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A B S T R A C T   

Black tea (Camellia sinensis) is a widely consumed beverage and is subjected to adulteration. In this study, the 
combination of ion mobility spectrometry and machine learning techniques was employed to detect synthetic 
colorants in black tea. To accomplish our objective, six synthetic colorants (carmine, carmoisine, indigo carmine, 
brilliant blue, sunset yellow, and tartrazine) were added to pure tea at different concentrations. A qualitative 
model was built using partial least squares discriminant analysis (PLS-DA) for the collected data and exhibited 
100% accuracy in identifying synthetic colorants in black tea. For quantitative analysis, a PLS regression model 
was employed. The R2 values obtained for the test set ranged from 0.986 to 0.997. The method developed in this 
study has proven to be reliable and effective in detecting synthetic colorants in black tea. Also, this method is a 
simple, rapid, and trustworthy tool for identifying adulteration in black tea.   

Introduction 

Tea, derived from the Camellia sinensis plant, is a widely enjoyed 
beverage worldwide. It is produced using fresh sprouts, delicate leaves, 
mature leaves, and stems of the tea plant. With its distinct flavor and 
reputed health benefits, tea ranks among the top three non-alcoholic 
beverages globally. Black tea, accounting for more than 70 % of 
global tea consumption, is particularly popular. Aside from its delightful 
taste, tea offers therapeutic properties that combat various ailments, 
such as its anti-inflammatory and anti-cancer effects (Huang et al., 2024; 
Isemura et al., 2000; Qin et al., 2023). 

The perception of taste, texture, and freshness in foods and beverages 
is significantly influenced by their color, which also plays a vital role in 
consumers’ decision-making process when selecting food and beverages. 
To enhance attractiveness, compensate for colorant loss during pro-
cessing, and mask undesirable changes in the natural colorants, food 
products often incorporate synthetic edible colorants. These colorants 
can be categorized as natural, synthetic, and mineral (Amchova et al., 
2015). 

The quality of brewed tea is determined by its color. Research by 
Munim Khan et al. (2023) on the evaluation of the organoleptic quality 
of Bangladeshi black tea found that the brewed color of tea has a sig-
nificant (p < 0.01) and positive correlation with its quality. However, 

tea can be exposed to harmful substances such as synthetic dyes, 
including azo and coal tar dyes, intentionally or unintentionally. 
Deceptive methods involve adding synthetic colorants like carmine, 
carmoisine, indigo carmine, brilliant blue, sunset yellow, and tartrazine 
(either alone or in combination) to enhance the appearance of tea 
brewed from damaged leaves or lower-quality sources (Deb Pal and Das, 
2018; Sharma et al., 2011; Wei et al., 2020). These colorants have 
gained popularity in the food industry due to their cost-effectiveness, 
efficiency, and improved stability compared to natural colors (Ali, 
2010; Alves et al., 2008). However, concerns have arisen about the 
potential adverse effects of synthetic colorants on human health. Syn-
thetic edible colorants exhibit stronger binding capabilities with human 
serum albumin compared to natural colors. This enhanced affinity may 
impact the physiological functions of albumin, which is a crucial 
transporter for various molecules such as drugs, fatty acids, cholic acids, 
and steroids (Basu and Suresh Kumar, 2015; Masone and Chanforan, 
2015). 

Furthermore, numerous colorants contain aromatic rings and azo 
functional groups (N––N–) in their chemical structure. These com-
pounds can be metabolized by intestinal microbes into carcinogenic 
byproducts through the reduction of azo groups, ultimately impacting 
human health with potential side effects. Potential side effects may 
include facial itching, hives, swelling around the eyes, hyperactivity in 
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children, DNA alterations, activation of estrogen receptors, and an 
increased risk of early-onset biliary cirrhosis in postmenopausal women 
(Amchova et al., 2015; Feng et al., 2012; Garkani Nejad et al., 2022; Wei 
et al., 2020). 

