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High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude
acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on
physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of
cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether
high altitude training can activate autophagy or whether high altitude training can improve exercise performance through
exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the
improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with
autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training.

1. Background

High altitude training is one of the effective strategies for the
improvement of exercise performance for many exercise
events. Since it has been proposed in the 1960s, high altitude
training has been extensively explored, but it is still debated
among exercise physiologists all over the world [1–3]. Cur-
rently, high altitude training has gained tremendous
attention and extensive investigation as the hot topic for
improving exercise performance of athletes. The dual stimu-
lation from hypoxia and exercise training can induce high
altitude acclimatization, thereby increasing respiratory fre-
quency [4], accelerating heart rate [5], elevating hemoglobin
level and red cell volume [6], improving blood volume [7],
promoting blood flow rate, enhancing capillary density [8],
and reducing blood lactate concentration [9], which can
further improve the function of cardiovascular system, local
blood supply, lactic acid tolerance capacity, and maximal
oxygen consumption (VO2max) of the athlete [10]. Its under-
lying molecular mechanisms on physiological functions and

exercise performance of athletes are still vague. Similarly,
autophagy has been confirmed to be involved in a series of
physiological and pathological processes. Autophagy is a cel-
lular self-consumption process characterized by the seques-
tration of bulk cytoplasm, long-lived proteins, and damaged
cellular organelles in double membrane autophagosomes
that are delivered to lysosomes for degradation [11], which
process can be activated under the situations in response to
starvation [12], oxidative stress [13], hypoxic stimulus [14],
or organelles, and nonfunctional protein accumulation [15].
The organism during exercise has a sharp increase in the con-
sumption of energy and oxygen, thus resulting in cellular
deprivation of nutrition and oxygen, and increased reactive
oxygen species (ROS) generation [16] and calcium [17],
and correspondingly inducing autophagy to adapt the unfla-
vored cellular environment. Meanwhile, exercise-induced
autophagy can be observed in multiple tissues and organs
including skeletal muscle, cardiac muscle, liver, pancreas,
adipose tissue, and cerebral cortex [18–21]. Previous studies
have shown that exercise training can enhance autophagy
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to maintain normal physiological activities of skeletal
muscle [22], inhibit apoptosis caused by myocardial infarc-
tion, reduce myocardial cell damage, and improve cardio-
vascular function [23]. But physical inactivity or excessive
exercise may cause excessive activation of autophagy or
apoptosis, thus resulting in muscle atrophy [24] and myo-
dynamia [25].

On the other hand, whether high altitude training can
activate autophagy or whether high altitude training can
improve exercise performance through an autophagy-
dependent or autophagy-independent manner is still unclear.
In this article, we attempt to summarize current research
advances of high altitude training in the improvement of
exercise performance to explore its corresponding molecular
mechanisms or signal pathways associated with autophagy.

2. Autophagy

In 1963, Christian de Duve first proposed the concept of
autophagy. The word of autophagy is originally derived from
Greek. “Auto”means self, and “phagy”means to eat, suggest-
ing that autophagy is the process for digesting cell’s own
materials [26, 27]. Autophagy presents in all types of eukary-
otic cells with the involvement of normal or abnormal devel-
opment of cells so that it is also associated with a series of
diseases [28–31]. Autophagy is an important process for the
degradation of endogenous substrates such as long-lived pro-
teins and damaged cellular organelles in cells in the presence
of lysosomes. Autophagy can stabilize intracellular environ-
ment through modulating cell survival, cell self-renewal,
and vitality [32].

2.1. Classification of Autophagy. Usually, autophagy can be
divided into three forms including macroautophagy, micro-
autophagy, and chaperone-mediated autophagy [33]. Among
these three forms of autophagy, macroautophagy is the most
widely studied. The following mentioned autophagy refers to
macroautophagy. According to its selectivity of degradation,
autophagy can be divided into nonselective autophagy and
selective autophagy [34, 35]. The nonselective autophagy
refers to nonselectively degrading cytoplasmic components,
and the selective autophagy refers to selectively degrading
cellular organelles or components [36], which includes mito-
chondrial autophagy (mitophagy), endoplasmic reticulum
autophagy (ER-phagy), peroxisomal autophagy (pexophagy),
and lipophagy [37].

