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Abstract

Saprolegniasis is an important disease in freshwater aquaculture, and is associated with

oomycete pathogens in the genus Saprolegnia. Early detection of significant levels of Sapro-

legnia spp. pathogens would allow informed decisions for treatment which could significantly

reduce losses. This study is the first to report the development of loop-mediated isothermal

amplification (LAMP) for the detection of Saprolegnia spp. and compares it with quantitative

PCR (qPCR). The developed protocols targeted the internal transcribed spacer (ITS) region of

ribosomal DNA and the cytochrome C oxidase subunit 1 (CoxI) gene and was shown to be

specific only to Saprolegnia genus. This LAMP method can detect as low as 10 fg of S. salmo-

nis DNA while the qPCR method has a detection limit of 2 pg of S. salmonis DNA, indicating

the superior sensitivity of LAMP compared to qPCR. When applied to detect the pathogen in

water samples, both methods could detect the pathogen when only one zoospore of Saproleg-

nia was present. We propose LAMP as a quick (about 20–60 minutes) and sensitive molecular

diagnostic tool for the detection of Saprolegnia spp. suitable for on-site applications.

Introduction

Oomycetes represent a diverse group of eukaryotic pathogens that can infect a wide range of

hosts [1–3] Pathogens in the Saprolegnia genus can infect and kill crustaceans and fish in fresh-

water, especially in aquaculture where fish are raised at high densities [4]. The most widely

studied members of this genus include S. diclina, S. ferax and S. parasitica [5].

Saprolegniasis has been reported in channel catfish (Ictalurus punctatus), rainbow trout

(Oncorhynchus mykiss), redear sunfish (Lepomis microlophus), Indian major carps (including

Labeo rohita, Catla catla, L. calbasu) and Atlantic salmon (Salmo salar) [6–8]. The majority

saprolegniasis occurrence has been reported in temperate environments and commonly found

associated with salmonid farming. Saprolegnia can infect all stages of the fish life cycle
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including the egg stage [9–11]. In the U.S., economic losses due to saprolegniasis in commer-

cial aquaculture is estimated to be approximately 40 million dollars [12, 13]. Almost 50% of

the commercial losses to farmed channel catfish is attributed to saprolegniasis [14]. It is esti-

mated that 10% of all hatched salmon succumb to saprolegniasis, which represents a major

financial loss given that this industry accounts for approximately 30% of the global fish pro-

duction for consumption [4, 14–16]. The incidence of saprolegniasis extends to Asian tropical

aquaculture systems where over 80% of fish is produced through aquaculture [17]. Therefore,

saprolegniasis is among the most impactful diseases in commercial aquaculture.

Conventional culture-based strategies coupled with conventional PCR-based approaches

for pathogen identification usually take several days [18]. Currently, quantitative-PCR (qPCR)

is one of the methods of choice for molecular detection and quantification of target organisms

[19]. Detection of pathogens based on qPCR has been reported in several studies including

Trypanosoma cruzi, Fusarium spp., Japanese encephalitis virus and bacteria such as Listeria
monocytogenes, Francisella tularensis, andMycobacterium avium [20–23].

Loop-Mediated Isothermal Amplification (LAMP) has emerged as a novel tool for the sen-

sitive and rapid detection of nucleic acids and is suitable for field applications. Since the first

publication of LAMP [24], there has been a progressive increase in the number of publications

based on this technique to diagnose and detect a variety of organisms including bacteria,

viruses and eukaryotic pathogens indicating the success of LAMP as a reliable tool for detec-

tion [25–27]. The present focuses on development of a LAMP and a qPCR method for specific

detection of Saprolegnia species, and compared these two tests based on sensitivity and speci-

ficity. These two molecular approaches targeted the internal transcribed spacer (ITS) region of

ribosomal DNA and the mitochondrial cytochrome c oxidase subunit I (C0xI) gene. We first

report the standard protocols for specific detection of the pathogens, followed by testing our

methods under various scenarios for detection of Saprolegnia species including water samples,

infected fish tissue, mycelium and zoospores. Our results show that both of the methods are

reliable, specific and sensitive to Saprolegnia, and have the potential to be applied for the detec-

tion of other pathogens.

