon these considerations, theaimof this review is tohighlight
the role of miRNAs as potential biomarkers for BRCA mutation
carriers. Biological and clinical implications of a link between lifestyle
and nutritional modifiable factors, miRNA expression and germline
BRCA1 andBRCA2mutations areherediscussedwith the knowledge
of the best available scientific evidence.
MECHANISTIC INSIGHTS OF THE
INTERACTION OF miRNAs WITH
BRCA GENES

MiRNAs are critical regulators of the transcriptome over a
number of different biological processes and they may behave
as onco-suppressors and onco-promoters (21). MiRNAs can
post-transcriptionally suppress gene expression by binding to
the 3′-untranslated region (UTR) of messenger RNA (mRNA)
(22). However, miRNA interactions with other regions, which
include the 5′-UTR, coding sequence, and gene promoters, have
also been described (22, 23). Moreover, miRNAs have been
shown to trigger gene expression under certain condition (21).
Recent studies have demonstrated that miRNAs are transferred
between various subcellular compartments to regulate both
translation and transcription (21) (22).

BRCA1/2 gene expression can be altered by miRNAs, in
addition to deletion or mutation, in a BRCAness-like
phenomenon (Figure 1) (21). E2F1, a G1/S transition
regulator, is targeted by miR-302b in breast cancer cell lines.
MiR-302b, by negatively regulating E2F1, downregulates ATM,
the principal cellular sensor of DNA damage, that
phosphorylases and actives BRCA1. As a result, miR-302b
indirectly impairs BRCA1 function (23). Furthermore, various
studies have evaluated some miRNAs targeting BRCA genes in
breast cancer. MiR-146a binds to the 3′-UTRs of BRCA1and
FIGURE 1 | Mechanistic insights of the interaction of miRNAs with BRCA genes.
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BRCA2 mRNAs, thus negatively modulating their expression.
Interestingly, the binding capacity of miR-146a seems to be
dependent from some of its gene polymorphisms (24). In
human tumor xenografts, miR-9 has been found to bind to the
3’-UTR of BRCA1mRNA, downregulate BRCA1 expression, and
enhance cancer cell susceptibility to DNA damage (25). Similar
findings have been reported for miR-182 (26), miR-155 (27),
miR-342 (28), miR-335 (29), miR-218 and miR-638 (23).

BRCA1 and BRCA2 genes also regulate several miRNAs either
by upregulating some of them (i.e. miR-146a, miR-146-5p, miR-
182, miR-15a, miR-16, miR-17, and miR-638), or by
downregulating some others (i.e. miR-155, miR-152, miR-148,
miR-205, miR-146a, and miR-99b) (Figure 1) (19). Notably,
BRCA1 is involved in the epigenetic control of miR-155, which is
a well-known proinflammatory and oncogenic miRNA (27, 30).
MiR-155 overexpression stimulates while miR-155 knockdown
impairs cancer cell growth. BRCA1 targets the miR-155
promoter, thus suppressing its transcription. More precisely,
BRCA1 suppresses miR-155 expression through its association
with histone deacetylase 2 (HDAC2), which deacetylates histones
H2A and H3 on the miR-155 promoter (27). Some moderate-
risk BRCA1 variants (e.g. R1699Q) do not affect DNA repair but
abrogate the inhibition of microRNA-155 (27).
ROLE OF miRNAs IN DIFFERENT BREAST
CANCER SUBTYPES

Breast cancers are usually grouped into surrogate intrinsic subtypes,
defined by routine histology and immunohistochemistry (IHC):
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luminal A-like tumors are generally low grade, strongly estrogen
receptor (ER)/progesterone receptor (PR)-positive, human
epidermal growth factor receptor (HER2)-negative and have low
proliferation rate. Luminal B-like tumors are ER-positive with
variable degrees of ER/PR expression, are higher grade and have
higher proliferation rate. HER2-positive tumors are usually high
grade, frequently ER/PR-negative, and have high proliferative rate.
Triple-negative breast cancers (TNBCs) are high grade, ER/PR-
negative, HER2-negative, and have high proliferation rate (1) (2)
(3). The expression of numerous miRNAs correlates with different
BC subtypes and different prognosis (Table 1).

