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Alport syndrome is a hereditary glomerular nephritis associated with hearing loss and eye abnormalities
and is classified as X-linked Alport syndrome, autosomal recessive Alport syndrome, and autosomal
dominant Alport syndrome. Autosomal dominant Alport syndrome is caused by a mutation in the gene
encoding type IV collagen α3 (α3[IV]); (COL4A3), or α4 (α4[IV]); (COL4A4). Autosomal dominant Alport
syndrome progresses more gradually than male X-linked Alport syndrome and autosomal recessive Alport
syndrome. Differentiating autosomal dominant Alport syndrome from thin basement membrane ne-
phropathy, which shows better kidney prognosis, remains challenging. Because autosomal dominant
Alport syndrome is linked to a heterozygous mutation, type IV collagen is produced by the wild-type allele,
and all α(IV) chains are supposed to be normally expressed. In this study, the pathologic findings of a
patient with Alport syndrome with a novel COL4A4 heterozygous nonsense mutation were investigated.
We observed weaker staining of α5(IV) in the glomerular basement membrane and enhanced expressions
of α2(IV), laminin, and fibronectin, which were assumed to be caused by compensatory mechanisms for
lack of enough α3α4α5(IV) expression in the glomerular basement membrane. These findings may be
useful not only for differentially diagnosing autosomal dominant Alport syndrome from thin basement
membrane nephropathy, but also for determining the extent of progression and predicting kidney
prognosis.
© 2019 The Authors. Published by Elsevier Inc. on behalf of the National Kidney Foundation, Inc. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
INTRODUCTION

Alport syndrome is a hereditary glomerular nephritis
associated with hearing loss and eye abnormalities and is
classified as X-linked Alport syndrome, autosomal recessive
Alport syndrome, or autosomal dominant Alport syn-
drome.1 X-linked Alport syndrome is caused by a mutation
in type IV collagen α5 chain (α5(IV)) gene. Autosomal
recessive Alport syndrome and autosomal dominant Alport
syndrome originate because of different mutations in the
type IV collagen α3 (α3[IV]) gene (COL4A3) or α4 (α4
[IV]) gene (COL4A4). Autosomal dominant Alport syn-
drome progresses more gradually than what is observed in
the cases of X-linked Alport syndrome in males and
autosomal recessive Alport syndrome.

Notably, differentiating autosomal dominant Alport
syndrome from thin basement membrane nephropathy,
which shows better kidney prognosis, remains chal-
lenging. Pathologically, Alport syndrome shows thick-
ening and lamellation of the glomerular basement
membrane (GBM); conversely, thin basement membrane
nephropathy shows only GBM thinning. In heterozygous
COL4A3 knockout mice, only GBM thinning initially oc-
curs, as observed in thin basement membrane nephropa-
thy. However, GBM thickening and lamellation, as seen in
Alport syndrome, manifest with aging.2 Heterozygous
mutations in COL4A3 or COL4A4 were detected inw40% of
thin basement membrane nephropathy cases.3 Several pa-
tients who were diagnosed with thin basement membrane
nephropathy later developed kidney failure.4 Collectively,
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among patients initially diagnosed with thin basement
membrane nephropathy, there may be many more patients
with autosomal dominant Alport syndrome. Thus, a recent
report has advocated for classifying Alport syndrome as X-
linked, autosomal, and digenic without the name of thin
basement membrane nephropathy.5

In GBM, the α3(IV), α4(IV), and α5(IV) chains create
trimers that form collagen fibers.1 In male X-linked Alport
syndrome and autosomal recessive Alport syndrome,
production of 1 α chain is insufficient, while no α3(IV),
α4(IV), or α5(IV) chains are expressed in the GBM.
However, in female X-linked Alport syndrome, when a
normal α5(IV) chain is present, 1 allele is inactivated in the
X chromosome and expressed as a mosaic α5(IV).6 Because
autosomal dominant Alport syndrome is a heterozygous
mutation, type IV collagen is produced from the normal
allele, and all α(IV) chains are normally expressed.7,8

Expression of type IV collagen α1 (α1[IV]) and α2(α2
[IV]) was observed in the GBM of individuals with Alport
syndrome and in COL4A4 knockout mice.9-11 Additionally,
increased ectopic expression of extracellular matrix, such
as laminin and fibronectin, was observed in the GBM of
patients with Alport syndrome and COL4A3 knockout
mice.4,12,13

The pathologic findings of a patient with Alport syn-
drome with a novel COL4A4 heterozygous nonsense mu-
tation were investigated. We observed weaker staining of
α5(IV) in the GBM and enhanced expressions of α2(IV),
laminin, and fibronectin.
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Case Report
CASE REPORT

The patient was a woman in her early 20s whose chief
concern was microscopic hematuria. Her maternal grand-
father was undergoing hemodialysis and her mother and
younger brother had microscopic hematuria. The patient
had had occult blood in her urine every year for the past
19 years. At presentation, urinary protein excretion was
2+, 0.91 g/g of creatinine; occult blood was 3+; and uri-
nary sediment erythrocytes were 50 to 99/high-power
field (few poikilocytes); thus, the patient was admitted to
our department for kidney biopsy. Serum creatinine level
was 0.6 mg/dL, and estimated glomerular filtration rate
was 101.9 mL/min/1.73 m2.