2.2. The Process and Regulatory Molecular Mechanisms of
Autophagy. The autophagic process, an independent double
membrane structure-phagocytic vacuole, is initiated and
extended for engulfing aged or denatured proteins and DNAs
as well as dysfunctional organelles for the degradation once
the formed autophagosomes are coupled with lysosomes
[27, 38]. The regulation of autophagy mainly depends on
the coordination and cooperation between the system and
signal pathway. Autophagy is mainly regulated autophagy-
related genes (Atgs). So far, about 40 Atgs have been identi-
fied during the regulatory processes; most of which are also
highly conservative in eukaryotes [38].

2.2.1. Atg1/ULK1 Kinase Complex Induces the Initiation of
Autophagy. Atg1/ULK1 kinase complex plays an important
role in autophagy initiation. In mammalian cells, Atg1
homologue that initially found to be able to trigger autoph-
agy [39] is Unc-51-like autophagy activating kinase 1 and 2
(ULK1 and ULK2) [40, 41]. In the absence of glucose or
energy, ULK1 activity can be regulated by adenosine
monophosphate-activated protein kinase (AMPK). AMPK
can result in the direct activation of ULK1 by phosphorylat-
ing multiple serine sites in the central region of ULK1 [42].
AMPK also can activate ULK1 indirectly by inhibiting mam-
malian target of rapamycin complex 1 (mTORC1) through
phosphorylating raptor subunit of mTORC1 [43], thereby
resulting in the phosphorylation of downstream Atg13,
Beclin1, and VPS34 substrates [44], and then inducing the
occurrence of autophagy. The regulation of signal pathway
associated with autophagy can be divided into mammalian
target of rapamycin- (mTOR-) dependent signal pathway
and mTOR-independent signal pathway [45]. Under the
condition of hypoxia and starvation, the occurrence of
autophagy is mainly regulated by mTOR signal pathway [44].

2.2.2. PI3K Kinase Complex Participates in the Expansion and
Maturation of Autophagic Vacuoles. Class III phosphoinosi-
tide 3-kinase (PI3K) plays the most important role in autoph-
agy in mammals. It can phosphorylate phosphatidylinositol
to produce phosphatidylinositol 3-phosphate (PI3P) [46]
and then participate in the formation and maturation of
autophagic vacuoles. More than 30 Atg proteins are assem-
bled into a preautophagosomal structure (PAS) on the
vesicular membrane [47]. Beclin1/(Atg6) is used as the scaf-
folding protein for class III PI3K complex [48], which can
combine with Atg9, Atg14L, and UVRAG to form a PI3K
core complex [49] via the combination of VPS34-p150
(VPS15 orthologous), thereby triggering autophagy.

With the support of the ubiquitin coupling system,
Atg10, Atg7, Atg3, Atg8/LC3, Atg4, and Atg12-Atg5-
Atg16L1 are eventually recruited to PAS and then involved
in vesicular elongation and autophagosome maturation.
LC3-II is a surface marker of autophagic vacuoles, and the
amount of LC3-II can indirectly reflect the level of autophagy
in cells [50]. LC3-I in cytoplasm combined with phosphati-
dylethanolamine (PE) through a series of catalytic Atg7 and
Atg3 to form membrane-bound LC3-II that is localized in
autophagy precursor and autophagosome membranes. Once
autophagosomes fuse with lysosomes, LC3-II can be degraded
by hydrolytic enzymes in lysosomes [51]. Therefore, LC3-II
or LC3-II/LC3-I ratio is commonly used as the molecular
marker for evaluating the induction of autophagy [52].

2.2.3. p62/SQSTM1 Is Involved in the Degradation of
Autophagolysosomes. Autophagosomes are fused with lyso-
somes to form autophagolysosomes through acidification.
Autophagic adaptor p62/SQSTM1 executes specific identifi-
cation, separation, and transport [37] of p62 or its substrate
degradation, thus releasing nutrients and ATP for cell recy-
cling [53]. In addition, p62 also has a negative correlation
with autophagy activity, which reflects lysosome activity of
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autophagolysosomes and autophagic flux for evaluating the
functional status of autophagy [54].

