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ABSTRACT
HIV-1 sexual transmission occurs mostly through contaminated semen, which is a complex mixture of
soluble factors with immunoregulatory functions and cells. It is well established that semen cells from
HIV-1-infected men are able to produce the virus and that are harnessed to efficiently interact with
mucosal barriers exposed during sexual intercourse. Several cofactors contribute to semen infectivity
and may enhance the risk of HIV-1 transmission to a partner by increasing local HIV-1 replication in the
male genital tract, thereby increasing the number of HIV-1-infected cells and the local HIV-1 shedding in
semen. The introduction of combination antiretroviral therapy has improved the life expectancy of HIV-1
infected individuals; however, there is evidence that systemic viral suppression does not always reflect
full viral suppression in the seminal compartment. This review focus on the role semen leukocytes play
in HIV-1 transmission and discusses implications of the increased resistance of cell-mediated transmis-
sion to immune-based prevention strategies.
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Introduction

Of the estimated 1.7 million new human immunodeficiency virus
type 1 (HIV-1) infections worldwide in 2018, the overwhelming
majority occurred by sexual transmission (www.unaids.org).
Exposure of the vaginal and rectal mucosa to infected semen
accounts for most transmission events.1 In spite of this evidence,
a poor understanding of the mechanism regulating immunity at
mucosal sites has hampered the development of effective preven-
tion strategies. Transmission of HIV-1 is inefficient relative to that
of many other sexually transmitted disease (STD) pathogens and
appears to vary by anatomical site. Several covariates, such as
concomitant STDs and acute and advanced HIV-1 disease stage,
have been associated with elevated titers of HIV-1 in genital
secretions and enhanced HIV-1 transmission.2

Semen is a complex mixture of cells and molecules with
immunoregulatory functions, acting not only as a carrier of the
virus but directly modulating the virus itself and the immune
response of the recipient’s mucosa. The virus is present in semen
in three forms: cell-free virions, infected leukocytes, and sper-
matozoa-associated virions. Although the role of spermatozoa
has been a matter of debate, as it is generally accepted that motile
spermatozoa are not productively infected,3 the virus in the form
of free particles or infected cells appears instead to play an
important role in transmission. However, the relative contribu-
tion of each form of the virus has not been fully explored, nor the
various factors that may potentially affect semen-mediated
transmission.

Here, we discuss the composition of semen in healthy
subjects and during untreated and treated HIV-1 infection

and the importance of infected leukocytes in initiating infec-
tion. Moreover, we review the antiviral immune response that
takes place in the male genital tract (MGT) and broad neu-
tralizing antibodies (bNAbs)-based prevention strategies to
block transmission mediated by semen leukocytes.

Semen composition in healthy conditions

Seminal plasma

Semen is a very rich biological fluid, of which the primary
function is to ensure the reproduction of the species.
Approximately 95% to 98% of the total volume is represented
by the acellular fraction, called seminal plasma (SP). This
fraction of the ejaculate contains various bioactive substances
originating from the testis, epididymis, and accessory
glands,4,5 including immunomodulatory, proinflammatory,
and growth factors that can contribute to successful implanta-
tion in healthy couples.6 This protein-rich fraction contains
25 to 55 mg/mL of protein, including enzymes, such as
proteases, esterase, and phosphatases, as well as prostaglandin
E (PGE), fibronectin, polyamine, and proteins that play a role
in the immune system, such as complement molecules and
immunoglobulins.5 Semen immunoglobulins are derived from
local production by plasma cells in the genital tissues and
systemic circulation.7 SP also has a strong bacteriostatic and
bactericidal effect due to the presence of a variety of innate
immune defense mediators, including zinc, lysozyme, trans-
ferrin, and transglutaminase.8 In addition to its role in the
protection, transport, and survival of spermatozoa, SP is able
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to modulate the immune response of the female reproductive
tract (FRT) for fertilization and embryo implantation9 and
contains various signaling molecules that temporally modu-
late FRT status.5

Moreover, a wide array of cytokines in SP constitute
a unique environment that is different from that of other
mucosa and the blood. Namely, TGF-β (̴100 µg/mL) and
PGE2 (̴1 – 80 ng/mL) are the main cytokines present in
semen.4,10 Both molecules are effective immunosuppressive
cytokines that can suppress leukocyte activation (e.g. NK
cells, macrophages, and DCs).11,12 TGF-β is present in three
isoforms (TGF-β1, TGF-β2, and TGF-β3) and can be acti-
vated from the latent to the active form by proteases and the
acidic pH in the vagina.13 The cytokine has been demon-
strated to be involved in inducing regulatory T-cell (Treg)
differentiation and downregulating NK-cell activity, resulting
in immune tolerance of the FRT.10,11 Beta-chemokines, which
are able to recruit T cells and macrophages (i.e. RANTES,
MIP-1α, and MIP-1ß) are often detected in semen and may
enhance the immune defense in the MGT after
intercourse.14,15 Other types of cytokines present in the
semen have inflammatory, regulatory, adaptive, and hemato-
poietic properties. The presence of soluble HLA-G in semen
possibly suppresses NK cells from entering the
cytotrophoblast.16 A sperm-coating glycoprotein, CD52 g,
may be able to prevent anti-sperm immunity and
infertility.17 SDF-1 may play a role in leukocyte recruitment
involved in the immune defense of the vaginal mucosa follow-
ing insemination.6 In addition, SP contains MCP-1, IL-8,
fractalkine, GMCSF, IL-7, and IL-15, cytokines normally
found at inflammatory sites associated with the recruitment,
maturation, and proliferation of immune cells, including
monocytes, T-cells, B-cells, DCs, and NK cells.18–20 In healthy
subjects, the concentration of these cytokines is five-fold
higher in semen than plasma.21