Materials and methods

Isolation and maintenance of oomycete cultures

All Saprolegnia spp. cultures used in this study were grown and maintained on yeast peptone

sucrose (YPS) agar (20 g/L D-glucose, 1 g/L KH2PO4, 0.5 mg/L MgSO4, and 1 g/L yeast

extract) supplemented with 68 μg/ml chloramphenicol and 68 μg/ml streptomycin. The cul-

tures were incubated at 24˚C in the dark [28]. Unless otherwise noted, all laboratory grade

chemicals used in this study were purchased from Sigma Aldrich, St. Louis, MO.

Saprolegnia spp. isolates used in this study (Table 1) were isolated from various sources

including fish, eggs, and waters from commercial aquaculture ponds and from recirculating

Table 1. Saprolegnia spp. isolates used in the present study.

Organism/Sample ID Isolation Source

S. salmonis Sunshine bass eggs from Keo Fish Farm (Keo, AR).

3, 9, 6A, 11A, 1B Pond water from J.M. Malone and Sons fish farm (Lonoke, AR)

F1, F2, JMM Shad 3, JMM

Shad 72

American Shad (A. sapidissima) from ponds at J. M. Malone and Son fish farm

(Lonoke, AR)

RAS1, RAS2, RAS3, RAS4,

RAS5

RAS water from The Freshwater Institute (Shepherdstown, WV)

https://doi.org/10.1371/journal.pone.0250808.t001
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aquaculture systems (RASs). For isolation of Saprolegnia spp. from water, water samples from

each source were collected and filtered through two layers of miracloth (Calbiochem, La Jolla,

CA). One ml of the filtrate was spread aseptically onto YPS media and incubated in the dark at

24˚C. The resultant mycelial growths were subcultured for several generations to ensure the

purity of the culture.

For isolation of Saprolegnia spp. from infected tissues, adult infected American shad (Alosa
sapidissima) with lengths ranging between 48.3cm to 49.5cm and exhibiting visible symptoms

of saprolegniasis were used for isolation of Saprolegnia spp following previously published pro-

tocols [29]. Briefly, areas of the fish exhibiting visible symptoms were dissected using sterilized

scalpels; individual pieces were surface sterilized by treatment with 2.5% bleach for 45 s, fol-

lowed by submersion in distilled water for 1 min, then in 70% ethanol for 45 s, and finally in

distilled water for 1 min. These pieces were then aseptically placed onto YPS agar plates and

incubated in the dark at 24˚C and observed daily.

DNA isolation

Mycelial mats (90–100 mg) from 4-day old Saprolegnia cultures were collected and were

crushed using a mortar and pestle in liquid nitrogen. DNA was isolated using the method of

Zelaya-Molina et al. [30] with some modifications. Briefly, the crushed mycelia were treated

with lysis buffer (10 mM Tris, 50 mM EDTA, 0.5% SDS, 0.5% Tween-20, and 0.5% Triton X-

100), 20 mg/ml Proteinase K and 100 mg/ml RNase A. The tubes were incubated at 37˚C for

30 min in a shaking incubator at 150 rpm, vortexed for 30 s and then incubated at 55˚C for 30

min with a gentle inversion at 10-min intervals. Next, an equal volume of 25:24:1 phenol-chlo-

roform-isoamyl alcohol (VWR, Radnor, PA) was added and the tubes were vortexed for 30 s

followed by centrifugation at 10,000g for 10 min. The supernatant was transferred into a new

tube, an equal volume of 24:1 chloroform-isoamyl alcohol was added, vortexed for 30 s and

centrifuged at 10,000g for 10 min. The supernatant was transferred into a new tube, DNA was

precipitated by adding an equal volume of isopropanol (VWR, Radnor, PA) and incubated at

-20˚C for 15 min. The tubes were then centrifuged at 10,000g for 10 min and the supernatant

was discarded. The resultant pellet was washed with 70% ethanol (Pharmco-AAPER, Shelby-

ville, KY), dried and resuspended in molecular grade water. The isolated DNA was quantified

spectrophotometrically using a Nanodrop 2000c (Thermo Scientific, Wilmington, DE).