3. High Altitude Training Improves the
Function of Skeletal Muscle

Over the decades, endurance athletes try to improve exercise
performance through high altitude training. High altitude
training can result in the increase of VO2max, but the exercise
performance is not completely associated with VO2max. High
altitude training can also result in other changes of nonblood
factors [10], such as energy saving, lactic acid threshold, and
oxygen utilization of muscle. Upon the stimuli from hypoxia
and exercise, the body can produce a variety of adaptive
responses such as increased muscle mass and capillary num-
ber in skeletal muscle and increased ratio of capillary and
fibers. Previous study has demonstrated that high intensity
training under hypoxic environment can promote the
mRNA expression of vascular endothelial growth factor
(VEGF) in skeletal muscle, thus improving oxygen transpor-
tation and intake in muscle tissues [55, 56]. In addition,
hypoxic training can also enlarge the cross-sectional area
(CSA) of skeletal muscle [57]. The body compositions after
a 3-week high altitude exposure have shown that training in
high altitude presents increased muscle mass and decreased
body mass at the same time [58]. Exercise is also an impor-
tant factor that induces protein synthesis in muscle tissue
and muscle hypertrophy via activating Akt-mTOR-p70S6K
signal axis. Treadmill training can attenuate the expression
of MuRF1, atrogin-1, and myostatin (Mstn) and recover pro-
tein kinase B (Akt or PKB) and p70S6 kinase activity as well
as forkhead box O3 (FoxO3) phosphorylation during the
impact of cisplatin, thereby mitigating cisplatin-induced
muscle atrophy [59]. Although the increase in CSA and
strength endurance or capacity of muscle is observed in the
hypoxia group, there are no indications that hypoxic training
is superior to normoxic training [60]. Furthermore, the study
has demonstrated that exercise training can synergize hyp-
oxic stress stimuli and reduce blood flow in skeletal muscle,
correspondingly resulting in the decreased protein synthesis
and the attenuated shrinking and loss of skeletal muscle
fibers [61]. The decrease in muscle fibers results in the
enhanced oxygen diffusion into muscle cell and reduced pro-
tein synthesis and energy consumption, which demonstrates
the energetic challenge in skeletal muscle through metabolic
optimization during hypoxic training [62].

Protein degradation in skeletal muscle is mainly con-
trolled by two proteolytic systems, namely ubiquitin protea-
some system (UPS) and autophagy-lysosome system (ALS).
Several studies have shown that autophagy is required for
the control of skeletal muscle mass under catabolic condi-
tions and plays an important role in maintaining the homeo-
stasis and integrity of skeletal muscle [63], especially the
autophagy at the appropriate level. Previous studies have
proved the importance of autophagy in skeletal muscle of
Atg7 gene knockout rats, and autophagy inhibition can lead
to muscle atrophy and myopathy [64]. The functional status
or level of autophagy is the determinant for the health of
skeletal muscle. High-level autophagy can cause the decrease

in the quality of skeletal muscle; similarly, too low-level
autophagy can result in the excessive degradation of skeletal
muscle or myasthenia [65]. The decreased LC3 level is
observed in aged muscle, which illustrates that sarcopenia is
highly correlated with the deficient or dysfunctional autoph-
agy [18, 66]. Thus, the reduction in the adaptive plasticity of
aged muscle is associated with the decrease in disuse-induced
autophagy. These data indicate that the expression of
autophagy-related proteins and their localization to mito-
chondria are not decreased in aged muscle; however, the
induction of autophagy in response to disuse, along with
downstream events such as lysosome function, is impaired.
This may contribute to an accumulation of dysfunctional
mitochondria in aged muscle [67]. The increased expression
of Beclin1 and LC3B proteins is observed in cachectic cancer
patients, suggesting autophagy induction in cancer-induced
muscle wasting [68]. The aggregation of ubiquitin and p62/
SQSTM1 proteins has also been observed in skeletal muscle
of the patients with myopathy- or autophagy-specific gene
knockout rats and the mice with sarcopenia [66, 69]. More-
over, p62/SQSTM1-positive fibers are significantly smaller
than p62/SQSTM1-negative fibers in mice [66]. Autophagy
defects also can result in abnormal glucose metabolism and
decreased exercise capacity of mice [70].

The adaptation of skeletal muscle to exercise and the
improvement of exercise performance are highly correlated
with the activation of autophagy [22]. There is difference in
basal autophagic protein expression and autophagic flux
between oxidative and glycolytic muscle. Under the basal
autophagy, slow-twitch muscle fibers are obviously higher
than hybrid fibers and fast-twitch muscle fibers [22]. Com-
pared with oxidative muscle, specific autophagic markers
(LC3-I, LC3-II, and SQSTM1) are basally lower, but basal
autophagic flux is higher in glycolytic muscle [63].