Semen cells

According to the World Health Organization (WHO), semen
from healthy men contains at least 20 million spermatozoa
per milliliter22 and 50% of them show forward motility.23 In
addition to spermatozoa, the cellular fraction of semen
includes immature germ cells, epithelial cells, and leukocytes,
which together account for less than 15% of semen cells.23

Immature germ cells are the major population of non-
spermatozoan cells (NSC). They have been categorized as
spermatogonia, primary spermatocytes, secondary spermato-
cytes, and spermatids. The number of immature germ cells
are higher in men who have less than six million spermatozoa
per milliliter. Two types of epithelial cells are found in semen:
squamous epithelial cells, originating from the excretory duct,
possibly indicators of bacterial infection or inflammation, and
epithelial cells, arising from seminal vesicles and associated
with inflammation of the seminal vesicles.23

Leukocytes are normally present in semen, where they
represent approximately 13% of the NSC. They are probably
involved in the elimination of abnormal and degenerating
spermatozoa. Among leukocytes, granulocytes (or polymor-
phonuclear cells (PMNs)) are by far the most abundant cells,

as they are estimated to represent between 50% and 60% of
the total population. They are followed by monocytes/macro-
phages, which represent 20% to 30% of semen leucocytes.
Cytotoxic CD4 and CD8 T lymphocytes each account for
approximately 5% of leukocytes.24 Several studies have
reported the minute presence of a B cell population25,26 as
well as dendritic cells (DCs) in the sperm of macaques.27 In
humans, the presence of this population is more anecdotal
because it concerns almost exclusively men suffering from
chronic inflammation.28 NK cells are usually not abundant
in MGT tissues or semen.15,29

The semen leukocyte concentration varies significantly
between individuals but should not exceed 1x106/mL as
recommended by the WHO.22 Otherwise, this condition is
called “leukocytospermia.” This condition occurs often during
infection or genital inflammation, is mostly asymptomatic,
and affects 5% to 10% of the healthy male population.15 Its
prevalence can be as high as 24% in men with HIV-1
infection.30,31 The higher leucocyte concentration in leukocy-
tospermic semen affects all populations, namely granulocytes,
monocytes/macrophages, and T cells.32 Such an increase in
the number of seminal leukocytes is likely due to the exacer-
bated release of these cells from the epithelium, alteration of
the integrity of the epithelial barrier, or attraction of these
cells to the site of inflammation.33 Although the origin of the
leukocytes is uncertain, it has been reported that the epididy-
mis and rete testis are the sources for lymphocytes and
macrophages in normal semen, whereas the prostate and
seminal vesicles are the sources of PMNs. However, in leuko-
cytospermia, the increased number of leukocytes is associated
with genital tract inflammation and their origin is possibly the
prostate.34–36

A limited number of studies have investigated the pheno-
type of semen leukocytes. A few studies in humans and
a previous study by our group in macaques reported the
expression of activation markers on CD4 T lymphocytes,
such as the IL-2 receptor (CD25), CD69, as an early activation
marker, and HLA-DR, as a late activation marker.26,31,37,38

The expression of various other surface markers, such as
CD103, has also been found on CD4 cells, but is more hetero-
geneous, suggesting that only a fraction of the proliferating
lymphocytes have a classical mucosal profile.33 CD103 is
a marker expressed by almost all intraepithelial lymphocytes
(95%), whereas it is present on less than 2% of blood cells.
Moreover, in macaques, CD4 T cells express the HIV-1 co-
receptors CCR5 and CXCR4.37 In general, naive and memory
populations among CD4 T lymphocytes can be identified by
their expression profiles (CD4+ CD45RA+ and CD4+

CD45RO+, respectively). In sperm, most CD4 T cells have
a memory phenotype.37,39 These proportions are different
from those found in the blood, as lymphocytes with a naive
phenotype constitute approximately half of the cell popula-
tion. This means that these lymphocyte populations will not
have the same ability to respond to antigens and, from the
point of view of HIV-1 infection, they do not exhibit the same
sensitivity. Memory lymphocytes are more susceptible to
infection than naive lymphocytes.40 Similarly to CD4T cells,
CD8T cells also exhibit an activated phenotype, demonstrated
by the expression of CD69, HLA-DR, and the TIA-1
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activation marker, a granule-associated protein found in cyto-
toxic CD8 lymphocytes.33,41

The phenotype of monocytes/macrophages and DCs has so
far been poorly documented. DCs in human sperm have an
immature phenotype (CD80−CD86+ CD83low CCR6+

CCR7−CD14+).28 Although monocytes and macrophages repre-
sent the second most abundant leukocyte population after gran-
ulocytes, no study in humans has finely characterized them,
whereas such characterization has been performed in cynomol-
gus macaques.37 Semen macrophages have a phenotype very
similar to that of macrophages resident in the human female
genital tract, urethra, and foreskin. They constitute
a heterogeneous population, with varying levels of CD163,
CD14, and CD11b expression. Most are CD11b+CD163bright,
a profile typical of activated cells. Like T lymphocytes, macro-
phages also express CD4 and most are CCR5+, which may
account for the predominance of mucosal R5 virus transmission
in HIV-1 transmission. This phenotype may also favor cell-
mediated transmission: as semen cells express CXCR3, they
should be able to migrate into tissues, such as the cervicovaginal
mucosa, and produce CCL5, CCL3, and CXCL10. Moreover,
semen T cells andmacrophages inmacaques express LFA-1 and/
or Mac-1 molecules, which are involved in the establishment of
the virological synapse and leukocyte adhesion to epithelial cells
and transmigration.