Some highly expressed miRNA clusters have been associated
with Luminal A-like and Luminal B-like tumors (31, 32).
Interestingly, overexpression of miR-100 in basal-like breast
cancer cells leads to stemness loss, expression of luminal
markers and sensitivity to endocrine therapy (54). Baseline
tumor expression of miR-100 has been associated with
response to endocrine treatment in patients with ER-positive/
HER2-negative breast cancer. In the METABRIC dataset, high
expression of miR-100 was observed in luminal A breast cancers
with better overall survival (54).

MiR-21 overexpression has been observed in HER2-positive
breast cancers, probably because the corresponding gene is
located on chromosome 17 and, thus, co-amplifies with HER2
(35, 55). MiR-21 is also an independent prognostic factor
associated with early disease relapse and worse disease-free
interval (DFI) (56). Furthermore, low miR-497 expression has
been observed to be strictly correlated with HER2-positive status
and advanced clinical stage (39). In a retrospective case series of
tumor tissues and correspondent normal breast tissues, patients
TABLE 1 | miRNAs as diagnostic and prognostic biomarkers in breast cancer.

miRNA role/function Identified miRNAs miRNA detection
tissue

Reference

Overexpressed in Luminal-like BC miR-29; miR-181a; miR-652; miR-342 Serum (31)
miR-100; miR-155; miR-126; miR10a; let-7c; let-7f; miR-217; miR-218; miR-377;
miR-520f-520c; miR-18a

Tumor tissue (32–34)

Overexpressed in HER2-positive BC miR-21; miR-376b Serum (35, 34)
Overexpressed in TNBC miR-210; miR-146a; miR-146b-5p; miR-10b; miR-18a; miR-135b; miR-93v; miR-

299-3p; miR-190; miR-135b; miR-520g; miR-527-518a
Tumor tissue (34, 36–38)

Overexpression associated with
endocrine sensitivity

miR-27a; miR-100; miR-375; miR-342; miR-221/222; let-7f Tumor tissue (32, 34)

Overexpression associated with better
survival

miR-497; miR10a; miR-126; Let-7b; miR-147b; miR-6715a; miR-324-5p; miR-711;
miR-375

Tumor tissue (32–34, 39–41)

miR-1258 Tumor tissue/serum (42)
miR-92a Plasma/serum (43)

Overexpression associated with worse
survival

miR-21 Tumor tissue/serum (29, 43)

miR-210; miR-205; miR-374a; miR-10b; miR-549a; miR-4501; miR-7974; miR-
4675; miR-9; miR-18b; miR-103; miR-107; miR-652; miR-27b-3p

Tumor tissue (32, 36, 38)
(42–44)

Overexpressed in BC compared to HC miR-1; miR-133a; miR-133b; miR-92a; miR-21; miR-16; miR-27; miR-150; miR-
191; miR-200c; miR-210; miR-451; miR-155; miR-195; Let-7b; miR-106b; miR-
145; miR-425-5p; miR-139-5p; miR-130a; miR-34a

Tumor/normal tissue/
serum

(41–43, 45–50)

miR-1246; miR-1307-3p; miR-4634; miR-6861-5p; miR-6875-5p; miR-1246; miR-
146a; miR-18a

Plasma/serum (34, 43, 47,
51)

Underexpressed in BC compared to HC miR-145 Tumor/normal tissue/
serum

(41)

miR-30a Plasma (52)
miR-140-5p; miR-497; miR-199a; miR-484; miR-202; miR-181a (Nassar) Tumor/normal tissue (36, 41, 53)
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with low miR-497 expression had worse 5-year disease-free
survival (DFS) and overall survival (OS) than the ones with
high miR-497 (39).

