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Abstract

Background: Hospital-acquired venous thromboembolism (HA-VTE) is a leading cause

of morbidity and mortality among hospitalized adults. Guidelines recommend use of a

risk-prediction model to estimate HA-VTE risk for individual patients. Extant models do

not perform well for broad patient populations and are not conducive to automation in

clinical practice.

Objectives: To develop an automated, real-time prognostic model for venous throm-

boembolism during hospitalization among all adult inpatients using readily available

data from the electronic health record.

Methods: The derivation cohort included inpatient hospitalizations (“encounters”) for

patients ≥16 years old at Vanderbilt University Medical Center between 2018 and

2020 (n = 132,330). HA-VTE events were identified using International Classification of

Diseases, 10th Revision, codes. The prognostic model was developed using least ab-

solute shrinkage and selection operator regression. Temporal external validation was

performed in a validation cohort of encounters between 2021 and 2022 (n = 62,546).

Prediction performance was assessed by discrimination accuracy (C statistic) and cali-

bration (integrated calibration index).

Results: There were 1187 HA-VTEs in the derivation cohort (9.0 per 1000 encounters)

and 864 in the validation cohort (13.8 per 1000 encounters). The prognostic model

included 25 variables, with placement of a central line among the most important

predictors. Prediction performance of the model was excellent (C statistic, 0.891; 95%

CI, 0.882-0.900; integrated calibration index, 0.001). The model performed similarly

well across subgroups of patients defined by age, sex, race, and type of admission.

Conclusion: This fully automated prognostic model uses readily available data from the

electronic health record, exhibits superior prediction performance compared with

existing models, and generates granular risk stratification in the form of a predicted

probability of HA-VTE for each patient.
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Essentials

• We developed a prognostic model for h

• The model uses data readily available in

• The model exhibited excellent predictio

• The prognostic model can be automated
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inpatients, prognosis, risk, safety, venous thromboembolism
ospital-acquired venous thromboembolism among adults.

the electronic health record.

n performance across a wide range of patient subgroups.

for real-time risk assessment for venous thromboembolism.
1 | INTRODUCTION

Venous thromboembolism (VTE), including deep vein thrombosis and

pulmonary embolism, is a leading cause of morbidity and mortality

worldwide [1]. The development of VTE often arises as a complication

of an acute medical or surgical admission, with most events experi-

enced by currently or recently hospitalized patients [2]. These

healthcare-associated VTEs are a significant cause of morbidity and

mortality. For adult inpatients, hospital-acquired VTE (HA-VTE) is the

leading cause of preventable in-hospital death [3]. The Institute of

Medicine (IOM) considers HA-VTE to be a preventable event, and the

Agency for Healthcare Research and Quality (AHRQ) cites it as one of

the most important safety issues facing hospitalized patients [4].

Considerable efforts have been undertaken to reduce the inci-

dence of HA-VTE. Current practice recommends the use of risk-

prediction models to estimate an individual’s risk. However, even

with recognition of the problem and the adoption of clinical decision

support tools, HA-VTE incidence is increasing [5]. While provider

prompts increase adoption of guideline-recommended therapies [6],

practice patterns typically return to baseline if the prompt is dis-

continued [7], and appropriate interventions are frequently underu-

tilized [8]. The need for automated and personalized prevention tools

for at-risk patients remains a top safety priority [4].

There are numerous published models of varying complexity for

VTE among hospitalized adults; several of the more widely used

models are described in Supplementary Table S1 [9]. Existing models

have been developed in specific cohorts of hospitalized patients (eg,

medical, surgical, or critical care). Unfortunately, there is no consensus

on the best prediction tool, and the existing options fall short of the

ideal characteristics as outlined by the AHRQ. These guiding principles

include accurately identifying high-risk while excluding low-risk pa-

tients, using information that is readily available, being easily auto-

mated into the electronic health record (EHR) for use in daily practice,

and offering actionable recommendations to providers [4].