Presence of HIV-1 in semen: cell-free virions and
infected cells

Conflicting results have been reported concerning the viral load of
HIV-1 in semen and blood. Several studies have reported that
viral loads are higher in blood than semen, with generally, but not
always, a correlation between the amount of HIV-1 in the two.42

Race, HIV-1 subtype, CMV replication in the semen, inflamma-
tion, and degree of T-cell activation have all been reported to be
associated with the amount of HIV-1 RNA andDNA in semen.43–
47 HIV-1 is present in semen as both free virions and infected cells
and there is strong evidence for a role of cell-associated (CA) HIV
in transmission. The major source of seminal HIV-1/SIV infected
leukocytes is T cells andmacrophages, with the prevalence of HIV
proviral DNA in seminal leukocytes ranging from 21% to 75%.30

Provirus has been detected more frequently in T cells than
macrophages.33,48 Several lines of evidence suggest that the viral
strains and infected cells present in semen originate, at least in
part, from the MGT. During the acute phase of infection, the
sequences of viral RNA (corresponding to free virus) and DNA
(corresponding to infected leucocytes) in semen are highly similar
to those of virus present in the blood (review in35). However,
during the chronic phase, genetic differences between HIV strains
in the blood and sperm emerge and free viral particles present in
the semen constitute a population that is distinct from that found
in the blood.34,49 This indicates the existence of independent local
viral replication, as well as the restricted exchange of virions and
infected cells between the two compartments, allowing the parallel
evolution of various virus populations within the body. In addi-
tion, the sequences of viral DNA and RNA in infected sperm cells
may differ from those of free virions, suggesting a different origin
of the virions and infected cells.35 Whittney et al.50 reported that
the viruses in blood and semen were similar during early infection

in SIV-infected rhesus macaques but then became distinguishable
after the peak of viremia, indicating that anatomical compartmen-
talization occurred at an early time point. Anderson et al.30 pro-
posed a number of non-exclusive and variable mechanisms that
would allow the contamination of sperm by HIV over time,
namely: (i) direct importation of virus from the blood, (ii) clonal
amplification of viral blood strains in infected cells infiltrating the
MCT, and (iii) local replication in resident cells in the MGT,
leading to distinct viral evolution.

Infected cells migrate into semen from male genital tissues.
Therefore, seminal-cell profiles provide important informa-
tion concerning the numbers and types of HIV-host cells in
the MGT. MGT organs that could release HIV-1 virions and
infected leukocytes are mainly the accessory glands, including
the epididymis, prostate, and seminal vesicles (for
a comprehensive review see35). Analysis of the HIV RNA
from male genital fluids has shown that the prostate and
epididymis are the main source of the virus.51 The prostate
and seminal vesicles are also the main source of seminal
plasma,52 seminal vesicles accounting for 60% and the pros-
tate 30%.36 Additionally, they are more susceptible to infec-
tion than other accessory glands (reviewed by52). Although
the testes are unlikely to be the main origin of the virus, this
cannot be excluded. The testes are the least HIV-1-infected
area relative to the other components of the MGT, due to the
blood-testis barrier.53 According to the availability of suscep-
tible cells in the testes, the infected testes leukocytes possibly
migrate across the epithelium of the rete testis to the seminal
lumen, where the virus may then be released via Sertoli cells.35

A model of SIV-infected macaques showed that testes can be
productively infected during primary infection and asympto-
matic chronic infection.53 The infected cells of the testes were
macrophages and T cells, as reported for men34,54 and
macaques.55 Moreover, the testes act as a viral sanctuary,
due to limited exposure to drugs because of the blood barrier
and drug efflux pumps (such as ABC transporter).56,57

Consequently, the testes must be taken into consideration
for effective HIV-1 therapies.

Leukocytes in the semen of HIV-1-infected men (1.0E+05
cells per milliliter of semen) are generally present in lower
numbers than in uninfected men (2.4E+05 cells per milliliter).
Semen cells in HIV-positive subjects and SIV-positive macaques
have a profile typical of resident mucosal cells,48,58,59

a phenotype that makes them particularly well equipped to
replicate the virus. The MGT is also populated with memory
mucosal T cells,29,58 which are targeted by SIV during acute
infection in male macaques.53 Infection induces a modification
of the dynamics and activation state of semen cells, including
CD4 and CD8 T cells and macrophages. During infection, the
number ofmacrophages remained stable but the number of CD4
andCD8T cells was significantly reduced in bothHIV-1-positive
subjects and SIV-infected macaques.38,48,58 These findings are
consistent with those of clinical studies that have documented
the depletion of CD4T cells at mucosal sites during early HIV-1
infection, such as the gastrointestinal mucosa and the exocervix
of HIV-positive women relative to uninfected women.60,61

A similar effect was observed following SIV infection of
macaques.62 These findings suggest that genital T-cell dependent
immune defense functions may be impaired in HIV-infected
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subjects. As a consequence, HIV-positive individuals may be
more vulnerable to genital infections, some of which are co-
factors for HIV transmission.63

An increase in the number of semen CD69+ CD4T lym-
phocytes, which have an activated phenotype, has been
observed in SIV-infected macaques. Moreover, most of the
CD4T cells and macrophages in semen express the integrin
LFA-1, and an increase in the number of macrophages posi-
tive for Mac-1 is observed during infection, suggesting that
the virus may modify the adhesion capacity of the cells that it
infects. These integrins, indeed, play an important role in
leukocyte adhesion to epithelial cells and transmigration, pro-
moting cell-cell contact and facilitating HIV-1 replication.64,65

Evidence of HIV-1 infection mediated by infected
semen cells

While several studies based on in vivo and in vitro models
have demonstrated that cell-to-cell transmission is more
potent for transmission of the infection than cell-free
virus,66–68 CA virus has been largely overlooked. There is
still very little comparative data between transmission by
infected cells versus that with free virus in humans and their
specific contribution is still debated. Using a mathematical
model, it has been estimated that cell-to-cell transmission is
1.4 times more effective than free virus transmission and
contributes to 60% of new viral infections.69

Several studies have sought to determine the source of the
transmitted virus by analyzing the viral RNA and DNA
sequences, both in donor genital secretions and the blood of
newly infected individuals. These studies have shown that the
virus found in the blood of newly infected individuals was in
some cases closer in sequence to the viral DNA found in the
infected cells of the donor’s genital secretions and, in other
cases, closer to the viral RNA derived from the free viral
particles.67,70,71 The simplest interpretation of these observa-
tions is that the source of the virus may vary from one
transmission to another, and that both free virus and infected
cells play a role in the transmission of HIV-1.