Approximately 10-15% of breast tumors are known to be of
the TNBC subtype, which is considered to have an aggressive
clinical history and shorter survival (20, 31, 57, 58). Up to 29% of
TNBC patients harbors somatic mutations or epigenetic
downregulation of BRCA1 and BRCA2 genes (59). Differential
miRNA expression could help predict prognosis in patients with
TNBC (36, 37). Accordingly, miR-210 is often up-regulated in
TNBC tissues and correlates with unfavorable prognosis (38).
High levels of miR-146a and miR-146b-5p have also been
described in triple negative tumor samples (60). MiR-155 is
commonly down-regulated in TNBC, indeed its overexpression
is related with good prognosis (61). Interestingly, some miRNAs
may play different prognostic roles depending by molecular
subtypes: miR-27 is associated with better OS in ER-positive
BC patients, while its upregulation is detrimental in ER-negative
ones (44).

Several other miRNAs have been shown to influence the
prognosis of BC patients (Table 1). The deregulation of 5
metastasis-related miRNAs (miR-21, miR-205, miR-10b, miR-
210, and let-7a) observed in a series of 84 primary breast tumors
significantly correlated with clinical outcome (32, 62). In a
sample of 81 postmenopausal, ER-positive BC patients, a
higher tumor expression of miR-126 and miR-10a was
associated with longer relapse-free survival (RFS) (33). The
expression of let-7b in tumor tissues of 80 breast cancer
patients was inversely associated with lymph node
involvement, OS and RFS (40). MiR-374a expression was
significantly elevated in the primary tumors of 33 patients with
metastatic disease in comparison with that observed in primary
Frontiers in Oncology | www.frontiersin.org 4
tumors of 133 patients with no evidence of distant metastasis
(63). Decreased levels of miR-92a and increased tumor levels of
miR-21 were associated with higher tumor stage and presence of
lymph node metastases (43). According to other reports, the
downregulation of miR-1258 was associated with positive lymph
node involvement, later clinical stage, and poor prognosis (42).
ROLE OF MiRNAs IN BREAST CANCER
RISK AND DETECTION

Several studies focused on identifying either individual or groups
of miRNAs to be used for prediction of BC risk and for BC
detection (Table 2). The most studied miRNAs were analyzed in
plasma/serum and tumor tissues of BC patients in comparison
with normal controls (41). However, those studies were
conducted in different ethnic groups and used different
experimental methodology (43). Some studies detected
miRNAs in breast tissues using distinct platforms (real-time
quantitative reverse transcription PCR [qRT-PCR], sequencing,
microarray) followed by validation in serum/plasma (41, 34).
Others produced array panels on plasma samples followed by
verification using qRT-PCR (47) or started with qRT-PCR on
tissues with subsequent serum qRT-PCR (41). One of the
limitations of the previously mentioned platforms is their
restriction to known miRNAs. Next-generation sequencing
(NGS) technologies provide novel approaches for identification
of new miRNAs and confirmation of known ones (34).

In a recent study, miRNAs from paired breast tumors, normal
tissue, and serum samples of 32 patients were profiled; serum
samples from healthy individuals (n = 22) were also used as
controls. Twenty miRNAs including miR-21, miR-10b, and miR-
TABLE 2 | Diagnostic parameters to evaluate breast cancer diagnostic ability of individual and combined studied miRNAs.