Despite the stability and efficiency of synthetic colorants, several 
research studies have been conducted to extract, detect, and quantify 
these compounds in food and beverages due to potential health con-
cerns. Sha et al. (2015) employed liquid–liquid microextraction (LLE) 
combined with HPLC to extract and detect five synthetic colorants 
(tartrazine, sunset yellow, amaranth, ponceau 4R, and brilliant blue) in 
various food samples. The extraction efficiency was found to exceed 95 
%, and the detection limit ranged from 0.074 to 0.051 ng/ml. Wei et al. 
(2020) employed UV/Vis spectrometry and HPLC, along with machine 
learning techniques, to detect the presence of carmine in black tea. They 
employed a multi-layer perceptron (MLP) feedforward neural network 
model to quantify the amount of carmine added to tea, achieving R2 

values of 0.988 and 0.972 for UV/Vis spectrometry and HPLC methods, 
respectively. Martin et al. (2016) employed electrospray ionization 
liquid chromatography coupled with mass spectrometry to detect 18 
synthetic colorants in confectionery products and ice creams. A corre-
lation coefficient of R2 ≥ 0.98 was obtained between the response and 
concentration of 12 of these colorants. The detection limits ranged from 
10 to 1000 µg/kg. 

While spectrophotometric methods are commonly used for quanti-
tative analysis due to their affordability and ease of use, they have 
limitations in identifying or detecting additives in specific food prod-
ucts. Factors such as spectral overlap or the absence of significant ab-
sorption features pose challenges (Nath et al., 2013; Yamjala et al., 
2016). For separating, identifying, and quantifying edible colorants with 
high sensitivity and accuracy, HPLC is a commonly used analytical 
technique. Additionally, the liquid chromatography-mass spectrometry 
method is especially effective in detecting illegal and toxic dyes at trace 
levels. However, these methods come with some drawbacks, including 
expensive equipment, time-consuming processes, high solvent con-
sumption, and complex sample preparation (Bonan et al., 2013). 
Therefore, there is a demand for food fraud detection methods that are 
simple, sensitive, selective, cost-effective, environmentally friendly, and 
fast (Esteki et al., 2018; Rovina et al., 2017). 

Ion mobility spectrometry (IMS) is a highly efficient method for 
separating chemicals based on their gas-phase ion mobilities. In IMS, the 
movement of ions under the influence of a strong electric field and 
against the drift gas flow enables their separation. The IMS spectrum 
represents the intensity of detected ions against their drift times, 
allowing separation not only by mass but also by size, spatial structure, 
and charge-to-mass ratio (Eiceman et al., 2013; Tabrizchi et al., 2000). 

These advanced spectrometry instruments provide highly accurate 
and reproducible data, serving as a vital foundation for techniques with 
low quantitation limits. When combined with chemometric analysis, 
these methods can be further enhanced, making them increasingly 
popular in spectrometric quantitation. Chemometric methods are espe-
cially valuable when faced with the challenge of isolating a single peak 
that corresponds to a specific metabolite. In such complex cases, where 
multiple peaks with differing times or intensities are observed, chemo-
metric methods can be employed to identify these distinct peaks and 
determine their respective contributions to the spectrum. This infor-
mation is then utilized for constructing calibration or classification 
models (Esteban et al., 2020; Frost, 2017; Sarker and Nahar, 2015). 

Jafari et al. (2012) conducted a study on the presence of nitrite and 
nitrate ions in food and drinking water samples. They used an electro-
spray ionization source (ESI-IMS) in conjunction with IMS for analysis 
and determination. The results of their research indicated that nitrite 
could be detected at a concentration of 3.8 μg/l, while nitrate could be 
detected at 4.7 μg/l. IMS spectra were also used in two independent 
research studies to evaluate the quality and purity of extra virgin olive 
oil and sesame oil. The IMS system was used to identify and analyze 
volatile substances in extra virgin olive oil, with the objective of 

detecting any impurities. When adding lower-cost oils such as sunflower 
and corn, an R2 value greater than 0.72 could be distinguished. 
Furthermore, (Garrido-Delgado et al., 2018; Zhang et al., 2016) con-
ducted an IMS analysis on sesame oil and developed models using the 
recursive support vector machine (R-SVM) technique to identify coun-
terfeit samples with a precision of 94.2 %. 

Fattahi et al. (2023) used IMS-CDI- in conjunction with chemometric 
analysis to detect the presence of four synthetic edible colorants (Tar-
trazine, Sunset Yellow, Ponceau 4-R, and Erythrosine) in saffron. The 
researchers successfully determined the concentrations of these color-
ants in adulterated saffron using the variable importance in projection 
(VIP) and PLSR model (VIP-PLSR). The VIP-PLSR model provided root 
mean square error (RMSE) and R2 values ranging from 2.39 % to 3.53 % 
and 0.880 to 0.954, respectively. 