In humans, in vivo inoculation of HIV-1-sized colloidal
particles and leukocytes showed that they co-localized after
several hours in the sigmoid colon or vagina, depending on
whether inoculation was rectal or vaginal, respectively.72

Despite their similar migratory capacity, in vivo macaque
studies have shown that cell-to-cell transmission is the pri-
mary means of vaginal and colorectal transmission of SIV.73,74

Indeed, repeated rectal exposure to low amounts (92 TCID50)
of SIV-infected PBMCs transmitted infection to three out of
five macaques following two challenges, whereas similar low
doses of cell-free SIV did not transmit infection to none of the
four animals over four challenges. Moreover, our group has
demonstrated that the vaginal inoculation of infected leuko-
cytes can establish systemic infection, in the absence of any
mucosal abrasion. Cynomolgus macaques treated with Depo-
Provera were intravaginally inoculated with SIVmac251
infected splenocytes labeled with CFSE. Strikingly, the labeled
cells were detected in the tissue of the vagina and iliac LNs
after 21 hours of inoculation and in axillary LNs after
45 hours of inoculation by in situ hybridization, indicating

rapid dissemination of the infected cells.74 These data indicate
that CA virus transmission can establish infection rectally and
vaginally, and might be more infectious at this site of expo-
sure than free virus. There is no up-to-date report on trans-
mission initiated via the mucosa by semen cells, which would
be more physiologically relevant. These data indicate that CA
virus transmission can establish infection rectally and vagin-
ally, and might be more infectious at this site of exposure than
free virus. This lack of information is mostly due to technical
constraints in purifying semen cells. In addition to experi-
ments in non-human primates of semen cell-mediated trans-
mission models, attempts to decipher mechanisms of
transmission mediated by semen leukocytes will benefit from
complementary in vitro assays.

CD4 + T cells sorted from semen of SIV-infected macaques
at all stages of the disease, transmitted infection when co-
cultured in vitro with permissive cell lines, demonstrating
their considerable capacity to produce infectious SIV.48 In
vitro, HIV-1 transcytosis through various epithelial cell lines
(I407, HT-29, Caco- 2, HEC-1, ME-180) is much more effi-
cient when initiated by infected cells than by free virus
particles.73,75 The observation of transcytosis of free virus
requires an inoculum (in units of p24) 100 to 1,000 times
greater than that with infected cells76 to permit a sufficient
number of viral particles to cross the barrier to generate a new
infection. Infected cells also show a greater ability to induce
infection following transmigration through an epithelial bar-
rier than free virus, as demonstrated by Van Herrewege et al.77

Only one study demonstrated that labeled viable cells from
semen bind to and penetrate the ectocervical epithelium.
However, entrapment of cells into the mucus layer hampered
their binding to endocervical explants.78

In conclusion, it is now well established that HIV-1 trans-
mission by infected cells is more effective in initiating a new
infection than cell-free virus using in vitro, ex vivo, and in vivo
models and can be 10 to 1,000 times more effective, depend-
ing on the model used.79,80 Studies addressing prevention
strategies should take into account this mode of HIV-1
transmission.

Effect of the antiretroviral therapy on semen
infectivity

HIV-1 transmission during unprotected sexual intercourse is
associated with the presence of the virus in genital fluids, and
the efficacy of antiretroviral therapy (ART) in preventing new
infection is based on their ability to reduce HIV-1 viral load in
these fluids.

During the early stage of infection, semen containing high
levels of HIV-1 RNA has been shown to be potentially infec-
tious in parallel with leukocytospermia and elevated inflam-
mation markers, leading to leukocyte recruitment.30,37,52

During the chronic phase of infection, a lower risk of HIV-1
transmission has been observed due to a decrease in not only
the blood viral load but also the seminal viral load. However,
HIV-1 persistence in the semen did not directly affect the
number of CD4 or CD8T cells,81–83 although there may have
been an intermittent effect that was unrelated to plasma viral
load.84–86 The level of persistent virus in semen may be
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influenced by co-infection with sexually transmitted diseases,
such as cytomegalovirus (CMV), chancroid, syphilis, gonor-
rhea, or Chlamydia.87–89 Large regions of the membrane pro-
tein on CMV and human T-lymphotropic virus type
I (HTLV-I) are similar to CD4. This resemblance may con-
tribute to the higher susceptibility of CMV and HTLV-1
infected leukocytes to HIV.90

The use of safe sexual practices, along with antiretroviral
preexposure (and to a lesser extent postexposure) prophylaxis
(PrEP) for HIV-1–seronegative at-risk individuals and ART
for systemic viral suppression for people already infected with
HIV-1, has been proven to diminish the forward transmission
of HIV-1. After HAART treatment, seminal CD4T-cell counts
were brought back to the same level as those of non-infected
individuals and thus could improve acquired immune func-
tion in the genital tract.38 This is consistent with what has
been described for the blood and other mucosal sites, such as
the gastrointestinal tract.91–93