Previous attempts to automate risk-prediction models into the

EHR have underestimated the VTE risk compared with manual cal-

culations [10]. Other highly complex models incorporate variables

unavailable to the provider at the initial evaluation, are best per-

formed prior to admission, and require too much time for use in

routine clinical practice [11]. To meet the need for an individualized

and automated assessment of HA-VTE risk, we sought to develop a
prognostic model using data available in the EHR that updates in real

time and provides nonbinary risk prediction for providers at the time

of the evaluation. We focused on VTEs that develop during hospital-

ization when providers are able to implement preventative measures.
2 | METHODS

2.1 | Study population

We obtained retrospective data on all adults (≥16 years old at the time

of admission) admitted to Vanderbilt University Medical Center

(VUMC) between January 1, 2018, and June 30, 2022. VUMC is a not-

for-profit, university-affiliated, tertiary referral hospital in Nashville,

Tennessee, that also serves as the region’s level 1 trauma center and

burn center. The study periodwas chosen to provide a large sample size

with consistentdata collection followingVUMC’s implementationof the

EpicEHR in late2017. The study cohort includedall patients admitted to

VUMC as inpatients, including elective and urgent admissions, inter-

hospital transfers, and through the emergency department. Patients

admittedmore than once during the study period contributeddata from

each unique encounter to the analysis (an “encounter” is defined as an

inpatient hospitalization and spans from the time that an admission

order is placed until the time that a discharge order is placed). Patients

admitted to the hospital under observation status were not included

unless they were subsequently changed to inpatient status. For devel-

opment of the prognostic model, we defined a derivation cohort of

inpatient encounters between January 1, 2018, andDecember31, 2020

(n = 132,330). For temporal external validation of themodel, we defined

a validation cohort of inpatient encounters between January 1, 2021,

and June 30, 2022 (n = 62,546). This study was approved by the insti-

tutional review board of VUMC.
2.2 | Data elements

Data were obtained from VUMC’s Research Derivative—a database of

clinical data derived from the electronic data warehouse and

restructured for research. The coding and data extraction were per-

formed by Research Derivative staff members and supported by a

Vanderbilt Institute for Clinical and Translational Research pilot grant.
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We used International Classification of Diseases, 10th Revision

(ICD-10) codes to identify cases of HA-VTE that were diagnosed

during each eligible encounter (Supplementary Table S2). We did not

include VTE events that developed after discharge. VTEs identified as

being present on arrival were not defined as cases. The classification

of a VTE as “present on arrival” as well as the ICD-10 coding were

performed independently of this research project by hospital coding

and billing staff in the office of Clinical Documentation Integrity. Staff

members review clinical records to determine if certain conditions

were present on arrival, including VTE. If there is uncertainty about a

specific diagnosis, a query is sent to the managing clinical team. A

random sample of 120 cases was selected for manual review (B.F.T.) to

assess the accuracy of the algorithm for International Classification of

Diseases (ICD)–based identification of VTE diagnosis that was not

present on arrival, all of which were confirmed to be the correct

diagnosis. For the manual review, radiologic identification (computed

tomography, venous ultrasound, and vascular duplex) of VTE was used

as the standard for confirmation of the diagnosis.

We screened 82potential risk factors forHA-VTE: demographic and

clinical characteristics, diagnostic procedures, vital signs, and laboratory

measurements included on complete blood counts and chemistry panels.

We focused on risk factors routinely available in EHRs that could be

captured in real time. Included components were selected based on

availability as well as association with increased risk of VTE. These ele-

ments were collated from other published risk-prediction models and an

earlier site-specific VTE prediction model. Clinical characteristics were

inferred using the established coding method for identification of Elix-

hauser comorbidity measures [12,13]. The ICD-10 codes used to calcu-

late the Elixhauser comorbidity measures were extracted from billing

codes (Supplementary Table S3), which include known comorbidities and

new diagnoses established during the encounter. We did not include

inpatient or outpatient medications or procedure codes.

For model development, we used the earliest available data dur-

ing the encounter. Categorical risk factors with unknown values

included “unknown” as a separate category; unknown values for

continuous risk factors (eg, vital signs and laboratory measurements)

were imputed using the median value in the derivation cohort [14].
2.3 | Statistical analysis

Patient characteristics were summarized using standard descriptive

statistics. To develop the prognostic model, we used logistic regres-

sion models, which provide granular risk stratification by calculating

the predicted probability of HA-VTE. We maximized the use of

available data by avoiding the arbitrary and inefficient categorization

of continuous variables and calculation of point-based scores [15].