The primary goal of this study is to develop a highly accurate method 
of identifying pure black tea and distinguishing it from six different 
synthetic colorants by establishing their unique fingerprints. Addition-
ally, this study aims to employ advanced machine learning methods to 
analyze the ion mobility spectra of adulterated black tea samples. This 
analysis will enable the detection of the concentrations of synthetic 
colorants in the samples and identify any variations in the levels of 
colorants added to pure black tea. The ultimate goal of this study is to 
improve the accuracy of detecting synthetic colorants added to black 
tea, which will help to ensure the safety and quality of tea products. 

Materials and methods 

Pure tea sample preparation 

Samples of pure black tea were purchased from Lahijan Tea Com-
pany in Iran. The collected samples were stored under controlled con-
ditions at 4 ◦C to maintain their quality, while protecting them from 
light and moisture, until analysis. 

To prepare the tea infusion, 1 g of finely powdered tea was mixed 
with 19 ml of double distilled water. The mixture was then heated in a 
boiling water bath for 10 min and rapidly cooled by placing the 
container in a cold-water bath until it reached a temperature of 4 ◦C. 
Subsequently, centrifugation was performed at 10,000 g for five minutes 
to separate any solid particles present. The resulting supernatant was 
further clarified by passing it through a nylon syringe filter (Sigma- 
Aldrich Co (St. Louis, MO, USA)) with a pore size of 0.45 μm (Wei et al., 
2020). 

Adulterated tea samples preparation 

Synthetic carmine, carmoisine, indigo carmine, brilliant blue, sunset 
yellow, and tartrazine colorants were provided by the Iran Institute of 
Standards and Industrial Research (ISIR). All colorants had a purity 
higher than 95 %. To produce adulterated tea samples with edible 
synthetic colorants, these colorants were added to pure tea at 13 
different levels, ranging from 0.03 % to 3.6 % of the dry tea weight. The 
resulting mixtures were then brewed and filtrated as described in the 
previous section. 

Spectrometric analysis 

The ion mobility spectrum was obtained using an advanced IMS 
(IMS-CDI-300, TOF Tech Pars Co., Ltd, Isfahan, Iran) equipped with a 
corona discharge ionization source. The device was supplied with 
compressed air from a capsule (Mana Mehrgan gas, Tehran, Iran) con-
taining 80 % oxygen and 20 % nitrogen, which served as the carrier gas 
and drift gas (purity 99.999 %). When a small amount of water vapor is 
introduced with this gas into the ionization zone, it forms three reactant 
ions (H3O+, NO+, and NH4

+) through a positive corona discharge ioni-
zation source. 

A 2 µL liquid sample was injected into the injection port of the IMS. It 
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was then converted into gas vapor at a temperature of 200 ◦C. To 
introduce the vaporized molecules into the ionization zone, the carrier 
gas flow was set at 180 ml/s. In the ionization zone, the vaporized 
molecules from the sample collided with the reactant ions, which 
resulted in the formation of secondary ions, also known as product ions. 
These product ions were then directed to the drift zone (180 ◦C, 8000 V) 
through the ion shutter, which was opened for 40 µs. The ions moved 
towards the collector plate for 20 ms due to the electric field, opposing 
the direction of the drift gas movement. The signals were then converted 
to a visible spectrum using Picoscope 2204 software (Pico Technology 
Co., UK). 

Chemometric analysis 

Distinct fingerprints were obtained for pure tea and each of the six 
synthetic colorants by recording a total of 112 ion mobility spectra. To 
achieve this, 16 measurements were taken for each sample. 

In order to determine the quantity of synthetic colorant added to 
pure tea, each colorant was added at 13 different levels, with 16 mea-
surements for each level. This resulted in a total of 208 ion mobility 
spectra for each colorant. 

After acquiring the spectra, sections that did not have metabolite 
peaks (such as the beginning and end of the spectrum) and those that 
contained reactant ions were removed (4.67–5.77 ms). The remaining 
data (5.78–13.50 ms) was then analyzed using various multivariate 
analysis methods, including principal component analysis (PCA), partial 
least squares discriminant analysis (PLS-DA), hieratical clustering, and 
partial least squares regression (PLSR). 