The likelihood of detecting HIV-RNA in the semen of
infected men has been shown to be extremely low in cases
of prolonged, efficient, highly active antiretroviral therapy
(HAART).94–96 Thus, natural conception may be considered
as a safe option in HIV-1 discordant couples, based on the
very low probability of sexual transmission of HIV. However,
the MGT is a separate reservoir for HIV-1 and may contribute
to HIV-1 shedding in seminal fluid, even in patients receiving
HAART. Indeed, systemic viral suppression has not always
reflected full viral suppression in the seminal compartment,
possibly due to semen being refractory to the effects of
ART.97–99 The shedding of both virions and infected cells
continues to be detectable for months to years after starting
ART.100–102 A small proportion of HIV-1–infected men
(<10%) achieve viral suppression in their blood but continue
to shed HIV-1 episodically in their semen, albeit at levels that
are very low (<1000 HIV-1 RNA copies/mL of seminal plasma
in 80% of shedding episodes).103 Such low-level viral shedding
in semen may be below the threshold necessary for sexual
transmission; however, it is not known to what extent such
low-level shedding in semen contributes to the residual risk of
HIV-1 transmission that persists. Thus, the ability of antire-
troviral (ARV) drugs to penetrate the MGT is a key factor for
achieving HIV-1 suppression in seminal fluid and preventing
sexual transmission of the virus.

Immune responses in the male genital tract following
HIV-1/SIV infection: implications for transmission

HIV-1 infection has an effect on several physical and cellular
parameters of semen. These effects are mostly detected during
the chronic phase of infection, in which not only spermatozoa
are affected (reduced motility, lower number of spermatozoa,
and/or increased abnormal morphology) but also physical
characteristics (decreased ejaculated semen volume, increased
seminal pH, and an increased number of round cells).3,104-107

Some alterations of semen may result from ART, which may
affect several metabolic and endocrine functions of the testes
and MGT, but current data are contradictory.108 Frapsauce
et al.109 showed little or no influence of nucleoside reverse
transcriptase inhibitors (NRTI), protease inhibitors (IP), and

nevirapine (NVP) on semen parameters. By contrast, Savasi
et al.110 showed that the median values of all semen para-
meters were significantly lower among HIV-1 infected
patients than the WHO reference group in a retrospective
case–control study of 770 HIV-1 patients under stable
HAART. In this study, only age and viral load negatively
affected progressive motility and semen morphology, whereas
no associations were detected in terms of the type of HAART
or duration.

The levels of several immunomodulatory mediators,
including cytokines (IL-1α, IL-7, IL-8, MIP-3α, MCP-1, and
MIG, IP-10) and chemokines (SDFβ1 and TGF-β), are higher
in semen than blood, not only in healthy men but also in
HIV-1 infected men,15,21,111,112 reflecting a persistent and
primed state of immune activation conducive to HIV-1 infec-
tion. The acute phase of the infection is characterized by
a higher level of pro-inflammatory cytokines and chemokines
than that found in non-infected or chronic HIV-1-infected
subjects (for review see113). The overexpression of pro-
inflammatory cytokines/chemokines in the seminal plasma
of infected men alters the cytokine network and may impair
the ability of the immune system to respond to HIV-1
infection.21,112 A correlation between pro-inflammatory cyto-
kine levels and viral load in semen has been reported in
several studies. Higher levels of inflammatory cytokines,
such as IL-1β,114 RANTES,115 IL-6, IL-8, IFNγ,116and IL-
17,117 are associated with increased HIV-1 shedding in the
genital tract, increasing the risk of transmission to sexual
partners.21,112 In addition, this cytokine network evolves
dynamically according to the stage of viral infection, as
described by Vanpouille et al.118 These variations in cytokine
concentration may have numerous consequences, as, for
example, it has been shown that high concentrations of pro-
inflammatory cytokines promote the expansion and activation
of the immune cells of the exposed mucosa. For example,
endometrial epithelial cells exposed to SP from acutely HIV-
infected men produced higher levels of pro-inflammatory
cytokines (IL-1α, IL-6, and TNF-α), which increase HIV-1
replication in CD4T lymphocytes.119 Consequently, the mod-
ulation of semen factors may have an effect on viral propaga-
tion during the sexual transmission of HIV-1 in the FRT.
Genital inflammation, defined as a specific profile of inflam-
matory cytokines, has been identified as a significant risk
factor for increased T-cell activation and HIV target cell
recruitment in women.1,5 Several studies have confirmed
that the cytokine and chemokine seminal plasma milieu sup-
ports active viral replication through the ongoing activation of
target CD4T cells in situ.120–122

Functional T lymphocytes have been isolated from the
semen of HIV-negative and HIV-positive men.33 HIV-
specific cytotoxic CD8T lymphocytes (CTLs) have been
cloned from the semen of HIV-infected men, providing evi-
dence for an active antiviral cellular immune response in the
MGT.33 In a study conducted by Politch et al.,38 men in
a highly advanced stage of HIV infection showed reduced
seminal CD8T-lymphocyte concentrations, suggesting that
HIV infection impairs antiviral cellular immune defense
mechanisms in the MGT. Indeed, virus-specific T cells in
the semen do not control replication of the virus in either
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HIV-1-infected subjects or SIV-infected macaques.116 On the
contrary, the CD8T-cell response in the blood during acute
HIV-1 or SIV infection increases following the increase in
viral load and there is an inverse correlation between viral
load and the CD8T-cell response during primary
infection.123–125 Future studies should analyze responses to
a broader range of HIV-1/SIV proteins to understand the
breadth of T-cell immunity in male genital tissue.