Assessment of the quality of the isolated DNA was performed by electrophoresis on 0.8% aga-

rose gels stained with SYBR™ Green I Nucleic Acid Gel stain (Invitrogen, Carlsbad, CA) and

visualized using a UV transilluminator (Ultra-Lum Inc, Claremont, CA).

Sequence analysis and phylogenetic analysis

Identification of Saprolegnia spp. isolates was performed by PCR of the internal transcribed

spacer (ITS) region and a portion of the ribosomal large subunit [16, 31, 32] and of cyto-

chrome C oxidase subunit 1 (CoxI) gene [33]. Amplification products were analyzed by elec-

trophoresis and were purified using the QIAquick PCR purification kit (Qiagen,

Germantown, MD) according to the manufacturer’s protocol. The purified amplicons were

sequenced at the University of Chicago Comprehensive Cancer Centre, DNA sequencing and

Genotyping Facility (Chicago, IL). The resultant sequences were subjected to bioinformatic

analysis via BLAST [34] and compared to sequences on both the NCBI [35] and the FungiDB

[36] databases.

Multiple sequence alignments were generated using Clustal Omega [37]. The maximum-

likelihood phylogenetic trees of CoxI and ITS markers were constructed using Mega7 software

[38] based on the Tamura-Nei Model [39] with 1,000 bootstrap replicates and default
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parameters. Reference ITS and CoxI sequences were obtained from NCBI GenBank database;

Phytophthora sojae voucher P6497 and Aphanomyces euteiches voucher BR694 were used as

the outgroups for both the trees. Concatenated phylogenetic trees of ITS and CoxI regions

were constructed using SequenceMatrix version 1.8 (http://www.ggvaidya.com/taxondna/)

[40] with 1,000 bootstrap replicates and default parameters.

qPCR for specific detection of Saprolegnia spp.

Primers specific to the ITS region and the CoxI gene of the Saprolegnia genus were designed

using Primer3 software with manual modifications (https://bioinfo.ut.ee/primer3-0.4.0/) [41].

Quantitative PCR reactions were carried out using the iTaq™ Universal SYBR1 Green Super-

mix (Bio-Rad, Hercules, CA) according to the manufacturer’s instructions in a CFX Connect

Real-Time PCR Detection system (Bio-Rad, Hercules, CA). To generate the standard-curve

for absolute quantification, reactions were carried out using a 10-fold dilution series of S. sal-
monisDNA (ranging from 2 ng/μl to 20 ng/μl, measured spectrophotometrically). To assess

the specificity of the developed qPCR, 20 ng/μl of DNA purified from all the Saprolegnia iso-

lates described in Table 1 were used with both the ITS and CoxI primers. The reactions were

carried out in triplicate.

LAMP for specific detection of Saprolegnia spp.

To design primers for LAMP against the conserved ITS region specific for Saprolegnia spp.,

the ITS sequences for S. parasitica CBS 223.65 (Accession No.—PRJNA280969), S. diclina
VS20 (Accession No.—PRJNA255245), S. ferax (Accession No.—PRJNA12392), S. delica
clone 130 (Accession No.—JX212906.1) and S. salmonis from Argentina (Accession No.—

EU551153.1) were retrieved from the NCBI sequence database [35] and aligned using Clustal

Omega [37]. Inner and outer primers were generated based on this alignment, using the

Primer Explorer v5 (https://primerexplorer.jp/e/, Eiken Chemical Co. Ltd., Tokyo, Japan)

tool, with default parameters.