miRNA Sensitivity Specificity (%) PPV (%) NPV (%) DA (%) Reference

miR-21 73 81 76 78 77 (50, 64–67)
miR-155 78 75 78 75 77 (50, 64–67)
miR-23a 78 75 88 44 68 (50, 64–67)
miR-130a 83 78 83 78 81 (50, 64–67)
miR-145 78 91 78 91 83 (50, 64–67)
miR-425-5p 70 100 70 100 81 (50, 64–67)
miR-139-5p 76 96 76 95 83 (50, 64–67)
miR-451 73 72 73 72 73 (50, 64–67)
miR-200a 69 62 NR NR 70 (50, 64–67)
miR-200c 71 67 NR NR 74 (50, 64–67)
miR-141 68 70 NR NR 74 (50, 64–67)
miR-10b NR NR NR NR 85 (50, 64–67)
miR-181a NR NR NR NR 82 (50, 64–67)
miR-106b NR NR NR NR 89 (50, 64–67)
miR-34a 85 70 93 70 81 (50, 64–67)
miR-200b + miR-429 77 63 NR NR 75 (50, 64–67)
miR-145 + miR-425-5p 78 95 78 95 84 (50, 64–67)
miR-21 + miR-23a 95 66 95 66 82 (50, 64–67)
miR-21 + miR-130a 88 78 88 78 84 (50, 64–67)
miR-21 + miR-23a +miR-130a 93 78 93 78 86 (50, 64–67)
miR-145 + miR-139-5p +miR-130a 95 86 95 86 92 (50, 64–67)
miR-145 +miR-139-5p +miR-130a + miR-425-5p 97 91 97 90 95 (50, 64–67)
miR-1246 + miR-206 + miR-24 + miR-373 98 96 NR NR 97 (50, 64–67)
S
eptember 2021 |
 Volume 11 | Ar
PPV, positive predictive value; NPV, negative predictive value; DA, diagnostic accuracy; NR, not reported.
ticle 700853

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tommasi et al. miRNAs and BRCA Mutation Carriers
145 were found to be differentially expressed in breast cancers.
Only 7 miRNAs were overexpressed in both serum and tumors,
thus indicating that miRNAs may be selectively released into the
serum. MiR-92a, miR-1, miR-133a, and miR-133b were
identified as the most significant diagnostic serum markers
(45). A combination of 5 serum miRNAs (miR-1307-3p, miR-
1246, miR-6861-5p, miR-4634, and miR-6875-5p) were also
found to detect breast cancer patients among healthy
controls (53).

MiR-21, one of the most common miRNAs in human cells,
has been investigated in different diseases including
cardiovascular diseases as well as cancers (46). Studies have
demonstrated that miR-21 plays an oncogene function in
breast cancer by targeting tumor suppressor genes which
include programmed cell death 4 (PDCD4), tropomyosin 1
(TPM1), and phosphatase and tensin homolog (PTEN) (68).
The diagnostic role of high plasma levels of both miR-1246 and
miR-21 was demonstrated by analyzing the contents of
circulating exosomes, which are secretory microvesicles that
selectively enclose miRNAs (69). Exosomes were collected
from the conditioned media of human BC cell lines, murine
plasma of patient-derived xenograft models (PDX), and human
plasma samples. MiR-21 and miR-1246 were selectively enriched
in human BC exosomes and significantly increased in the plasma
of BC patients (69). Other studies have suggested a key role for
miR-21 in discriminating healthy individuals from BC patients.
Overexpression of circulating miR-21 and miR-146a were
significantly higher in plasma samples of BC patients, when
compared to controls (51). Serum levels of miR-16, miR-21,
miR-155, and miR-195 were observed to be higher in stage I BC
patients in comparison with unaffected women (51).

Nine miRNAs (miR-16, miR-21, miR-27a, miR-150, miR-
191, miR-200c, miR-210, miR-451 and miR-145) were observed
to be deregulated in both plasma and tumor tissues from BC
patients (47). A validation cohort study reported that a
combination of miR-145 and miR-451 was the best biomarker
in discriminating breast cancer from healthy controls and other
tumor types (47).

The expression of 10 miRNAs (measured by qRT-PCR) has
been evaluated in 48 tissue and 100 serum samples of patients
with primary BC and in 20 control samples of healthy women
(43). The level of miR-92a was significantly lower, while miR-21
was higher in tissue and serum samples of BC patients in
comparison with controls. The same expression levels
correlated with tumor size and lymph node-positive status (43).

MiR-30a has also been studied as diagnostic biomarker of
breast cancer. The median plasma levels of miRNA-30a were
significantly lower in a sample of 100 patients with preoperative
breast cancer than in 64 age-matched and disease-free controls
(52). MiR-497 and miR-140-5p have been shown to be down-
regulated in breast tumor samples compared to noncancerous
breast tissues, while let-7b seems to be upregulated in BC
specimens compared to benign breast diseases (38, 46, 68).
Validation of these data in serum or plasma samples is missing.