Based on the derivation cohort (n = 132,330) with 1187 HA-VTEs, a

logistic regression model could expend as many as 80 degrees of

freedom (ie, 1 per 15 events) without overfitting [16]. More realisti-

cally, a model with <40 degrees of freedom would attain an out-of-

sample mean absolute prediction error of <0.16%, which is an

acceptable error rate for prediction of HA-VTE [17]. A parsimonious
model that balanced complexity with accuracy was identified via the

least absolute shrinkage and selection operator (LASSO), for which

multiple values of the shrinkage parameter were considered to iden-

tify the model with the lowest degrees of freedom that maintained

high discrimination accuracy as measured by the cross-validated C

statistic. Odds ratios with 95% CIs were estimated by refitting the

logistic regression model (without LASSO) with the set of variables

selected by the LASSO. For categorical variables with more than 2

categories (eg, type of admission), if the LASSO selected at least 1

category, then all categories (compared with the reference category)

were included in the model. The importance of each variable was

quantified by its Wald chi-squared statistic obtained from the logistic

regression model. In the primary analysis, continuous variables were

modeled with linear terms, and the model did not include any inter-

action terms; in sensitivity analyses, we considered restricted cubic

splines for continuous variables and included interactions of all vari-

ables with age and, separately, with a history of metastatic cancer.

Prediction performance of the final prognostic model was

assessed in the derivation and validation cohorts based on discrimi-

nation and calibration. Discrimination (ie, the ability of the model to

discriminate between cases of HA-VTE and controls without HA-VTE)

was quantified by the C statistic (ie, the area under the receiver

operating characteristic curve for binary outcomes) with 95% CIs, for

which a value of 1 denotes perfect discrimination. Calibration (ie, the

concordance between the observed and predicted probability of HA-

VTE) was quantified by the integrated calibration index (ICI); the ICI is

based on the difference between observed and predicted probabili-

ties, and a value of 0 denotes perfect calibration [18]. Prediction

performance was assessed among all patients and among patient

subgroups defined by age (<60 or ≥60 years), sex (female or male),

race (Asian or Pacific Islander, Black, Native American including

Alaskan Native, or White), ethnicity (Hispanic or not Hispanic), type of

admission (elective admissions, through the emergency department,

for trauma, interhospital transfer), and history of metastatic cancer

(yes or no) to ensure accuracy and fairness of the prognostic model.

Due to an expected decrement in calibration when performing

external validation, the prognostic model was also recalibrated to the

validation cohort by fitting a logistic regression model with HA-VTE

(as the outcome) and the linear predictor obtained by applying the

regression coefficients from the original model to the observed data

(as the predictor) [19]. All analyses were performed in R version 4.2.3

(R Foundation for Statistical Computing), including the Hmisc, rms,

and glmnet extension packages. Transparent Reporting of a Multi-

variable Prediction Model for Individual Prognosis or Diagnosis

reporting guidelines for prognostic studies were followed [20].
3 | RESULTS

The derivation cohort included 132,330 encounters from 89,311 hospi-

talized adults (2018-2020); 67,810 (75.9%), 12,756 (14.3%), and 8745

(9.8%) adults had 1, 2, and 3 or more encounters, respectively

(Supplementary Figure S1). Among encounters in the derivation cohort,



T AB L E 1 Characteristics of inpatient encounters in the derivation cohort.

Characteristic

All encounters

(n = 132,330)

Encounters with

HA-VTE (n = 1187)

Encounters without

HA-VTE (n = 131,143)

Age (y), median (IQR) 55.8 (37.0-68.4) 56.8 (42.9-67.8) 55.8 (36.9-68.4)

Female sex, n (%) 69,249 (52.3) 457 (38.5) 68,792 (52.5)

Race, n (%)

Asian or Pacific Islander 2330 (1.8) 11 (0.9) 2319 (1.8)

Black 22,115 (16.7) 239 (20.1) 21,876 (16.7)

Native American 360 (0.3) 3 (0.3) 357 (0.3)

White 103,750 (78.4) 902 (76.0) 102,848 (78.4)

Other or unknown 5469 (4.1) 46 (3.9) 5423 (4.1)

Ethnicity, n (%)

Hispanic 5032 (3.8) 39 (3.3) 4993 (3.8)

Not Hispanic 125,489 (94.8) 1123 (94.6) 124,366 (94.8)

Unknown 1809 (1.4) 25 (2.1) 1784 (1.4)

Type of admission, n (%)