To optimize the LAMP reaction, each LAMP reaction (25 μl) contained 20 ng/μl of S. salmo-
nis gDNA, 1.4 mM dNTPs, 0.32 U/ μl Bst 3.0 (New England Biolabs, Ipswich, MA), 8 mM

MgSO4, 1.6 μM inner primers, 0.2 μM outer primers, 0.4 μM loop primers and molecular grade

water (Invitrogen, Carlsbad, CA). The reactions were incubated at 65˚C for 60 min, followed by

inactivation of the enzyme to terminate the reaction at 80˚C for 5 min. No template controls

(NTC) using molecular grade water served as negative controls. To each reaction, 1 μl of 1,000X

SYBR Green I (AMRESCO Inc., Solon, OH) was added. Visually, a green color formation was

indicative of a positive reaction whereas a golden-brown color indicated a negative reaction.

The amplification products were also verified visually by 2% agarose gel electrophoresis.

Comparison of qPCR and LAMP

A sensitivity assay was performed using a 10-fold dilution of purified S. salmonisDNA at 100 ng,

10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, 10 fg and 1 fg. Protocols for qPCR and LAMP assay were

as described above. For detection of zoospores, one and ten zoospores were used in each reaction

for both LAMP and qPCR. The reactions were performed in triplicate and repeated three times.

Results

Pathogen identification and phylogenetic analysis

Fifteen cultures of the oomycete were isolated from water samples as well as from infected fish

tissues (Table 1). To identify the isolates, PCR was performed using both the oomycete-specific
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CoxI primers and universal ITS primers. The PCR products were visualized on 0.8% agarose

gel and were purified, sequenced, and analyzed by BLAST [34] with an E-value cutoff of 0. All

of the isolates were identified as Saprolegnia. To further validate our results and to track their

genetic diversity, phylogenetic trees were constructed. The maximum-likelihood tree of the

ITS sequences showed that all the isolated species grouped within the Saprolegnia genus, in

agreement with BLAST results (Fig 1). The S. salmonis isolate grouped closely with S. parasitica
with a bootstrap value of 68%. For cultures isolated from the ponds of J.M. Malone and Sons

fish farm (Lonoke, AR), isolates 6A and 11A were closest to S. diclina with a bootstrap value of

90%. Isolate 1B was grouped with S. parasitica with a bootstrap value of 98%. Isolate 9 grouped

with S. ferax with 80% bootstrap support. Isolate 3 was taxonomically closest to S. diclina with

a bootstrap value of 63%. For cultures isolated from infected fish (J.M. Malone and Sons fish

farm, Lonoke, AR), isolates F1 and F2 grouped together with S. parasitica with 67% bootstrap

support. The JMM Shad 3 and JMM Shad 72 also grouped together and appeared to have S.

parasitica as the closest phylogenetic neighbor with 68% bootstrap support. Isolates RAS1,

RAS2 and RAS3 grouped closest to S. parasitica, while RAS4 grouped closest to S. ferax with

80% bootstrap support; RAS5 had the closest phylogenetic relationship with S.monoica with

89% bootstrap support. A second maximum-likelihood tree based on the CoxI sequences

showed the same phylogenetic groupings with the ITS based tree with slightly different boot-

strap values (Fig 2). To increase discriminatory power and the robustness for identification of

species within the genus, the sequences of both ITS and CoxI were used to constitute the

concatenated phylogenetic tree. Fig 3 showed the same phylogenetic groupings with both the

ITS- and CoxI-based trees with slightly different bootstrap values. Overall, the results of the

three phylogenetic trees confirmed that the isolates in Table 1 belonged to the Saprolegnia
genus.

qPCR for specific detection

The qPCR reaction for CoXI gene using qCOX R1 (5’CTGAAGGACCWGAGTGHGCTTG 3’)

and qCOX F1 (5’GGDGCTCCWGATAGGCTTTNCC 3’) was optimized by gradient qPCR.