Humoral immunity in semen is likely to be important in
HIV-1/SIV transmission. HIV-1 and SIV-specific antibodies
are present in abundant quantities and high frequencies in the
semen of HIV-1-positive men and SIV-positive macaques at
various stages of the disease, although the titers are generally
lower in semen than blood.41,126,127 A positive association was
observed between genital tract inflammation and high titers of
seminal IgA and IgG anti-HIV-1 antibodies,127 which may
reflect either increased transudation of serum Ig into the
seminal fluid, such as that reported for men with bacterial
prostatitis,127 or increased local production. Western-blot
analysis of seminal plasma HIV-1 antibodies has shown anti-
bodies directed against numerous antigens, including the
gp160 envelope protein.127 Recently Pillay et al.128 reported
that genital-tract inflammation influenced the antibody sub-
classes and HIV-1-specific antibody titers in the seminal fluid
of non-HIV-infected and HIV-infected men. Local cytokines/
chemokines were associated with the mucosal-specific Ig sub-
classes, with higher quantities of IgG1, IgG3, and IgM in HIV-
infected men, suggesting that HIV-1 infection likely drives
differential IgG subclasses/isotype and functional responses.
The elevated mucosal level of the detected Ig subclasses likely
affects specific antibody function and contributes to local viral
control. Indeed, IgG subclasses show remarkable differences
in complement activation, phagocytosis, antibody-dependent
cell-mediated cytotoxicity (ADCC), and Fc-Receptor binding,
with the general order of activating capacity being IgG3
> IgG1 ≫ IgG2 > IgG4.129 Although the authors did not
perform functional assays, other studies demonstrated the
superior polyfunctionality of circulating IgG1 and IgG3 in
elite controllers relative to then of viremic subjects.130,131 It
is yet to be determined whether IgG and IgM purified from
the semen of HIV-positive men show higher polyfunctionality
than that from uninfected subjects.

Quantitative analysis of HIV-specific Ig isotypes in semen has
revealed a predominance of IgG over IgM and IgA antibodies.132–
134 A large study conducted byMestecky et al.,135 which evaluated
HIV-1-1-specific antibody responses in various mucosal secre-
tions, including semen, concluded that the IgA response to HIV-
1/SIV is surprisingly low. Despite an elevation in total serum IgA
levels, anti-HIV IgA levels can be 100-fold lower than anti-HIV
IgG levels in patients during the earliest stages of HIV-1 infection
(Fiebig I–VI).136 These IgA antibodies were directed against the
gp41 of the envelope and were induced in the mucosal fluids of
approximately 87% of patients, including in seminal plasma.
However, shortly after induction, their levels rapidly declined.136

Anti-gp120 IgA appeared later in both the systemic and mucosal
compartments. Paradoxically, individuals with elevated total IgA
levels typically have the poorest anti-HIV IgA and IgG
responses.135 The mechanism responsible for the relatively low
HIV-1-specific IgA response relative to the HIV-1-specific IgG

response in mucosal fluids during HIV-1 infection is not well
understood. The observed ratio could reflect contributions from
plasma transudate or be a result of mechanisms that cause defects
in mucosal class switching, such as HIV-1 Nef-mediated inhibi-
tion of class switching to IgA.46 Indeed, there is no correlation
between serum total IgA (IgA derived from bone marrow plasma
cells) and mucosal IgA concentrations (derived from mucosal
plasma cells), highlighting the compartmentalization between
systemic and mucosal immunity.137

There is a narrow window of vulnerability after virus
exposure that may allow Abs with antiviral function to inhibit
HIV-1 at mucosal surfaces.138 Preexisting HIV-1-specific
mucosal Abs present at the time of transmission could block
HIV-1 acquisition. The mechanisms by which Abs can inhibit
HIV-1 movement across the mucosal barrier include direct
virus neutralization, viral aggregation, inhibition of transcy-
tosis, intra-epithelial neutralization, phagocytosis, inhibition
through mucus, and Fc receptor-mediated neutralization (Ab-
dependent cellular cytotoxicity) (reviewed in139,140).

Fc-mediated antibody functions have been mostly over-
looked in semen. Parsons et al.141 demonstrated that HIV-
1-specific antibodies in SP can mediate ADCC responses
in vitro. In macaques, the presence of FcγRIIIa dimeric pro-
tein-binding semen Abs (used as a surrogate of ADCC func-
tion) appears to be associated with local viral shedding.41

These observations suggest that Abs with the potential to
mediate ADCC may modulate semen infectivity and viral
transmission. It is tempting to speculate that the presence of
ADCC Abs in semen may, at least in part, explain the rela-
tively low rate of transmission during sexual intercourse.

A few studies have analyzed the presence of broad neutralizing
antibodies (bNAbs) in semen. Neutralizing HIV-specific IgA are
present in the semen and vaginal washes from HIV-1 exposed
seronegative sex-workers.142–145 Moreover, several studies have
shown that neutralizing IgG can prevent the infection
o macaques following intravenous or vaginal inoculation with
simian human immunodeficiency virus (SHIV).146–149 The pre-
sence of high titers of potentially HIV-neutralizing antibodies in
the seminal plasma of HIV-positive men and the fact that cell-free
HIV in semen may be associated with immune complexes could
contribute to the relatively low sexual transmission rate of
HIV-1.88 On the other hand, env-specific IgG present in semen
may instead facilitate mucosal transmission of HIV-1. Indeed,
a proportion of HIV-1 virions in semen may be coated with IgG
and form an immune complex that can cross the mucosal epithe-
lium. For all these reasons, the presence of Abs in genital secre-
tions, such as semen, should be considered in the design of
prevention strategies, as it could impede attempts to provide
immune-based prophylactics and/or vaccines.

Challenges and opportunities in using broad
neutralizing antibodies to prevent HIV-1
transmission mediated by semen leukocytes

In recent years, bNAbs have received growing attention as
valuable tools for HIV-1 prevention and treatment. As the
virus is present in semen as both free particles and infected
cells, bNAbs, either induced by vaccination or passively
infused, should target both forms of the virus.
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HIV-1 transmission mediated by infected leukocytes is
likely to play a predominant role in infecting individuals150

and may represent a mechanism through which the virus can
evade antibody-based immunity.151–154 In this scenario,
semen leukocytes may act as Trojan horses, protecting cell-
associated virus from host immune defenses.30 However, most
in vitro neutralization assays and in vivo protection experi-
ments have been performed using cell-free virus inocula and
there is, as yet, no indication that bNAbs can prevent trans-
mission mediated by semen leukocytes. Previous studies have
been conducted using either cell-lines, primary DCs, or per-
ipheral blood mononuclear cells (PBMCs).