Another interesting approach is to use miRNAs to unveil BC
patients with lymph node involvement (overcoming the
Frontiers in Oncology | www.frontiersin.org 5
prognostic role of the axillary dissection) or to identify patients
with metastatic disease. Levels of circulating miR-1258 decreased
(42), while miR-10b and miR-373 levels increased (70) in a series
of BC patients with lymph nodes metastasis in comparison with
non-metastatic patients (70). Furthermore, tumor tissue
expression of miR-140-5p decreased in the sequence from
stage I to III breast cancer, and was lower in breast tumors
with lymph node involvement in comparison with ones without
metastasis (71).

Receiver operating characteristics (ROC) analyses have been
conducted to evaluate breast cancer diagnostic ability of miRNAs
(50, 64–67). Specificity, sensitivity, positive predictive value
(PPV), negative predictive value (NPV), and diagnostic
accuracy for the most studied individual and combined
miRNAs are reported in Table 2.
ROLE OF MiRNAs IN BRCA
MUTATION CARRIERS

Breast cancer susceptibility in BRCA1/2mutation carriers may be
related to the aberrant expression of certain miRNA clusters
(Table 3) (78). MiR-3665, miR-3960, miR-4417, miR-4498, and
let-7 have been observed to be overexpressed in womenwith BRCA-
mutated breast tumors (75). Conversely, the downregulation of
miR-200c has been reported in BRCA-mutated, TNBC (74).

Some studies have also shown that genetic polymorphisms in
the gene codifying for miR-146a were associated with early onset
in familial cases of breast and ovarian tumors (24). Different
expression patterns of six miRNAs (miR-505*, miR-142-3p,
miR-1248, miR-181a-2*, miR-340*, and miR-25*) have been
found to distinguish between BRCA-mutated and BRCA wild-
type (BRCAwt) breast tumors with an accuracy of 92% (24,72).
Similarly, a miRNA expression analysis using NanoString
technology was performed on BRCA-mutated and sporadic,
BRCAwt breast tumor tissues. Eight miRNAs (miR-539, miR-
627, miR-99b, miR-24, miR-663a, miR-331, miR-362, and miR-
145) were differentially expressed in hereditary breast cancers
(73). Let-7a and miR-335 are tumor suppressor miRNAs that can
impair both tumorigenesis and metastasis. Let-7a and miR-335
expression levels were significantly downregulated in cancers of
patients with BRCA mutations in comparison with tumors of
BRCAwt subjects (29, 76).

BRCA-mutated tumors are in vitro and in vivo sensitive to
DNA-damaging agents (such as platinum salts) and to poly-ADP
ribose polymerase (PARP) inhibitors (PARPi) (8, 79). Up to 29%
of patients with TNBC harbor somatic mutations or epigenetic
downregulation of BRCA1 and BRCA2 genes, thus being
sensitive to platinum salts and PARPi (79). MiR-146a, miR-
146b-5p and miR-182 downregulate BRCA1 protein expression
and some reports have shown that different expression of miR-
182 in breast cancer cell lines affects their sensitivity to PARPi
(26, 60). Furthermore, other studies have reported that the over-
expression of miR-493-5p restores genomic stability of BRCA2-
mutated/depleted leading to acquired resistance to PARPi/
platinum salts (77).
September 2021 | Volume 11 | Article 700853
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NUTRIEPIGENOMICS AND BREAST
CANCER RISK

Nutriepigenomics is the study of nutrients and their effects on
human health through epigenetic modifications. Numerous
studies have suggested that body mass index (BMI),
components of food and lifestyle may interfere with miRNA
expression, thus affecting tumors’ initiation and progression (72)
(29) (Table 4).