Results showed that annealing temperature at 59˚C gave the best specificity and efficiency. We

then generated a standard curve using a 10-fold dilution of purified gDNA from S. salmonis
(20 ng/μl to 0.2 pg/μl) in triplicate. The Cq values of these standards were plotted against the

logarithm of their concentrations. The assay efficiency was calculated to be at 91.4% using the

equation y = (-3.546)x + 54.138 with the slope values of -3.546 and R2 values of 0.990 (Fig 4).

The melt curve analysis gave rise to a single distinct peak indicating that the qPCR product

was a pure, single amplicon and was specific to S. salmonis.

Development of LAMP

Primers for the specific detection of Saprolegnia genus were designed targeting a conserved

201 bp section of the ITS region (Fig 5A). The inner and outer primers were generated based

on sequence alignment using Clustal Omega alignment followed by the Primer Explorer v5

(https://primerexplorer.jp/e/, Eiken Chemical Co. Ltd., Tokyo, Japan) tool. The outer and

inner primer sets with the highest dG value for dimerization and with acceptable room for

generating loop primers, were chosen to ensure that the free energies and the 5’ end of F1c and

B1c, and the 3’ end of F2 and B2, were less than or equal to -4.0 kcal/mol (Fig 5B, Table 2).

For optimization of the LAMP reaction, the first factor that was considered was the Mg2+

concentration. We tested the reactions using 2 ng of DNA/reaction with eight different con-

centrations of Mg2+ ranging from 2 mM-10 mM Mg2+. The experiments were performed in

triplicate and repeated three times. Our results showed that concentration of Mg2+ at and
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above 4 mM showed positive reactions. Interestingly, in no template controls, when concen-

trations of Mg2+ was at 5 mM and above, the colors of the reactions showed false positives (Fig

6). Therefore, to avoid false positive reaction, the optimal concentration of Mg2+ at 4mM was

chosen. Optimization of the other factors including various temperatures, reaction times and

primer ratios did not have any impact on the integrity of the reaction. Hence, the optimal

Fig 1. Maximum-likelihood phylogenetic tree showing evolutionary relationships of 53 Saprolegnia isolates based

on the ITS region. Isolates examined in this study are shown in boldface. Bootstrap values� 50% (1000 replicates) are

given at the branchpoints. The scale bar indicates the number of substitutions per site. P. sojae voucher P6497 and A.

euteiches BR694 were used as outgroups.

https://doi.org/10.1371/journal.pone.0250808.g001
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condition for the LAMP reaction was selected as 4mM Mg2+, 1:8 outer to inner primer ratio

and a reaction temperature of 65˚C.

To establish the sensitivity of the LAMP reaction, the experiments were carried out with a

10-fold dilution series of purified S. salmomisDNA ranging from 1 fg to 100 ng, in triplicate.

Results showed that LAMP successfully detected as low as 10 fg of S. salmomisDNA (Fig 7).

This detection sensitivity was higher than that of qPCR which was at 2 pg (Fig 4). Further test-

ing to determine whether our method can be used to directly detect zoospore from water sam-

ples without DNA purification, we subjected one or ten zoospores of S. salmonis to LAMP and

qPCR methods. Ten ng of S. salmonis genomic DNA was used as the positive control and NTC

Fig 2. Maximum-likelihood phylogenetic tree showing evolutionary relationships of 53 Saprolegnia isolates based

on the CoxI gene. Isolates examined in this study are shown in boldface. Bootstrap values� 50% (1000 replicates) are

given at the branchpoints. The scale bar indicates the number of substitutions per site. P. sojae voucher P6497 and A.

euteiches BR694 were used as outgroups.

https://doi.org/10.1371/journal.pone.0250808.g002
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was used as negative controls. Each sample was performed in triplicate and repeated three

times. The results showed that both the qPCR and LAMP procedures successfully detected one

zoospore in the water samples (Fig 8), indicating that our developed methods were highly spe-

cific and highly sensitive.