Elective 31,550 (23.8) 149 (12.6) 31401 (23.9)

Emergency department 67,412 (50.9) 575 (48.4) 66,837 (51.0)

Trauma 2476 (1.9) 82 (6.9) 2394 (1.8)

Interhospital transfer 30,362 (22.9) 374 (31.5) 29,988 (22.9)

Unknown 530 (0.4) 7 (0.6) 523 (0.4)

Heart rate (bpm), median (IQR)a 85 (72-101) 80 (93-113) 85 (72-100)

BMI (kg/m2), median (IQR)b 28.1 (23.9-33.3) 27.4 (23.6-32.9) 28.1 (23.9-33.3)

Comorbidities, n (%)c

Acute kidney injury 27,219 (20.6) 656 (55.3) 26,563 (20.3)

Candidal stomatitis 1347 (1.0) 61 (5.1) 1286 (1.0)

Cardiac arrhythmia 49,872 (37.7) 995 (83.8) 48,877 (37.3)

Cerebrovascular disease 12,081 (9.1) 233 (19.6) 11,848 (9.0)

Chronic pulmonary disease 24,838 (18.8) 257 (21.7) 24,581 (18.7)

Coagulopathy 14,088 (10.6) 497 (41.9) 13,591 (10.4)

Fluid or electrolyte disorder 48,235 (36.5) 985 (83.0) 47,250 (36.0)

Hypoxemia 12,825 (9.7) 522 (44.0) 12,303 (9.4)

Metastatic cancer 9435 (7.1) 124 (10.4) 9311 (7.1)

Myocardial infarction 15,990 (12.1) 243 (20.5) 15,747 (12.0)

Other anemia 21,585 (16.3) 451 (38.0) 21,134 (16.1)

Other psychiatric disorders 13,448 (10.2) 220 (18.5) 13,228 (10.1)

Paralysis 4466 (3.4) 102 (8.6) 4364 (3.3)

Peptic ulcer disease 2110 (1.6) 60 (5.1) 2050 (1.6)

Pleural disease 6110 (4.6) 293 (24.7) 5817 (4.4)

Pneumonia 10,979 (8.3) 483 (40.7) 10,496 (8.0)

Respiratory symptoms 22,602 (17.1) 508 (42.8) 22,094 (16.8)

Thrombosis 7672 (5.8) 109 (9.2) 7563 (5.8)

Venous disease 569 (0.4) 8 (0.7) 561 (0.4)

Weight loss 8753 (6.6) 310 (26.1) 8443 (6.4)

(Continues)
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T A B L E 1 (Continued)

Characteristic

All encounters

(n = 132,330)

Encounters with

HA-VTE (n = 1187)

Encounters without

HA-VTE (n = 131,143)

Central line placed, n (%) 3892 (2.9) 405 (34.1) 3487 (2.7)

Sodium (mEq/L), median (IQR)d 138 (135-140) 138 (135-140) 138 (135-140)

Chloride (mEq/L), median (IQR)e 105 (101-108) 105 (101-108) 105 (101-108)

BUN (mg/dL), median (IQR)f 16 (11-24) 19 (13-30) 16 (11-24)

CRP (mg/dL), median (IQR)g 39.0 (10.2-115.9) 106.0 (32.0-202.2) 38.5 (10.1-113.8)

BMI, body mass index; BUN, blood urea nitrogen; CRP, C-reactive protein; HA-VTE, hospital-acquired venous thromboembolism.
aUnknown for 64,155 (48.5%) patients.
bUnknown for 9160 (6.9%) patients.
cIdentified from International Classification of Diseases, 10th Revision, Clinical Modification codes using Elixhauser comorbidity measures.
dUnknown for 21,402 (16.2%) patients.
eUnknown for 22,382 (16.9%) patients.
fUnknown for 22,389 (16.9%) patients.
gUnknown for 113,367 (85.7%) patients.
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there were 1187 HA-VTE events (9.0 per 1000 encounters). For en-

counters with vs without an HA-VTE, the in-hospital mortality rate was

179.4vs29.3per1000encounters, respectively. Patientswhodeveloped

HA-VTE were more likely to be male (Table 1). Among clinical charac-

teristics, certain findings were more likely to be found among the group

that developedHA-VTE, including the concomitant presence of a cardiac

arrhythmia (83.3%) and central line placement (34.1%).