The autophagy in skeletal muscle response to endurance
exercise is first described in 1984. The dramatic high-
intensity treadmill training of mice has shown that the stron-
gest autophagy can be observed within 2–7 days after exercise.
Under the observation by amicroscope, different degradation
stages of mitochondria are observed in themanner of autoph-
agic vacuole, which can be speculated that autophagy may be
“obstacles” for the generation of new muscle fibers after
exercise [71]. The 8-week eccentric endurance training can
improve the expression of LC3, Atg7, and Beclin1 in skeletal
muscle of aging mice, indicating the activation of autophagy
[72]. The upregulation in autophagy-related genes has also
been documented that the transcript levels of autophagy-
related genes such as Atg4b, Gabarap1, LC3, and BNIP3 are
enhanced after ultra-endurance exercise, indicating that
autophagy can be activated in human muscle in response to
ultra endurance exercise [73]. On the other hand, acute
resistance training and high-resistance contraction can
significantly improve the activity of mammalian VPS34
(mVPS34) that is responsible for the regulation of autophagy
through Beclin1-VPS34 and prolong the activity of mTOR
signal pathway [74, 75]. When skeletal muscle is subjected
to chronic resistance contraction, the autophagy level in skel-
etalmuscle of aging rats can be enhanced by activated insulin-
like growth factor 1 (IGF-1) and its receptor, Akt/mTOR and
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Akt/FoxO3 signal pathways, and reduced apoptosis, thus
completing the improvement of strength and quality of skel-
etal muscle [76]. Previous studies have shown that increased
basal autophagy is required for exercise-induced metabolic
adaptations [22]. Through activating autophagy, long-term
exercise-induced AMPK and Sestrin interactionmay contrib-
ute to the beneficial metabolic effects, thereby indicating that
exercise-induced autophagy can promote glucose uptake in
skeletal muscle [77].

However, excessive exercise training can lead to excessive
autophagy and induce atrophy-related gene expression or
excessive protein degradation, injury, or loss of skeletal mus-
cle, which is observed in Vastus lateralis from male subjects
with 20 km distance running [78]. In this study, the signifi-
cantly increased protein expression of Atg12 and LC3-II
and MuRF1 is observed. These factors are in charge of the
modulation of ALS and UPS pathways for accelerating pro-
tein degradation and inducing the atrophy of skeletal muscle.
Altogether, there is a robust evidence that autophagy in
skeletal muscle plays an important role in maintaining the
quality of skeletal muscle. The regulation of protein degrada-
tion by autophagy is of equal importance as protein synthesis,
so that skeletal muscle can obtain the beneficial metabolic
effects following endurance exercise training. However,
whether the improvement of aerobic capacity under hypoxic
environment is associated with the enhancement of energy
metabolism induced by activated autophagy following hyp-
oxic exercise is highly desired for further exploration.

4. High Altitude Training Improves
Cardiac Function

Cardiac function is the limiting factor that affects the endur-
ance level of athletes, and high altitude training is a common
method to improve the endurance exercise capacity of ath-
letes [79]. In 1960, Hurtado’s report has documented that
people who lived at high altitude are more likely to enhance
myocardial tolerance to ischemic and hypoxia [1]. However,
people who lived in the plateau have more coronary arteries
than those who lived in the plains [80]. For many years,
researches have described that intermittent hypoxic adapta-
tion and long-term high-altitude hypoxic adaptation have
an obvious protective effect on the heart. After hypoxic train-
ing, significant increase in cardiac output and heart-stroke
index is observed, but the heart rate change is not obvious,
suggesting that low-oxygen training can improve cardiovas-
cular function and the ability of the heart to fight ischemia
and hypoxia. The change of cardiac function in rats subjected
to hypoxic training demonstrates that low oxygen can result
in pulmonary hypertension, hypertrophy of the right heart,
and temporarily decreased weight of the left ventricular
[81]. In addition, hypoxic stimulus can upregulate mRNA
expression level of HIF-1 subunits, activate VEGF gene
transcription, enhance the stability of VEGF, promote angio-
genesis, and increase capillary density, which contributes to
the supply of oxygen and nutrients in tissues [82]. In nor-
moxia, moderate-intensity endurance training can result in
obvious hyperplasia and significant increase in volume of
rat myocardial cell mitochondria, as well as improved

mitochondrial function [83]. A series of adaptive responses
are produced in the morphology, structure, metabolism,
and function of the heart [84].