Obesity causes changes in the physiological function of adipose
tissue, leading to adipocyte differentiation, insulin resistance,
abnormal secretion of adipokines, and altered expression of
hormones, growth factors, and inflammatory cytokines. All these
factors are involved in the occurrence of several diseases, such as
type 2 diabetesmellitus, cardiovascular disease, and various types of
cancers (83). Obesity is one of the major risk factors for breast
cancer, especially in post-menopausal women. Recent studies have
proposed the association between obesity, cancer and up- or down-
regulation of some miRNAs (85).

Obesity has been found to reduce expression of miR-10b in
primary tumors compared to normal tissue, thus suggesting that
Frontiers in Oncology | www.frontiersin.org 6
the metabolic state of the organism can alter the molecular
composition of a tumor (48, 80, 81, 84). Expression levels of
miR-191_5p, miR-122-5p and miR-17_5p, which are involved in
tumorigenic processes, have been inversely associated with BMI
(82). Levels of miR-191-5p significantly increased during a six-
month weight-loss intervention (Lifestyle, Exercise, and
Nutrition; LEAN trial) in 100 BC survivors (82). Furthermore,
the related family member miR-106b_5p, which is up-regulated
in breast cancer patients (49, 81), has been found to significantly
decrease in response to exercise intervention and diet (82, 85).
The nuclear peroxisome proliferator-activated receptor gamma
(PPARg) plays a critical role in the modulation of cellular
differentiation, glucose and lipid homeostasis (84). It has been
associated with anti-inflammatory activities, and differentiation
of preadipocytes into mature adipocytes together with members
of the CCAAT/enhancer-binding family protein (C/EBP) family
(82). PPARg is implicated in the pathology of numerous diseases
involving cancer and obesity, and altered expressions of
miRNAs, such as let-7, miR-27, and miR-143 have been found
to regulate the expression and activity of PPARg (81).
Interestingly, miR-31 has been found to impair both BC cell
TABLE 4 | miRNAs, body mass index and lifestyle changes.

miRNA role/function Identified miRNAs miRNA
detection
tissue

Reference

Downregulated in BC of obese patients vs. lean subjects miR-10b Tumor/normal
tissue

(48)

Inversely correlated with BMI in BC survivors miR-191-5p; miR17- 5p Serum (80–82)
Directly correlated with BMI in BC survivors miR-122-5p (82)
Overexpressed during diet and exercise intervention in BC survivors miR-191-5p; miR-122-5p; let-7b-

5p; miR-24-3p
Serum (82)

Underexpressed during diet and exercise intervention in BC survivors miR-106b; miR-106b_5p; miR-27a-
3p; miR-92a-3p

Serum (49, 81,
82)

Upregulated post lifestyle intervention in responders vs. baseline and vs. nonresponders
postintervention.

miR-10a-5p; miR-211-5p; miR-10a-
5p

Serum (81)

Regulate the expression and activity of PPARg and C/EBP proteins involved in tumor
carcinogenesis, adipocyte differentiation and obesity

Let-7b; miR-27; miR-143; miR-31 Tumor/normal
tissue

(77, 82–
84)
September 2021 |
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BC, breast cancer; BMI, body mass index; CRP, C-reactive Protein; IL6, interleukin-6; DFS, disease free survival; OS, overall survival; PPARg, peroxisome proliferator-activated receptor
gamma; C/EBP, CCAAT/enhancer-binding family of proteins.
TABLE 3 | miRNAs and germinal BRCA mutations.

miRNA role/function Identified miRNAs miRNA detection
tissue

Reference

Upregulated by wild-type BRCA1 miR-182; miR-146-5p; miR-15a; miR-16; miR-638;
miR-17

Tumor/normal
tissue/serum

(19)

Downregulated by wild-type BRCA1 miR-148; miR-152; miR-205; miR-99; miR-146a Tumor/normal
tissue/serum

(19, 72)

Combined expressions of miRNAs distinguish between BRCA-
mutated and BRCA wild-type BC

miR-142-3p; miR-505; miR-1248; miR-181a-2; miR-25;
miR-340

Tumor/normal
tissue

(72)

miR-627; miR-99b; miR-539; miR-24; miR-331; miR-
663a; miR-362; miR-145

Tumor/normal
tissue

(73)