The validation cohort included 62,546 encounters from 46,968

hospitalized adults (2021-2022); 37,948 (80.8%), 5755 (12.3%), and

3265 (7.0%) adults had 1, 2, and 3 or more encounters, respectively

(Supplementary Figure S1). Among encounters in the validation

cohort, there were 864 HA-VTE events (13.8 per 1000 encounters).

For encounters with vs without an HA-VTE, the in-hospital mortality

rate was 224.5 vs 32.2 per 1000 encounters, respectively. Patients

who developed HA-VTE were more likely to be older, male, and Black

(Table 2). As in the derivation cohort, there were certain comorbidities

such as oral candidiasis and weight loss that were more likely to be

observed among the HA-VTE group in the validation cohort.

The characteristics of the derivation and validation cohorts were

similar, with the same trends noted in both cohorts with respect to

those with and without HA-VTE. Patient characteristics summarized

according to the availability of vital signs and laboratory measure-

ments are provided in Supplementary Table S4. Patients for whom

heart rate (51.9%), metabolic panel measurements (82.8%), and C-

reactive protein levels (14.7%) were known were older and had a

greater burden of comorbidities and higher risk for HA-VTE; there

were no meaningful differences by race, ethnicity, or calendar year.

There were 10,560 ICD-10 codes that identified the 2051 encoun-

ters with an HA-VTE across the derivation and validation cohorts

(Supplementary Table S2); an individual patient with an HA-VTE at a

particular encounter could havemore than1 documented diagnosis code

at that encounter. Pulmonary embolism (2602, 24.6%) and acute embo-

lism and thrombosis of deep veins of the lower extremity (2784, 26.4%)

accounted for themajority of the identified codes,while almost 1 out of 3

ICD-10 codes identified an upper extremity event (3024, 28.6%).
The prognostic model identified via LASSO included 25 variables

(Figure 1; Supplementary Figure S2). The strongest predictor of HA-VTE

was placement of a central line (odds ratio, 3.13; 95% CI, 2.69-3.65; chi-

squared statistic, 216.8). Other important predictors were type of

admission, comorbidities (cardiac arrhythmia, fluid or electrolyte disor-

der, pneumonia, hypoxemia, recent weight loss, coagulopathy, pleural

disease, other anemia, acute kidney injury, other psychiatric disorders,

cerebrovascular disease, respiratory symptoms, peptic ulcer disease,

candidal stomatitis, and paralysis), vital signs (heart rate), and laboratory

measurements (C-reactive protein, blood urea nitrogen, sodium, and

chloride). The estimated regression coefficients for calculating the pre-

dicted probability of HA-VTE are provided in Supplementary Table S5.

The model exhibited excellent discrimination accuracy (C statistic,

0.891; 95% CI, 0.882-0.900) and calibration (ICI, 0.001) in the derivation

cohort (Table 3; Supplementary Figure S3). Modeling continuous vari-

ables using restricted cubic splines vs linear terms did not improve the

model’spredictionperformance (C statistic, 0.892). Performancewasalso

not improved by inclusion of interactions of all variables with age (C

statistic, 0.894) and a history ofmetastatic cancer (C statistic, 0.895).We

observed similar prediction performance across patient subgroups

defined by age, sex, race, ethnicity, type of admission, and history of

metastatic cancer (Figure 2). The model also exhibited excellent predic-

tion performance in the validation cohort (C statistic, 0.897; 95% CI,

0.887-0.905; ICI without recalibration, 0.003; ICI with recalibration,

0.002; Supplementary Figure S4). Although the model exhibited subop-

timal calibration at higher values for the predicted probability ofHA-VTE

(ie,≥0.20), therewere very few encounters in this higher-risk group: 699

of132,330 (0.5%) in thederivationcohortand441of62,546 (0.7%) in the

validation cohort.
4 | DISCUSSION

There are numerous prediction models for evaluating a hospitalized

patient’s risk for developing HA-VTE, but the current models are



T AB L E 2 Characteristics of inpatient encounters in the validation cohort.