In vitro studies to evaluate the potency of bNAbs to block
CA viral transmission have produced conflicting results,152–
160 possibly due to the different experimental systems used by
the various laboratories.158 Differences have been observed
across virus strains and antibody epitopes and substantial
variability can be attributable to whether the assay system
used acutely transfected or chronically infected donor cells,
cell lines, or primary cells or lab-adapted strains or transmit-
ter/founder viruses.158,161 Despite observed divergences, there
is general agreement that bNAbs exhibit reduced efficacy
against CA viral transmission, shown by the much higher
concentrations or bNAb combinations required than those
needed to inhibit cell-free viral transmission. This may be
due to several possible mechanisms, such as steric hindrance
at the virological synapse, the increased multiplicity of infec-
tion (MOI) observed in CA viral transmission, the different
conformation of the viral envelope during cell-free and CA
viral transmission (possibly affecting certain epitopes more
than others, as well as differences between genetically diverse
env), or the stability of viral envelope-Ab complexes (for
a recent review see162). Finally, the exposition of certain
neutralizing epitopes may be limited if membrane fusion
occurs within endosomal compartments in the target cell.163

Experiments performed using “first-generation bNAbs,”
such as 2F5, 4E10, b12, and 257-D, produced conflicting
results and no clear pattern could be determined.164–166 As
for cell-free viral inhibition, the development of “second-
generation bNAbs” has permitted a more comprehensive
examination of the mode of cell-to-cell virus inhibition by
bNAbs. A study by Abela et al.153 showed that the targeted
epitope may influence the efficacy of a given Ab and that
anti-CD4bs Abs lose efficacy during CA viral transmission.
The relative resistance to neutralization in intercellular assay
systems has been confirmed by other studies,152,154,157 but in
one, Abs directed against the CD4bs and V3 loop were the
most active in inhibiting transmission between T cells.152 Li
et al. showed that a functional motif in gp41 appears to
contribute to the loss of potency and magnitude of multiple
bNAbs during cell-to-cell transmission.156 In the case of
DC/T cell transmission, Su et al. showed that bNAbs inhibit
HIV-1 transfer from primary DCs and pDCs to autologous
CD4 T cells.167,168 Antibody-mediated inhibition via the Fc
region has been observed in the transfer of HIV-1 infection
from antigen-presenting cells (APCs) to surrounding T cells,
which may be related to the FcRs present on the surface of
DCs and macrophages. FcR-mediated protection required
the binding of FcRs to Abs.158,167 Interestingly, anti-gp-120

bNAbs appear to not only be more potent than anti-gp41
bNAbs in conferring Fc-mediated protection but are also
more efficient in preventing the transmission of infection
from either macrophages or DCs to T cells.155,167 An
increasing number of observations has also highlighted the
fact that a combination of bNAbs is possibly necessary to
efficiently inhibit CA viral transmission. In in vitro studies,
no single Ab was able to inhibit all tested strains,157 and
a combination of PG9 and VRC01 was more effective dur-
ing cell-to-cell transmission than single Abs.154

Animal studies have shown that HIV-1 infection can be
prevented when animals are given either topical or systemic
immunoprophylaxis. Although those studies evaluated Ab
efficacy against cell-free viral challenge, human clinical trials
might provide evidence of Ab protection against both forms
of virus. Unformulated b12 given vaginally provides dose-
dependent protection of macaques before vaginal challenge
with a single high dose of SHIV162P4146 and provided ster-
ilizing immunity in seven of seven animals when applied at
high dose.169 Serum concentrations of 25–60 μg/ml of b12
protected against 5 to 28 low dose vaginal SHIV challenges in
macaques.170 Intravenous inoculation of 4E10 provided com-
plete protection from rectal transmission in six macaques
challenged with SHIV Ba-L.171 When formulated as a gel,
VRC01 protected seven of nine RAG-hu humanized mice,
and a multi-Ab gel containing b12, 2F5, 4E10, and 2G12
provided 100% protection.172 Vaginal application of a gel
containing 4E10, 2F5, and 2G12 was shown to be partially
protective in a macaque vaginal challenge model against
SHIV162P3.149 Some bNAbs are now being tested in humans
for their ability to promote immune control of HIV-1 in
infected individuals and potentially to eliminate HIV-
infected cells. These include VRC01, VRC07-523, 3BNC117,
and N6 (CD4 binding site–targeting antibodies); 10–1074 and
PGT121 (V3-glycan – targeting antibodies); PDGM1400 and
CAP256-VRC26 (V1/V2-glycan–targeting antibodies); and
10E8 (MPER-targeting antibody) (for a recent review see173).
The NIAID HIV Vaccine Trials Network (HVTN) and HIV
Prevention Trials Network (HPTN) are carrying out the
Antibody-Mediated Prevention (AMP) efficacy trials with
intravenous administration of VRC01 (NCT 02716675 and
NCT02568215). The AMP trials are designed to assess if
a single bNAb can prevent HIV-1 acquisition in humans
and to determine how much serum antibody is needed for
protection. The Ab will have both neutralizing and non-
neutralizing activity, so might not be entirely specific as to
mechanism of action; however, if successful, it will show that
a specific agent or response is effective.