Downregulated in BRCA-mutated BC miR-155; let-7a; miR-335 Tumor tissue (27, 29, 61)
miR-200c Cell culture (74)

Overexpressed in BRCA-mutated BC miR-3665; miR-3960; miR-4417; miR-4498; let-7 Tumor tissue (75)
Regulate BRCA1 expression in BC miR-342; miR-182; miR-335; miR-146a, miR-146b-5p;

miR-182
Tumor tissue (26, 28, 60,

76)
Restores HRR and genomic stability in BRCA2-mutated cancers miR-493-5p Tumor tissue (77)
miRNA, microRNA; BC, breast cancer; HRR, Homologous Recombination Repair.
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proliferation and adipogenesis by directly targeting C/EBP
proteins (81).

Dietary elements, seem to have a key role in regulating
miRNAs (84, 86, 87) (Table 5).

Polyphenols are a large family of natural compounds widely
distributed in plant foods and have been shown to modulate,
both in vitro and in vivo, the activity of several enzymes involved
in the DNA metabolism (i.e. DNA methyltransferases, and
histone deacetylases) (96). In this group, curcumin and
curcuminoids have been assiduously studied as anti-
inflammatory and anticancer agents (86, 87).

Curcumin (dyferuloylmethane) plays an onco-suppressor
role by inhibiting several oncogenic pathways (88). In vitro,
curcumin shows an anti-proliferative effect on cancer cell lines
even through the modulation of expression of several miRNAs.
For example, in vitro, curcumin induces the overexpression of
the tumor suppressors miR-15a and miR-16, thus inhibiting
some anti-apoptotic proteins (89). In MDA-MB-231 cells,
curcumin upregulates miR-181b, interfering with the capacity
of invasion and with the inflammation related to chemokines
(90). In addition, it reduces the expression levels of genes
involved in epithelial-mesenchymal transition (EMT) and
invasion by controlling miR-34a expression in MCF-10F and
MDA-MB-231 lines (91). Despite several studies suggest the
anticancer activity of curcumin, its potential use is limited by
peculiar pharmacodynamic properties: it has poor absorption,
low serum levels, rapid hepatic metabolism, limited tissue
distribution and short half-life (96).

Flavonoids (genistein, glabridin, glyceollins) and stilbenes
(resveratrol) are polyphenols that affect the epigenetic regulation
of genes involved in BC progression and drug-resistance. In TNBC
cell lines, such as Hs578t, genistein suppresses miR-155 expression
and up-regulates the expression of miR-23b, that has a pro-
apoptotic and antiproliferative role (97).
Frontiers in Oncology | www.frontiersin.org 7
Resveratrol treatment inhibits the proliferation on MCF-7 BC
cells by upregulating miR-663, miR-141, miR-774, thus leading
to the inhibition of elongation factor 1A2 (EF1A2) (85). In
MDA-MB-231 cell lines, resveratrol exhibits strong anti-
oxidant activity and induces apoptosis by increasing the levels
of tumor-suppressive miRNAs, in particular miR-200c (87, 92).

The active metabolite of the vitamin D (1,25-Dihydroxyvitamin
D3, Calcitriol) binds to the vitamin D receptor (VDR) and
influences various signaling pathways involved in cell
differentiation, cell cycle arrest and apoptosis (93). Furthermore, it
regulates miR-182 expression, leading to protection of breast
epithelial cells against cellular stress (81). Calcitriol also reduces
the level of miR-489, which is an estrogen regulated miRNA
promoting tumor cell growth induced by sexual hormones (98).

Other dietary components modulating miRNA expression in
breast cancer cells are fatty acids (FAs) (81, 86) and indole
alkaloids such as indole 3-carbinol (94, 95).