The specificity of the LAMP assay was tested using purified DNA from different isolates of

Saprolegnia spp., infected fish tissues other non-Saprolegnia oomycetes (A. astaci and P. sojae),
a fungus (Fusarium spp.), Daphnia magna and a bacterium (Escherichia coli). Each sample was

tested in triplicate. Results showed that the LAMP reaction was specific only to the Saprolegnia

Fig 3. Concatenation phylogenetic tree based on the sequences of ITS and CoxI. Isolates examined in this study are

shown in boldface. Bootstrap values� 50% (1000 replicates) are given at the branchpoints. The scale bar indicates the

number of substitutions per site. P. sojae voucher P6497 and A. euteiches BR694 were used as outgroups.

https://doi.org/10.1371/journal.pone.0250808.g003
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genus (Table 3), demonstrating that our developed LAMP method was specific to pathogens

in the genus Saprolegnia and is highly sensitive.

Discussion

The pathogens in the genus Saprolegnia cause significant economic losses in aquaculture;

therefore, accurate identification and early detection of pathologically relevant levels is critical.

Morphological identification is challenging and less reliable compared to molecular studies.

To ensure reliable identification of oomycetes, a combination of molecular markers based on

ITS regions along with CoxI and/or CoxII are recommended [33]. The present study develops

a standard protocol for identification of pathogens in the genus Saprolegnia using both ITS

and CoxI. To determine genetic relationships among Saprolegnia spp. used in this study, phy-

logenetic trees with a single locus of ITS or CoxI marker as well as a concatenated phylogeny

were constructed. These three phylogenetic trees confirmed that the isolates were related and

belonged to the Saprolegnia genus. Due to low bootstrap values at some nodes, additional

markers are required to conclusively determine the phylogenetic positioning of the isolates

within the Saprolegnia genus. For instance, in all three phylogenetic trees, S. salmonis clustered

with S. parasitica but bootstrap values were below 68%. Multilocus phylogenetic analysis

should, in theory, increase phylogenetic resolution and improve the analysis. Such multi-gene

analyses has been conducted by Göker et al. [42] using1-tubulin, NADH1 and LSU rDNA

sequences for several oomycetes. Phylogenetic resolution of the Phytophthora genus was

accomplished in this manner by Martin et al. [43]. Richter and Rósselló-Mora [44] suggested

that measurement of average nucleotide identity between two genomes could yield more accu-

rate results of species resolution. Finally, it has been suggested that sampling more individuals

per species can help resolve incongruences amongst single gene trees [45]. An interesting

observation in our phylogenetic studies was that the variation at the species level for the Sapro-
legnia isolates from RAS, even though the water samples from these systems was collected

from the same tank at the same time. However, similar species level spatio-temporal variations

Fig 4. Standard curve of CoxI gene. Ten-fold dilutions of S. salmonisDNA ranging from 1 fg to 100 ng were amplified in triplicate and the reactions

were repeated three times. The iTaq™ Universal SYBR1Green Supermix and qCOXF1+R1 primers were used.

https://doi.org/10.1371/journal.pone.0250808.g004
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Fig 5. Lamp primer design. A. Schematic representation of the ITS region, showing the positioning of the LAMP

primers used in the present study. Scale bar represents 100bp. FwdOut = Forward Outer Primer; RevOut = Backward

Outer Primer; F2+F1c = Forward Inner Primer; B2c+B1 = Backward Inner Primer; LF = Loop Forward Primer;

LB = Loop Backward Primer. B. Positioning and orientation of LAMP primers developed in the present study.