After the preliminary analysis, the less significant drift times were 
eliminated, reducing the size of the data matrix and enabling a focus on 
identifying the important drift times in the ion mobility spectrum. The 

analysis was then repeated using only the selected drift times, as 
depicted in Fig. 1. 

To construct PLSR and PLS-DA models, the dataset was randomly 
split into a 75 % training set and a 25 % test set. The calibration model 
was developed using the training set through a 10-fold cross-validation 
approach. External validation was carried out on an independent test 
set. The optimal number of components was determined by selecting the 
model with the smallest root mean square error (RMSE) and the highest 
coefficient of determination (R2). All multivariate data analysis (PCA, 
hieratical clustering followed by heatmap, PLS-DA, PLSR, and Venn 
diagram) was conducted using R software (Version: 2023.06.2 + 561). 

Results and discussion 

Fingerprinting pure tea and synthetic colorants by using IMS 

Each food item is composed of a complex matrix containing various 
types and quantities of biological metabolites. These natural compounds 
are responsible for providing distinct flavors, aromas, and nutritional 
content. The composition and concentration of metabolites in each food 
item are influenced by factors such as genetics, environment, and pro-
cessing methods. Consequently, the metabolite profile of each food item 
becomes unique and differentiates it from others (Sales et al., 2017). 

Fig. 2 illustrates the ion mobility spectra of pure tea and six synthetic 
food colorants. The initial three peaks correspond to reactant ions 
(H3O+, NO+, and NH4

+), while the subsequent peaks represent metabo-
lites with a higher proton affinity as compared to the reactant ions 
(Tabrizchi et al., 2000). An important aspect of ion mobility spectrom-
etry is that peaks with shorter drift times indicate smaller metabolites or 
those with higher charge density. Conversely, larger ions with lower 
charge density move more slowly, resulting in longer drift times and 

Fig. 1. Steps for reducing data matrix size. A) Data matrix of pure tea and six synthetic colorants spectra; B) Data matrix of adding each synthetic colorant to pure tea 
at 13 levels. 
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Fig. 2. IMS spectra of pure tea and six synthetic colorants.  
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reduced peak resolution. This slower movement towards the detector 
can lead to broader peaks (Chen et al., 2020). As depicted in Fig. 2, it is 
crucial to emphasize that each sample displays a unique ion mobility 
spectrum, distinct from the spectra of other samples. This distinctiveness 
can serve as a discriminating fingerprint for each sample, enabling dif-
ferentiation and making ion mobility spectrometry a powerful technique 
for identifying and measuring adulterations. 

Discrimination of pure and adulterated tea samples by using PCA and 
hieratical clustering analysis 

This study employed three chemometric methods, namely PCA, 
hieratical clustering followed by heatmap, and PLS-DA, to differentiate 
between pure black tea samples and six synthetic colorants. In IMS in-
struments, there is no tool available for selecting ions that enter the drift 
tube. As a result, all gaseous metabolites with a higher proton affinity 
than the reactant ions were ionized during various reactions and sub-
sequently entered the drift tube (Tabrizchi et al., 2000). Each sample 
possessed a unique chemical ionization fingerprint, allowing for its 
distinction from other samples. The drift time and intensity of each peak 
were utilized to differentiate samples. Fig. 3A demonstrates the high 
reliability and efficiency of the PCA technique in distinguishing between 
pure tea and synthetic colorants. The first two principal components 
(PCs) alone explained more than half (51 %) of the total observed 
variance in the data. Further analysis revealed that only seven compo-
nents were necessary to explain 91 % of the entire variance in the 
dataset. 

While PCA provided an accurate perspective on sample differentia-
tion, the hieratical clustering followed by heatmap served to confirm the 
results obtained through PCA. It presented valuable information about 
the importance of drift times for all injected samples in a two- 
dimensional graph (Eugene et al., 2018). The hieratical clustering uti-
lized the Spearman distance function to determine the similarity be-
tween drift times and among samples for the purpose of clustering. The 
ordered data matrix was color-coded and illustrated as a heatmap for 
better visualization. Fig. 3B exhibits the heatmap and clustering of 
samples based on drift times, aiding in the visualizing of distinctions 
among the samples. Together, these two chemometric methods offer a 
comprehensive overview of the data and effectively distinguish between 
pure black tea samples and synthetic colorants with high accuracy. 