Several studies describe the role of physical activity and healthy
diet in reducingbreast cancer risk, also for subjects carryingBRCA1/
2 mutations (94, 99–101). In this context, a nutriepigenetic pilot
study is being conducted to evaluate how a personalized nutritional
and lifestyle intervention (NLI) can modulate expression of blood
and salivary miRNAs associated with breast cancer risk in
unaffected young women (<40 years) with BRCA1/2 mutations
(19, 102). This study also aims to evaluate whether NLI as primary
prevention strategymayhelpdealwithemotionaldistress occurring
inwomen at high risk for hereditary breast and ovarian cancer who
are involved in intensive screening programs.
CONCLUSIONS

In this review, we have reported most of the published data
evaluating the role of miRNAs in influencing BRCA-related
TABLE 5 | Dietary elements and expression/regulation of miRNAs.

Elements On-target effect Effect on miRNAs Outcome Reference

Curcumin
(dyferuloylmethane)

Inhibition of Bcl2 protein Overexpression of miR-15a and
miR-16

Inhibition of anti-apoptotic activity in MCF-7 BC
cells

(88)

Curcumin
(dyferuloylmethane)

Inhibition of MMPs. Reduction of
CXCL1/2 protein levels

Overexpression of miR-181b Reduction of cancer cells invasivity (89)

Curcumin
(dyferuloylmethane)

Reduction of Axl, Slug, CD24 and
Rho-A protein levels

Overexpression of miR-34a Inhibition of EMT in MCF-10F and MDA-MB-231
BC cell lines

(90)

Genistein Upregulation of PTEN/FOXO3/AKT
axis

Underexpression of miR-155;
overexpression of miR-23b

Anti-proliferative and pro-apoptotic effects in
Hs578t and MDA_MB-435 BC lines

(91)

Rasveratrol Downregulation of EF1A2 gene
expression

Overexpression of miR-663, miR-141,
miR-774 and miR-200c

Antiproliferative effect in MCF-7 BC cells; inhibition
of CSC phenotype transition

(87, 92)

1,25-D p53-mediated regulation of PCNA Overexpression of miR-182 Reduction of cellular stress (81)
1,25-D Era upregulation Underexpression of miR-489 Antiproliferative effect in ER-positive BC cell lines (93)
SCFAs acetate
(butyrate, propionate)

Activation of FFARs Overexpression of miR-31 Induction of cellular senescence (81, 86)

Omega-3 fatty acids
(EPA and DHA)

PTEN-mediated CSF1R inhibition Underexpression of miR-21 Anti-proliferative and pro-apoptotic effects in BC
cell lines

(86)

Indole 3 carbinol AHR-mediated CD4+ T helper
activation

Overepression of miR-212 and
miR-132

Enhancement of anti-cancer immune response (94, 95)
September 2021 | Volume 11 | Art
Bcl2 protein, B cell lymphoma 2 protein; BC, breast cancer; MMPs, matrix metalloproteinases; EMT, epithelial-mesenchymal transition; PTEN, phosphatases and tensin homolog; FOXO3,
forkhead box 3 protein; EF1A2, elongation factor 1A2; CSC, cancer stem-like cell; PCNA, proliferating-cell nuclear antigen; 1,25D, 1,25-dihydroxycholecalciferol vitamin D; ERa, estrogen
receptor-a; SCFAs, short-chain fatty acids; FFARs, free fatty acid receptors; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; CSF1R, colony stimulating factor 1 receptor; AHR,
aryl-hydrocarbon receptor.
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breast cancer risk and diagnosis. Prospective validation of the
reported results and standardization of miRNA isolation
methods are, however, still awaited before their use in routine
clinical practice. Interestingly, numerous preclinical and clinical
studies have showed that BRCA1/2 genes may interfere with and
be silenced by several miRNAs. Furthermore, emerging
evidences suggest the role of nutritional and lifestyle
interventions in preventing breast cancer development, even
through the modulation of breast cancer-related miRNAs.
Prospective clinical trials evaluating the association between
penetrance of BRCA mutations, NLI strategies for primary
prevention and miRNA signatures are ongoing.
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