In chronic hypoxia condition, myocardial cells adapt to
chronic hypoxia stress such as energy stress, oxidative stress,
and imbalanced calcium ion concentrations by adjusting
energy metabolism, oxygen sensitivity, and calcium balance
[85], or through increasing mitochondrial biogenesis, alter-
ing the activity of mitochondrial respiratory chain-linked
enzymes, enhancing the glycolysis to increase myocardial cell
ATP production and to meet energy demands of the heart
under the condition of chronic hypoxia [86]. In hypoxia, cal-
cium/calmodulin-dependent-like protein kinase (CaMMK)
is activated by ROS accumulation and then upregulates the
expression of mitochondrial biosynthesis regulator, peroxi-
some proliferator-activated receptor gamma (PPAR-γ)
coactivator 1alpha (PGC-1α), to increase the number of
mitochondria [87]. Intermittent aerobic exercise (80–90%
maximum oxygen consumption rate) can significantly
improve protein expression levels of PPAR-γ, PGC-1α, and
mitochondrial transcription factor in cardiomyocytes post-
myocardial infarction [88], illustrating that exercise training
can improve mitochondrial biosynthesis postmyocardial
infarction. Intermittent aerobic exercise training can reverse
the reduced expression of mitofusin 2 (MFN2) and optic
atrophy 1 (OPA1) and inhibit the increased expression of
dynamin-related protein 1 (DRP1) caused by myocardial
infarction [89], which suggests that exercise training can pro-
mote mitochondrial membrane fusion of cardiomyocytes,
improve mitochondrial energy metabolism, increase resis-
tance capacity to oxidative stress of cardiomyocyte postmyo-
cardial infarction [89].

On the other hand, under the environment with exercise,
anoxic or aerobic respiration, and reduced ATP production,
AMPK as energy-sensitive protein can be activated mainly
through the increased AMP/ATP ratio so as to increase glu-
cose transporter and ATP production [90–92]. Phosphor-
AMPK can modulate the metabolism by regulating the
intake and oxidation of fatty acids [93]. Activated AMPK
increases the amount of glucose transporter 4 (GLUT4)
in the membrane of cardiomyocytes [94]. The myocardial
ischemia can induce autophagy to maintain ATP level
and promote cell survival. AMPK is activated when ATP
is deficient or AMP is over accumulated, and AMPK is
the key protein involved in the regulation of myocardial
autophagy [95]. Previous study has confirmed that the
shortage of glucose and myocardial ATP level can induce
autophagy, while the ATP level reveals further fall in the
presence of autophagy inhibitor 3-methyladenine (3-MA),
which illustrates that autophagy can improve the survival
of myocardial cells by maintaining ATP at the appropriate
level in myocardial ischemia [96]. AMPK induces autophagy
through inhibiting mTORC1 by phosphorylating tuberous
sclerosis 1/2 (TSC1/2) and mTOR; on the other hand, AMPK
can phosphorylate ULK1 to activate BECN1-VPS34-VPS15
complex [49, 97]. Another study has also demonstrated that
AMPK has the effect on reducing the risk of myocardial apo-
ptosis in cardiomyocytes during hypoxia/reoxygenation
injury [98].
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Exercise training at the appropriate intensity can induce
autophagy to degrade metabolic wastes so as to maintain
the steady state of the cell [19]. Aerobic exercise also can
induce autophagy to protect myocardial cells [99, 100].
According to the previous study, LC3-II/LC3-I ratio in
mouse myocardium is more significantly higher in the
exercise group when compared with the nonexercise group,
suggesting that exercise training can reduce myocardial
infarction during myocardial cell injury in mice, enhance
cardiovascular function by improving autophagy, and pro-
mote the degradation of damaged proteins [23]. Autophagy
is activated to remove the damaged mitochondria and reduce
the release of cytochrome C (Cyt C), thereby delaying or
inhibiting apoptosis, which plays the protective role in myo-
cardial cells [101]. Autophagy provides the material basis for
myocardial development and survival through degrading
denatured proteins and generating amino acids in myocar-
dial cells with normal and moderate stress. The myocardial
ischemia can induce autophagy to maintain ATP level in
cells, thus maintaining myocardial energy metabolism and
function, as well as promoting myocardial cell survival.
Myocardium is rich in mitochondria, while adverse environ-
ment can lead to mitochondrial damage, thus releasing
apoptosis factors and inducing apoptosis [70]. Autophagy
can degrade and recycle organelle components to selectively
remove damaged mitochondria. High altitude training under
dual stimuli of hypoxia and exercise training induces the
autophagy of cardiomyocytes to remove the aged mitochon-
dria during oxidative stress or oxidative damage, so as to
ensure sufficient number of healthy myocardial mitochon-
dria for the maintenance of energy conversion at high
efficiency, which could be the reasonable mechanism for
increasing aerobic exercise capacity by high altitude training.