Light microscopy revealed that 5 of 30 glomeruli had
completely sclerosed, but there were no crescents, adhe-
sion, or focal glomerular sclerosis. Although periodic
acid–methenamine silver staining showed no loop dupli-
cation or spike formation, there was loop wrinkling, par-
tial hypochromasia, and lamellation (Fig 1). Fluorescent
Figure 1. (A-C) Light microscopy and (D, E) electron micrographs
syndrome. (A) Glomeruli show no proliferative or sclerotic change
Segmental irregular thickening of glomerular basement membrane
acid–methenamine silver stain; original magnification, B: ×200, C:
heads) with segmental wrinkling (arrows). (E) Segmental lamellatio
original magnification, D: ×5,000; E: ×10,000).
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antibody analysis revealed no immunoglobulin or com-
plement deposition. Electron microscopy findings revealed
notable GBM wrinkling and loop lumen collapse and
segmented areas of mild thinning of the compact GBM
layer, but much of the GBM showed normal thickness.
Areas of lamellation and mild reticulation were observed in
the compact GBM layer (Fig 1).

In type IV collagen staining of the GBM, double-
staining of α2 and α5 indicated weak positivity with
partially reduced green α5 staining in the GBM, while α2
expression was stronger in the weakened areas (Fig 2).
Furthermore, we observed increased staining of extracel-
lular matrix, laminin, and fibronectin in the GBM in our
case as compared to the control (Fig 2).

We obtained the patient’s consent to conduct genetic
analysis for a definitive diagnosis and conducted target
sequencing with a next-generation sequencer. This
method used a gene panel targeting hereditary kidney
disease as previously described.14 We detected a
of the kidney biopsy specimen from autosomal dominant Alport
s (periodic acid–Schiff stain; original magnification, ×200). (B)
s (GBMs). (C) Enlarged figure of square in B. (B, C: periodic
×400). (D) Irregular distribution of thin GBM segments (arrow-
n and splitting in GBM (arrowheads) (uranyl acetate-lead citrate;
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Figure 2. Immunohistochemical staining of type IV collagen, fibronectin, and laminin. Type IV collagen staining findings in (A-C) con-
trol and (D-F) autosomal dominant Alport syndrome using antibodies for (A, D) α5(IV) or (B, E) α2(IV) chains. In a control kidney, (A)
the α5 chain shows positive staining in the glomerular basement membrane (GBM) and (B) α2 chain shows positive staining in the
mesangial matrix. In autosomal dominant Alport syndrome, (D) α5 chain shows weak positivity with partly reduced staining in GBM,
while (E) α2 chain shows positive staining in mesangial matrix and segmental upregulation in GBM. (C, F) Double labeling was per-
formed with anti-α2(IV) in red and anti-α5(IV) in green (all: original magnification, ×200). Combination of 2 monoclonal antibodies
staining α5(IV) green (fluorescein isothiocyanate; H53 rat immunoglobulin G2 [IgG2]a/κ and B51 rat IgG2a) and α2(IV) red (Texas
red; H25 rat IgG1/κ) were used (Shigei Medical Research Institute: CFT-45325). Staining findings for fibronectin and laminin in (G,
H) control and (I, J) autosomal dominant Alport syndrome. In the control kidney, (G) fibronectin and (H) laminin showed weakly pos-
itive staining in GBM. In autosomal dominant Alport syndrome, both (I) fibronectin and (J) laminin showed increased staining in GBM,
compared to control (all: original magnification, ×200). Fluorescein-conjugated goat anti-human fibronectin antibody (#55193; ICN/
CAPPEL) and rabbit polyclonal anti-laminin antibody (Z0097; Dako) were used.
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heterozygous nonsense mutation (c.C2566T:p.Q856X) in
COL4A4 (NM_000092). This novel gene mutation was
located within exon 14 in the collagenous domain.
DISCUSSION

When the glomerulus forms during the fetal stage, the
capillary loop initially comprises α1(IV) and α2(IV) pro-
duced from mesangial, endothelial, or epithelial cells. As
the glomerulus matures, α1(IV) and α2(IV) disappear
from the GBM and are replaced with network-forming
α3α4α5(IV) chains, produced exclusively by epithelial
cells.1
Kidney Med Vol 1 | Iss 6 | November/December 2019
In Alport syndrome, α5(IV) chain expression in the
GBM is used as a diagnostic tool and a prognostic factor.
α5(IV) is not expressed in the GBM in male X-linked
Alport syndrome and autosomal recessive Alport syn-
drome, which is thought to result in poor kidney prog-
nosis.15 However, in male X-linked Alport syndrome and
autosomal recessive Alport syndrome with missense or in-
frame deletion/insertion, α3α4α5(IV) trimers are formed,
albeit insufficiently, and α5(IV) chain expression is slightly
preserved, resulting in a relatively good kidney prog-
nosis.15,16 In female X-linked Alport syndrome, either the
normal or mutated α5(IV) chain is involved in the
expression, with the α5 chain expressed as a mosaic, and
393
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thus kidney prognosis is better than that in male X-linked
Alport syndrome.6 Therefore, α5(IV) chain expression is
essential for predicting kidney prognosis in Alport
syndrome.