Classification of pure black tea and synthetic colorants by using the PLS- 
DA model 

PLS-DA is a widely used supervised classification method for classi-
fying samples into known groups and predicting the class of unknown 
samples (Mohamad Asri et al., 2022). It has been reported to offer near- 
perfect performance for datasets with few classes. PLS-DA has distinct 
advantages over PCA and hieratical clustering (as unsupervised 
methods), making it a superior approach. While PCA focuses on 
capturing variance and grouping samples, PLS-DA goes beyond that by 
incorporating class labels or categorical outcomes associated with each 
sample, facilitating classification of sample groups. This allows for more 
effective discrimination between groups. The classification-centric 
approach of PLS-DA facilitates the identification of influential vari-
ables, contributing significantly to the separation between groups. On 
the other hand, PCA and hieratical clustering methods may not effec-
tively capture the subtle differences between groups. PLS-DA offers a 
comprehensive interpretation of the data structure by integrating latent 
variable information and class discrimination, making it a more 
powerful tool for data analysis (Hur et al., 2010; Mohamad Asri et al., 
2022; Wold et al., 2001). 

To achieve precise analysis using the PLS-DA method, specific data 
segments of spectra were excluded, similar to the PCA and hieratical 
clustering analysis. The initial and final parts of the spectra and data 
related to reactant ions were removed to optimize the analysis by 

focusing solely on the most effective spectral region that acted as a 
unique fingerprint. After conducting the initial analysis of this optimal 
spectrum using the PLS-DA method, the 20 drift times with the highest 
variable importance projection (VIP) score were selected to accurately 
classify samples based on their fingerprint identifier parts. 

Details about these 20 drift times chosen by the PLS-DA model for 
pure tea, brilliant blue, carmine, carmoisine, indigo carmine, sunset 
yellow, and tartrazine can be found in Table S1 in the supplementary 
data. 

As depicted in the Venn diagram (Fig. 4), among the 20 most 
important drift times selected by the PLS-DA model, 15 were similar 
between tea and sunset yellow, and 18 were similar between carmoisine 
and indigo carmine. In contrast, there were no similar drift times be-
tween the other samples. The presence of similar drift times between 
carmoisine and indigo carmine can be attributed to the greater similarity 
in the chemical structure of these two artificial colorants compared to 
other colorants. These findings also confirm the results obtained by the 
PCA method, as illustrated in Fig. 3A. The clusters of indigo carmine and 
carmoisine appear to be closer to each other compared to the other 
clusters. Among the top 20 drift times, the pure tea, brilliant blue, 
carmine, carmoisine, indigo carmine, sunset yellow, and tartrazine 
samples exhibited 7 unique drift time patterns, which can be useful for 
their classification and discrimination. 

The PLS-DA model has demonstrated remarkable accuracy by 
achieving a 100 % success rate in distinguishing pure tea from six syn-
thetic food colorants using six components (Table S2 in the supple-
mentary data). While the results obtained by the PCA and PLS-DA 
methods yielded similarities, the methods have some fundamental dif-
ferences. The PCA and hieratical clustering methods are among unsu-
pervised algorithms that show the differences in the intrinsic properties 
of the subjects and cluster them according to their similarities without 
any prior information about the group structure of the data. Contrary to 
unsupervised methods, the PLS-DA method provides an opportunity for 
prediction purposes. Also, this method helped in selecting discrimina-
tory drift times which was not achievable using unsupervised algo-
rithms. It also should be declared that the PLS method as a multivariate 
regression method can quantitatively determine the level of the added 
colorants in tea samples while this is not easily achievable using PCA 
and clustering methods.When the objective is not to identify particular 
metabolites for classification, the ionized metabolites with the most 
significant impact - as determined by drift times and peak intensities - 
are effectively employed during the modeling process. 

Quantification of synthetic colorants in adulterated tea using the PLSR 
model 

The PLSR method was employed to accurately determine the per-
centage of synthetic colorants added to pure tea. PLSR is a widely used 
chemometric technique known for its accurate prediction and mea-
surement of adulteration or changes in food quality with minimal error 
and high precision (Garrido-Delgado et al., 2018; Zeng et al., 2023). 