5. High Altitude Training Induces Mitophagy to
Improve Energy Metabolism

Mitochondria are sensitive to the change in internal and
external environments of cells, thus regulating the metabo-
lism of the cells as an important hub for the control of cell
survival and death signal pathways. Mitochondria are the
most sensitive organelles to hypoxia. Its response to hypoxia
is mainly due to oxidative stress and energy metabolism dis-
orders to adjust the adaptive change in the morphology and
function of mitochondria [102]. During high altitude train-
ing, the body can produce a large number of ROS, and exces-
sive ROS can easily cause oxidative damage of tissues [103].
At a normal physiological state, 95% of ROS in cells are
derived from mitochondria [104]. ROS is the by-product
during the respiration process of mitochondria and can be
neutralized by antioxidant systems in the body. Mitochon-
dria are not only the major places to produce endogenous
free radicals, but also the target for the attack from free rad-
icals [105]. Excessive ROS can produce extensive damage to
mitochondria, decrease the membrane potential and the
opening of mitochondrial permeability transition (MPT)
pore, and release proapoptosis and necrosis factors [106].

In 2005, a study has demonstrated the mitochondrial
autophagy due to the decrease of mitochondrial membrane

potential and the opening of MPT pore, in which the concept
of mitochondrial autophagy (mitophagy) is formally put
forward [107]. Mitophagy often occurs in dysfunctional
mitochondria following damage or stress. As a defense mech-
anism for the removal of impaired mitochondria and exces-
sive production of ROS, mitophagy ensures the stability of
mitochondrial function in cells [30]. Under the situation of
defective mitophagy, the overproduction of ROS will induce
apoptosis [108]. In order to maintain the homeostasis of cells,
the removal of impaired or unnecessary mitochondria for
maintaining the balance of the quality and quantity of mito-
chondria is highly required [109]. When cells are in a harsh
environment, too many mitochondria will be aggravated
[110]. Mitophagy can promote the turnover of mitochondria
and prevent the accumulation of impaired mitochondria
[111]. The decreased mitochondrial membrane potential
may lead to mitophagy, which requires the involvement of
Parkin and phosphatase and tensin homolog- (PTEN-)
induced putative kinase 1 (Pink1) [112, 113]. Under the
condition with starvation, rapid degradation of mitochon-
dria from cultured liver cells can be observed, and the
inhibitor of MPT pore cyclosporin A (CsA) can inhibit
membrane potential to reduce and suppress mitophagy at
the same time [114]. The membrane potential of some
progeny of mitochondria during division is too low and
functional disorder, so that they will be degraded by mito-
phagy in priority.

Long-term exposure in the plateau environment can result
in mitochondrial autophagy and reduced total mitochondrial
volume or density in skeletal muscle [115]. Oxidative stress
can be stimulated by hypoxia, and ischemia/reperfusion, thus
upregulating Beclin1 and inducing autophagy [116, 117].
Beclin1 combined with PI3K can adjust the localization of
ATG proteins in autophagy precursor structure [118]. The
expression of BNIP3 induced by hypoxia-inducible factor 1
(HIF-1) plays an important role in the constitutive expression
of Beclin1 and Atg5, indicating that hypoxia can induce
mitochondrial autophagy in cells [119]. HIF-1 can modulate
the interaction between B-cell lymphoma 2 (Bcl-2) and
BNIP3, which leads to the selective autophagy of mitochon-
dria or inhibits mTOR for inducing autophagy [120]. HIF-
1a as the oxygen balance-regulating transcription factor is
recognized as the “master regulator” of hypoxia signaling
in cells [115]. Under hypoxic environment, HIF-1 is acti-
vated, and abundant accumulation of HIF-1a subunit can
initiate the transcription of a variety of low-oxygen reaction
genes and induce the expression of target genes [121], thus
correspondingly initiating a wide range of adaptation to
maintain oxygen delivery. The NIX-dependent (also called
BINP3L-dependent) decrease of mitochondrial membrane
potential is important during the process of mitophagy
[122]. Recent studies have shown that the phosphorylation
of LC3-interacting region (LIR) in Bnip3 can promote the
interaction between Bnip3 and LC3B to induce mitophagy,
thereby resulting in the clearance of damaged mitochondria,
and reduce mitochondrial injury in myocardial cells [123].
In addition, previous studies have also demonstrated that
the increase of erythropoietin (EPO) is an adaptive response
to hypoxia caused by HIF-1. HIF-1 has been confirmed to
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modulate the expression of genes responsible for iron
absorption and transport and hemoglobin synthesis [115].
It is reported that NIX plays a key role in the regulation
of erythroid maturation through mitophagy. NIX−/− mice
are characterized bydeveloping anemiawith reducedmatured
erythrocytes and compensatory expansion of erythroid
precursors. Erythrocytes in the peripheral blood of NIX−/−