Characteristic

All encounters

(n = 62,546)

Encounters with

HA-VTE (n = 864)

Encounters without

HA-VTE (n = 61,682)

Age (y), median (IQR) 55.5 (36.5-68.8) 58.0 (44.5-67.7) 55.5 (36.4-68.8)

Female sex, n (%) 32,923 (52.6) 361 (41.8) 32,562 (52.8)

Race, n (%)

Asian or Pacific Islander 972 (1.6) 12 (1.4) 960 (1.6)

Black 10,334 (16.5) 174 (20.1) 10,160 (16.5)

Native American 212 (0.3) 3 (0.3) 209 (0.3)

White 48,376 (77.3) 647 (74.9) 47,729 (77.4)

Other or unknown 3379 (5.4) 37 (4.3) 3342 (5.4)

Ethnicity, n (%)

Hispanic 2682 (4.3) 20 (2.3) 2662 (4.3)

Not Hispanic 58,755 (93.9) 819 (94.8) 57,936 (93.9)

Unknown 1109 (1.8) 25 (2.9) 1084 (1.8)

Type of admission, n (%)

Elective 14,995 (24.0) 113 (13.1) 14,882 (24.1)

Emergency department 28,596 (45.7) 348 (40.3) 28,248 (45.8)

Trauma 4690 (7.5) 147 (17.0) 4543 (7.4)

Interhospital transfer 14,198 (22.7) 256 (29.6) 13,942 (22.6)

Unknown 67 (0.1) 0 (0) 67 (0.1)

Heart rate (bpm), median (IQR)a 86 (72-101) 94 (78-110) 85 (72-101)

BMI (kg/m2), median (IQR)b 28.2 (24.0-33.5) 27.9 (23.7-33.3) 28.2 (24.0-33.5)

Comorbidities, n (%)c

Acute kidney injury 13,659 (21.8) 475 (55.0) 13,184 (21.4)

Candidal stomatitis 571 (0.9) 53 (6.1) 518 (0.8)

Cardiac arrhythmia 24,595 (39.3) 748 (86.6) 23,847 (38.7)

Cerebrovascular disease 5901 (9.4) 194 (22.5) 5707 (9.3)

Chronic pulmonary disease 12,167 (19.5) 218 (25.2) 11,949 (19.4)

Coagulopathy 7890 (12.6) 401 (46.4) 7489 (12.1)

Fluid or electrolyte disorder 24,422 (39.0) 738 (85.4) 23,684 (38.4)

Hypoxemia 6631 (10.6) 374 (43.3) 6257 (10.1)

Metastatic cancer 4398 (7.0) 77 (8.9) 4321 (7.0)

Myocardial infarction 7884 (12.6) 196 (22.7) 7688 (12.5)

Other anemia 11,550 (18.5) 326 (37.7) 11,224 (18.2)

Other psychiatric disorders 7563 (12.1) 170 (19.7) 7393 (12.0)

Paralysis 2267 (3.6) 101 (11.7) 2166 (3.5)

Peptic ulcer disease 948 (1.5) 40 (4.6) 908 (1.5)

Pleural disease 2965 (4.7) 187 (21.6) 2778 (4.5)

Pneumonia 5580 (8.9) 398 (46.1) 5182 (8.4)

Respiratory symptoms 10,340 (16.5) 392 (45.4) 9948 (16.1)

Thrombosis 3679 (5.9) 68 (7.9) 3611 (5.9)

Venous disease 320 (0.5) 3 (0.3) 317 (0.5)

Weight loss 3949 (6.3) 195 (22.6) 3754 (6.1)

(Continues)
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T A B L E 2 (Continued)

Characteristic

All encounters

(n = 62,546)

Encounters with

HA-VTE (n = 864)

Encounters without

HA-VTE (n = 61,682)

Central line placed, n (%) 2120 (3.4) 281 (32.5) 1839 (3.0)

Sodium (mEq/L), median (IQR)d 138 (135-140) 138 (135-140) 138 (135-140)

Chloride (mEq/L), median (IQR)e 104 (101-107) 104 (101-107) 104 (101-107)

BUN (mg/dL), median (IQR)f 16 (11-25) 18 (12-30) 16 (11-24)

CRP (mg/dL), median (IQR)g 50.6 (13.5-124.4) 112.4 (41.8-183.3) 48.8 (13.0-121.0)