It is important to note that the relevance of in vitro studies
to the in vivo efficacy of the same Ab to inhibit cell-to-cell
versus cell-free transmission is understudied. To date, only
one study has evaluated the efficacy of bNAbs to inhibit CA
viral transmission in vivo in macaques. The authors used
SHIV162P3-infected splenocytes to intravenously challenge
pigtail macaques and infused the animals with the anti-V3
bNAb PGT121.174 Partial protection from infection was
observed, along with a delay in peak viremia or delayed
viremia was reported for non-protected macaques.174 The
partial efficacy of the PGT121 bNAb against cell-to-cell
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transmission in vivo highlights the need to identify new Ab
candidates against this mode of viral transmission. In this
macaque model, a high dose, intravenous challenge was
used. Future trials recapitulating intrarectal or intravaginal
route of transmission and evaluating topical use of Abs will
be of great interest to assess the prophylactic efficacy of
bNAbs in NHP models and predict protection in humans.

Finally, bNAbs may mediate Fc effector functions that
could block CA HIV-1 transmission. The Fc domain present
on Abs is recognized by the FcR receptor on the surface of
various immune cell types to trigger the possible mechanism
of antibody-mediated inhibition by bNAbs, also inhibiting
CA viral transmission. For example, bNAbs can recruit NK
cells via ADCC to kill HIV-1-infected cells.175–177 Moreover,
bNAbs can activate antibody-dependent cellular phagocyto-
sis (ADCP) and the complement pathway.178 ADCC-
mediated inhibition of CA viral transmission by bNAbs and
non-NAbs relies on the accessibility of the viral envelope
protein on the cell surface. There is evidence that bNAbs
require Fc-mediated immune responses to obtain optimal
protection in vivo.179–181 Although bNAbs may not provide
complete neutralization against CA viral transmission, their
Fc regions provide an additional mechanism to direct the
antibodies against infected cells. Lu et al.182 showed that
bNAbs can eliminate HIV-1-infected cells and trigger Fc-
mediated protection in humanized mice. Infusion with either
3BNC117 alone or the combination of 3BNC117 and 10-
1074, performed 12 hours before the transfer of infected
cells, was able to reduce not only the percentage of infected
cells but also the level of CA HIV-1 DNA relative to those in
control mice. Similar results were obtained when using
CD4T cells infected with isolated primary HIV-1 strains.
Furthermore, the clearance of HIV-infected cells in vivo pos-
sibly depends on the interaction of the FcγR on effector cells
and the Fc domain on the 3BNC117 Ab.182 These observa-
tions highlight the important function of the FcγR mechan-
ism mediated by bNAbs to eliminate HIV-1 infected cells
in vivo.

Overall, several studies have reported a reduced ability of
bNAbs to interfere with cell-to-cell transmission but have also
demonstrated that it depends on the cell type and the antibody
used. Moreover, these studies primarily focused on cells infected
in-vitro. Given the diversity of cell lines or even CD4T cells
derived from blood and semen T cells, it is of utmost importance
to establish more physiologically relevant in vitro systems.

More research is needed to understand why certain bNAbs
are less efficient against CA infection and to define which
in vitro model would best predict antibody protection in vivo.

Complementarity of antibodies and cell-mediated
immunity for prevention of cell-associated viral
transmission

Most vaccine studies in animal models and human clinical
trials have not been focused on blocking cell-associated HIV-1
transmission, so the mechanism of protection at the site of
infection remains unclear. The protective effect of RV144 was
associated with the selective induction of antibodies of the
immunoglobulin G3 (IgG3) subclass, which mediates multiple

functions (i.e., ADCC, ADCP, and antibody-mediated release
of cytokines/chemokines) that are effective against infected
cells.183,184 However, humoral immunity alone may be insuf-
ficient for protection against the transmission of cell-
associated HIV-1,174 and contribution from cell-mediated
immunity might be necessary to augment humoral vaccine
efforts. A large body of evidence emphasizes the crucial role of
T cells in controlling HIV-1 infection in humans and SIV
infection in non-human primates. Studies in humanized mice
and non-human primates demonstrate that immunotherapy
can facilitate the emergence of potent CD8 + T-cell immunity
that can durably suppress virus replication.185,186 Recently,
Niessl et al. demonstrated in HIV-1 infected subjects that
bNAb therapy during ART interruption was associated with
enhanced HIV-1-specific T cell responses.187 Although cell-
mediated responses normally serve to control established
infection, in vitro studies clearly show that HIV-specific
CD8 + T cells can kill both activated and resting CD4 + T
cells before progeny virus is produced.188–191 This suggests the
possibility that these responses may also, if induced in suffi-
cient numbers, be able to eliminate HIV-infected cells as they
penetrate the mucosal epithelium and thus before persistent
reservoirs are established. Given the advantages and disadvan-
tages of each approach, cellular and humoral HIV vaccine
methods will likely be complementary in providing full pro-
tection from HIV-1 infection. For instance, vaccine-generated
HIV-specific cytotoxic T cells and ADCC responses could
cooperate to rapidly clear infected cells. Non-human primate
studies suggest that very early infections can in some instances
be cleared by passively infused neutralizing antibodies192 and
by the broad T-cell immunity induced by CMV vaccine
vectors;193 however, these approaches have not been assessed
for synergistic effects. This is an understudied area and
further research is needed to address the potential of combin-
ing both arms of the immune system to block transmission
mediated by semen cells.

Concluding remarks

Semen is a complex biological fluid, whose role in HIV-1
transmission is defined by a complex array of factors. Semen
carries both cell-free virus and infected cells, the latter ones
playing a major, yet still underexplored role in transmission.
Conventional antiretroviral therapy has been proven to dimin-
ish the forward transmission of HIV-1; however, the MGT may
contribute to HIV-1 shedding in seminal fluid, even in patients
under HAART. Moreover, bNAbs considered as promising
prophylactic agents may not inhibit transmission mediated by
semen leukocytes as efficiently as cell-free viral particles, and
immune-based protection may be more difficult to achieve. This
has major implications for the rational design of vaccine strate-
gies to fight HIV-1. More research is needed, especially in
animal models, to elucidate the overall influence of semen and
semen cells in the sexual transmission of HIV-1 and to improve
the protective efficacy of bNAbs.
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