Fig. 5 shows the plots of the experimental amounts of colorants 
added to pure tea compared to those predicted using the PLSR method. 
To comprehensively validate the PLSR model, various performance 
metrics were considered, including the root mean square error of cross- 
validation (RMSEV), coefficient of determination of cross-validation 
(R2

V), root mean square error of calibration (RMSEC), coefficient of 
determination of calibration (R2

C), root mean square error of the test set 
(RMSET), and coefficient of determination of the test set (R2

T) (Table 1). 
The R2

C and RMSEC values evaluate the model’s predictive ability based 
on the training set. The ten-fold cross-validation approach was used for 
selecting the optimal number of components (ncomp) used. The R2

T and 
RMSET values indicate the model’s accuracy in predicting new data. To 
determine the most optimal PLSR model, it is recommended to minimize 
RMSE and ncomp while maximizing R2 for the cross-validation pro-
cedure (Cozzolino et al., 2004; Qin et al., 2015). 
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Fig. 3. A) PCA score plot of the first two principal components (PCs) for ion mobility spectra of pure tea and six synthetic colorants. B) Heatmap dendrogram for ion 
mobility spectra of pure tea and six synthetic colorants. 
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The results presented in Table 1 demonstrate a strong correlation 
between the actual and predicted percentages of synthetic colorants 
added to pure tea in both test and train data sets. The PLSR model 
proved to be highly efficient in predicting all six synthetic colorants. 
Among the colorants, when predicting tartrazine percentages, the model 
with ncomp = 10 had the highest RMSET (0.133) and the lowest R2

T 
(0.986). On the other hand, the model developed to predict carmoisine 
percentages was found to be the most reliable, accurately predicting the 
percentages of carmoisine added to pure tea with the lowest RMSET 
(0.059) and the highest R2T (0.997) using 8 components. These research 
findings align with two previous studies conducted on identifying and 
measuring artificial colorants in saffron and tea (Fattahi et al., 2023; Wei 
et al., 2020). However, the accuracy of the results obtained in this 
research surpassed those of two previous studies. In Fattahi’s report 
(Fattahi et al., 2023), the PLSR method was found to be capable of 
detecting the amount of four artificial colorants in saffron at concen-
trations of 10 %, 20 %, and 30 %. The R2 and RMSE values obtained from 
analyzing the IMS-CDI- data ranged between 0.880 and 0.954 and 
2.39–3.53, respectively. Wei et al. (2020) obtained an R2 value of 0.972 
and a mean relative difference of − 2.11 when detecting carmine in black 
tea through the analysis of HPLC data using the MLP method. 

The accuracy of the research can be attributed to the careful 
consideration of the set of peaks obtained from the IMS device. These 

peaks serve as distinct identifiers for each sample. Rather than focusing 
on a specific type of metabolite, our study concentrated on a group of 
effective metabolites that acted as a unique fingerprint for each sample. 
For example, if only a single metabolite’s peak was analyzed, it would 
have been difficult to detect small instances of fraud, as tea and sunset 
yellow have similar peaks in the 8.4–9.0 ms time range. However, by 
analyzing the pattern of the peak set, the research was able to detect 
even the most subtle cases of fraud. 

Conclusions 

In conclusion, our study highlights the successful utilization of IMS 
and chemometric methods including PCA, hieratical clustering analysis, 
PLS-DA, and PLSR analysis, to effectively differentiate and determine 
the concentrations of six synthetic colorants in pure tea without the 
necessity of precise metabolite identification. This method offers 
numerous advantages, including cost-effectiveness, efficiency, user- 
friendliness, and environmentally sustainability, making it highly 
applicable in identifying and quantifying adulterants in beverages, food, 
and agricultural products. 

Fig. 4. Interactive Venn diagram of 20 selected drift times for pure tea and 6 synthetic colorants.  
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Table 1 
The number of components (ncomp), root mean square errors (RMSE), and the coefficient of determination (R2) for validation, calibration, and test set obtained 
through PLSR modeling for the quantification of synthetic colorants added to tea.  

Sample ncomp R2
V RMSEV R2

C RMSEC R2
T RMSET 

Brilliant Blue 8  0.992  0.107  0.993  0.093  0.996  0.075 
Carmine 8  0.994  0.097  0.994  0.085  0.993  0.095 
Carmoisine 8  0.995  0.086  0.995  0.074  0.997  0.059 
Indigo Carmine 9  0.993  0.086  0.994  0.079  0.993  0.089 
Sunset Yellow 10  0.994  0.087  0.995  0.077  0.995  0.079 
Tartrazine 10  0.993  0.094  0.995  0.075  0.986  0.133  
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