BMI, body mass index; BUN, blood urea nitrogen; CRP, C-reactive protein; HA-VTE, hospital-acquired venous thromboembolism.
aUnknown for 29,677 (47.4%) patients.
bUnknown for 4655 (7.4%) patients.
cIdentified from International Classification of Diseases, 10th Revision, Clinical Modification codes using Elixhauser comorbidity measures.
dUnknown for 13,157 (21.0%) patients.
eUnknown for 13,379 (21.4%) patients.
fUnknown for 13,388 (21.4%) patients.
gUnknown for 52,957 (84.7%) patients.
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Cardiac Arrhythmia Comorbidity (Yes vs. No)

Fluid or Electrolyte Disorder Comorbidity (Yes vs. No)

Pneumonia Comorbidity (Yes vs. No)

Type of Admission

Hypoxemia Comorbidity (Yes vs. No)

Weight Loss Comorbidity (Yes vs. No)

Admission CRP (Per 10 mg/dL increase)

Coagulopathy Comorbidity (Yes vs. No)

Pleural Disease Comorbidity (Yes vs. No)

Other Anemia Comorbidity (Yes vs. No)

Admission BUN (Per 10 mg/dL increase)

Acute Kidney Injury Comorbidity (Yes vs. No)

Admission Heart Rate (Per 10 bpm increase)

Other Psychiatric Disorders Comorbidity (Yes vs No)

Cerebrovascular Disease Comorbidity (Yes vs. No)

Respiratory Symptoms Comorbidity (Yes vs. No)

Peptic Ulcer Disease Comorbidity (Yes vs. No)

Candidial Stomatitis Comorbidity (Yes vs. No)

Admission Sodium (Per 5 mEq/L increase)

Paralysis Comorbidity (Yes vs. No)

Admission Chloride (Per 5 mEq/L increase)
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F I GUR E 1 Relative importance of each variable in the final prognostic model, as quantified by its Wald chi-squared statistic along with odds

ratios (ORs) and 95% CIs. BUN, blood urea nitrogen; CRP, C-reactive protein.
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T AB L E 3 Prediction performance of the final prognostic model.

Cohort C statistic (95% CI) ICI

Derivation cohort 0.891 (0.882-0.900) 0.001

Validation cohort

Without recalibration 0.897 (0.887-0.905) 0.003

With recalibration 0.897 (0.887-0.905) 0.002

ICI, integrated calibration index.
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limited by the need for manual provider input and dichotomous risk

stratification of the outcome [9]. Our prognostic model presented

here, which we named VTE among adult inpatients (VTE-AI), delivers a

real-time risk assessment for individual patients using readily available

data from the EHR to allow providers to make personalized decisions

about risk and necessary preventative measures for each patient

encounter. The incidence of inpatient development of an acute VTE

remains clinically significant, occurring in between 0.9% and 1.4% of

inpatient admissions in our study. The VTE-AI model has high

discrimination accuracy with excellent prediction performance. The

design and development of the VTE-AI model facilitate rapid identi-

fication of those at highest risk for HA-VTE.
Age, years

Sex

Race

Ethnicity

Type of admission

Metastatic cancer comorbidity

Full cohort

< 60

 60

Male

Female

White

Black

Native American
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Not Hispanic

Emergency department

Elective

Inter-hospital transfer

Trauma

Present

Absent

0.7 0.8 0.9
C statistic
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gr

ou
p

F I GUR E 2 Prediction performance of the final prognostic model among

with 95% CIs. Note: “Encounters” provides the number of encounters, “Ev

thromboembolic events, and “Rate per 1000” provides the event rate per
How does the VTE-AI model improve on the existing landscape

with multiple widely used prediction tools available? The model can be

integrated into the EHR, providing an automated evaluation that up-

dates in a dynamic fashion as the clinical course evolves. Prior at-

tempts to automate the Padua score resulted in underestimation of

patient risk compared with manual provider input [10]. Use of the

Caprini score is cumbersome, requiring consideration of up to 36

variables, and does not lend itself to automation. Other widely used

models such as the IMPROVE-VTE have not been validated in surgical

or intensive care patient groups.