mice show mitochondrial retention and reduced lifespan
[122]. Previous studies have also shown that reticulocytes
become matured red blood cells through mitophagy to
remove dysfunctional mitochondria, and BNIP3L of
mitochondria-mediated interaction process is correlated
with mitophagy [124].

Exercise training can promote the biogenesis of mito-
chondria; at the same time, it also can remove the aged or
damaged mitochondria by mitophagy to ensure sufficient
number of healthy mitochondria for maintaining high effi-
ciency of energy metabolism [125]. Therefore, moderate
exercise training is an effective way against the injury caused
by high-altitude hypoxic exposure [126]. Hypoxia can induce
mitochondrial autophagy. Exercise also can promote mito-
phagy. Exercise training under low-oxygen condition can
cause mitochondrial stress response to hypoxic stimuli. If
excessive ROS induced by high altitude training can cause
mitophagy to maintain cellular functions in hypoxic environ-
ment and the signal pathways of mitophagy induced by
hypoxic training should be further explored. In addition,
although autophagy or microRNA-mediated autophagy is
involved in regulating the removal of organelles to promote
the adaptation to exercise, and functional prevention,
recovery, and improvement through exercise intervention
[31, 127, 128], the underlying molecular mechanisms

remain to be explored. Similarly, whether the increase of
erythrocytes caused by high altitude training is correlated
with mitophagy and erythrocyte maturation is also highly
necessary for further investigation.

6. The Prospects of High Altitude Training

In recent years, the impact of exercise training on autophagy
becomes a hot spot in the field of exercise science. Exercise
training can accelerate the metabolism of proteins, glucose,
and fatty acids, improve mitochondrial biogenesis and pro-
mote angiogenesis, and delay the aging of skeletal muscle.
These effects may be related to autophagy induced by
exercise training. The reasonable mechanism of high altitude
training-induced autophagy to improve exercise perfor-
mance is summarized in Figure 1. High altitude training
may induce autophagy and mitophagy so as to maintain the
quality of skeletal muscle and remove dysfunctional mito-
chondria, thereby maintaining high efficiency of energy
metabolism to meet the increased demand for energy. On
the other hand, high altitude training may activate HIF-1 to
stimulate the expression of EPO and VEGF, thereby increas-
ing hemoglobin mass and capillary density of muscle. In con-
clusion, autophagy is a promoter for exercise performance
during high altitude training. The underlying molecular
mechanism of exercise-induced autophagy during hypoxic
training is still unclear and less explored. Therefore, further
studies are highly necessary. Hypoxic training-induced
autophagy may provide a new field to explore the molecular
mechanisms of adaptive response to high altitude training.
Moreover, the exploration and validation of measurable
autophagic biomarkers during high altitude training may

High altitude training

ROS

PGC1-�훼

Mitochondrial
biosynthesis

GLUT4

Energy
metabolism

Mechanisms of high altitude training to improve exercise performance

The quality of
skeletal muscle

Dysfunctional
mitochondria

Hemoglobin
mass

Capillary density
of muscle

Autophagy

Beclin1

ULK1
Bnip3

Mitophagy EPO VEGF

AMP/ATP

AMPK

HIF-1

Figure 1: The comprehensive underlying mechanisms of high altitude training to improve exercise performance.
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have the potential for developing the strategies to monitor
exercise fatigue, control training intensity, and conduct
athlete talent screening.
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