Autosomal dominant Alport syndrome has a normal
α3(IV) chain or α4(IV) chain, and α3α4α5(IV) trimers are
formed in the GBM. Studies have shown that the α5(IV)
chain was expressed normally.7,8 However, in our patient,
part of the α5(IV) chain showed decreased expression (Fig
2). Autosomal dominant Alport syndrome cases have
generally good kidney prognosis, but several patients show
poor kidney prognosis.17,18 Our patient was still young
and thus kidney function had not declined, but sclerotic
glomeruli and weakened expression of the α5(IV) chain
may suggest her poor kidney prognosis.

In autosomal dominant Alport syndrome, if the α chain
is sufficiently expressed from 1 normal allele, GBM ho-
meostasis is maintained, and it is thought that no GBM
abnormalities appear. However, GBM abnormalities occur
in autosomal dominant Alport syndrome. Even when
expression appears normal in standard α5(IV) staining, the
amount of α345(IV) trimers may not be enough to main-
tain the GBM function. Our patient had a nonsense muta-
tion, which causes nonsense-mediated messenger RNA
decay in part, leading to a lack of collagen synthesis from
the mutated allele.19 Moreover, although truncating protein
is produced in part, the NC1 domain is deficient, so that
α3α4α5 (IV) trimers cannot be formed. In previous reports,
patients with autosomal dominant Alport syndrome had
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normal expression of the α5(IV) chain. Most patients with
autosomal dominant Alport syndrome have nontruncating
mutations, enabling the formation of α345(IV) trimers that
are unstable.7,8 Even in patients with truncating mutations,
α5(IV) expression may not have been weakened in the early
stage of Alport syndrome. Presumably, the amount of type
IV collagen to enable GBM function may have been insuf-
ficient in autosomal dominant Alport syndrome, leading to
decreased α5(IV) expression.

α2(IV) expression in the GBM was increased in our
patient (Fig 2). Although α1(IV) and α2(IV) are expressed
by mesangial cells, they are no longer expressed in the
GBM in adults.1 However, α1(IV) and α2(IV) are
expressed in the GBM of both patients with Alport syn-
drome and COL4A4 knockout mice.9-11 The α1(IV) and
α2(IV) chains are assumed to be expressed in a compen-
satory manner in Alport syndrome with weakened
expression of α3α4α5(IV).

Furthermore, laminin and fibronectin expression levels
were increased in the GBM in our patient (Fig 2). In Alport
syndrome, GBM thickening and lamellation occur, unlike
in thin basement membrane nephropathy. The extracel-
lular matrix contributes to these changes in the GBM to
replace type IV collagen.10 Expression of extracellular
matrix, such as laminin and fibronectin, is also enhanced
in patients with Alport syndrome and COL4A3 knockout
mice,4,12,13 which suggests the presence of a compensa-
tory mechanism, similar to the manner of enhanced α2
expression in the GBM.
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Diffuse thinning of the GBM is reported as the single
disease trait in 10% to 20% of Alport syndrome cases,
mostly in children.20 Similar findings were observed in the
early stage of COL4A3 knockout mice.4 Thus, a portion of
thin basement membrane nephropathy may merely be the
clinical precursor of autosomal dominant Alport syn-
drome. Reduced collagen expression initially causes GBM
thinning like thin basement membrane nephropathy, fol-
lowed by compensatory increases of extracellular matrix,
causing GBM thickening and lamellation. This hypothesis
is consistent with a previous report advocating for a new
classification of Alport syndrome.5

In the new classification, it was recommended that
patients should have annual monitoring of blood pressure,
urine protein excretion, and kidney function.5 However,
there are no other more concrete proposals to ascertain
disease progression. In Alport syndrome lacking normal
α3α4α5(IV) chain function, compensatory expressions of
extracellular matrix such as α2(IV), laminin, and fibro-
nectin increase to protect the GBM. Expression levels may
reflect the progression of Alport syndrome. These findings
can be used as criteria to determine the severity of Alport
syndrome. A flowchart draft for the differential diagnosis
of Alport syndrome and thin basement membrane ne-
phropathy based on type IV collagen, laminin, and fibro-
nectin staining is shown in Figure 3. In autosomal
dominant Alport syndrome, there are different phases of
the disease in the same patient.

In conclusion, verifying α5(IV) chain expression in the
GBM in autosomal dominant Alport syndrome and extra-
cellular matrix expression such as α2(IV), laminin, and
fibronectin may enable differential diagnosis of autosomal
dominant Alport syndrome and thin basement membrane
nephropathy and may determine the extent of pathologic
progression, predicting kidney prognosis in Alport
syndrome.
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