Similar to other published prediction tools, well-recognized high-

risk factors for VTE such as the presence of a central line were

strongly associated with risk for HA-VTE in our study; however, novel

risk factors are identified here, such as the presence of a cardiac

arrhythmia, weight loss, or oral candidiasis, through the EHR using a

readily available comorbidity index algorithm. Our model is specific for

the likelihood of the inpatient development of HA-VTE during the

current hospitalization. This targeted outcome differentiates our

model from others that include an estimate of VTE risk for up to

several months after hospital discharge. There is a risk of development

of VTE after discharge, which we have not included in this evaluation.
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0.891 (0.882, 0.90)
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0.863 (0.848, 0.881)
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0.788 (0.748, 0.827)

0.901 (0.890, 0.910)

Encounters Events Rate per 1000 C statistic (95% CI)

1.0

patient subgroups in the derivation cohort, presented as C statistics

ents” provides the number of hospital-acquired venous

1000 encounters.
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Our model is intended to identify those patients at risk for the event

during the hospital stay. The use of thromboprophylaxis after

discharge remains unclear and is limited to select patient populations.

Identification of individuals at risk for VTE during the hospital period

helps reach the unmet need established by the IOM and AHRQ to

prevent this in-hospital complication. Existing options are limited to

specific patient populations (medical vs surgical) and are unable to be

integrated into the EHR as a fully automated tool [21–23]. We have

provided a prognostic model that works well across a broad and

diverse inpatient population.

We acknowledge the following limitations. First, definitions for

several of the variables—specifically comorbidity indices—are depen-

dent on the use of ICD codes. The use of ICD codes to define a clinical

phenotype has limitations. While these limitations are not unique to

our healthcare system, these do impose challenges in extrapolation to

other centers due to differences in the coding practices between in-

stitutions. To minimize this limitation of our model, we utilized the

well-established Elixhauser comorbidity index, which encompasses a

large number of ICD-9 and ICD-10 diagnostic codes to define a clinical

phenotype of interest. Second, development of the prognostic model

did not consider pharmacologic data for the current admission or

outpatient prescription records. The use of prophylactic or systemic

anticoagulant agents or antiplatelet agents is not available for our

cohort. However, as those patients believed to be at higher risk by the

estimation of the treating provider were more likely to receive

pharmacologic thromboprophylaxis, there is a risk that the incorpo-

ration of preventative measures may be paradoxically associated with

a higher event rate. The omission of pharmacologic data also excluded

the use of medications with an increased VTE risk (eg, hormone

therapy, chemotherapy, and certain immunomodulatory agents).

The VTE-AI model accurately identifies patients at risk for

developing a VTE while in the hospital, which is identified by the IOM

as one of the greatest risks for hospitalized patients. As a result, we

did not identify those patients who might develop a thrombosis after

discharge. The group of patients at risk for hospital-associated

(distinct from hospital-acquired) VTE represents yet another sub-

group of patients at great risk for VTE. While we recognize that this is

an important subset of patients, our model is not designed to identify

those who would benefit from intervention upon leaving the hospital.

Notable strengths of the VTE-AI model are the broad application

across highly variable patients in a tertiary hospital system, granular

stratification of the real-time risk, and ability for integration and

automation into the existing EHR. Readily available items such as vital

signs, laboratory measurements, and type of admission (transfer,

emergent, urgent, etc.) are incorporated for all patients at the initia-

tion of the counter. Missing variables are accounted for in the model

development, and it even performs well without relying on tradi-

tionally heavily weighted variables such as presence of malignancy.

While we did not include other predictive tool scores in the data

extraction and development of this model for comparison, the C sta-

tistic of our model is similar to or higher than all existing models. We

have implemented the VTE-AI model as a Shiny application at https://

cqs.app.vumc.org/shiny/AdultVTEPrediction/.
In summary, the prediction performance of the VTE-AI model is

excellent with strong discriminatory capabilities. It outperforms the

existing risk-assessment tools without the need for manual provider

input of variables or calculations. Prevention of HA-VTE highlights a

major patient safety concern by the IOM and AHRQ. Our model fo-

cuses on HA-VTE and excels in this area across a diverse cohort of

hospitalized patients in a tertiary care center. In keeping with the ideal

VTE prevention tool as outlined by the AHRQ, our fully automated

model accurately identifies patients at risk for development of VTE

and reliably excludes low-risk patients. Automation that adapts to

EHR integration suits this model for increased adoption and improved

rates of implementation with meaningful provider prompts and risk

prediction for the individual patient. The busy clinical provider needs a

seamlessly incorporated prognostic tool to guide bedside decisions

about prophylaxis and other interventions. The next step in the

evaluation of this model is external validation in other populations and

implementation in a prospective pragmatic evaluation.
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