Representative ITS sequences from Saprolegnia and non-Saprolegnia oomycetes were aligned and the LAMP primers

were positioned on the alignment manually. The LAMP primers amplified the ITS1 regions of the target sequences.

https://doi.org/10.1371/journal.pone.0250808.g005
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have been reported for Phytophthora, Pythium and Phytopythium species in nursery irrigation

systems [46].

In this study, we were able to isolate and purify Saprolegnia from environmental sources

(water samples and infected tissues), using a similar method for the isolation of Saprolegnia
spp. from infected rainbow trout [8], infected crayfish [47], salmon hatcheries [11] and

amphibians [48]. Current protocols for detecting and identifying Saprolegnia from environ-

mental sources involve lab culture-based approaches followed by PCR-based molecular identi-

fication. Another method of oomycete detection which has been used with some success is

baiting [49] using rice seeds [50], hemp seeds [28] and sesame seeds [51], followed by PCR for

Table 2. LAMP primers used in the present study.

Primer Abbreviation Sequence

Forward Inner Primer FIP 5’ CACTTACATGAGAAATCTCCGAA-TAGCCGAAGAACGCTTTGGAAGC 3’

Backward Inner Primer BIP 5’ AATTCAGTGAGTCATCTAAATA-AACATACTCCCAGGACTAACCCGC 3’

Forward Outer Primer FwdOut 5’ GGTAATGGTGTGGTTTTTTGTGG 3’

Backward Outer Primer RevOut 5’ TGAAAGAAGTTTGTGTTG 3’

Loop Forward Primer LF 5’ GCGACGGGAACACCGT 3’

Loop Backward Primer LB 5’ AGTGCAATATGCGTT 3’

https://doi.org/10.1371/journal.pone.0250808.t002

Fig 6. Optimization of Mg2+ concentration for LAMP. The concentrations of Mg2+ ranging from 2 mm-10 mM were tested. Top

panel represents positive controls using 2ng/μl S. salmonis gDNA. The bottom panel, No Template Control (NTC) represents

negative controls. Color change to green indicates positive reaction, while golden brown indicates negative reaction. The

experiments were performed in triplicate and repeated three times.

https://doi.org/10.1371/journal.pone.0250808.g006
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accurate identification. Finally, immunological detection of Saprolegnia spp. using monoclonal

antibodies has also been reported [15].

This study is the first to develop a rapid and sensitive molecular technique for the detection

of Saprolegnia spp. using the novel LAMP technique. Previously, LAMP has been employed

for the detection of other oomycetes such as Plasmopara viticola [52], P. sojae [53] and

Pythium spp. [54]. As an on-site detection tool, LAMP has several advantages compared to

conventional PCR and qPCR. It has been applied successfully for on-site detections of the bac-

teria responsible for foot rot in sheep [55].

A major advantage of LAMP is that it is highly sensitive and does not require major equip-

ment. Our developed LAMP assay successfully detected all 15 isolates in the present study and

offered positive results with as low as 10 fg DNA and with only one zoospore of S. salmonis. It

is noteworthy that our method can directly detect an organism from a sample without DNA

purification, which refers to a one-step LAMP. This method has been reported in several stud-

ies such as detection of E. coli,Mycobacterium smegmatis [56] andMycoplasma ovipneumoniae
[57]. Similarly, detection by LAMP at femtogram level has been reported in numerous studies

such as acute viral necrobiotic virus in scallop [58], classical swine flu virus [59] and Enterococ-
cus hirae [60]. When our developed LAMP assay from this study was tested on several mem-

bers of the oomycetes, it was found to be specific for all 15 Saprolegnia isolates used in this

study. The sensitivity and specificity of LAMP makes it a suitable candidate for the detection

of target organisms from environmental samples, especially when present in extremely low

amounts. Although false positives are one of the major drawbacks associated with LAMP,

much of the false positive amplification can be eliminated by using six primers and careful

optimization of the reaction [61]. We did not experience any false positives in our

experiments.

While both LAMP and qPCR have their own advantages and drawbacks depending on the

circumstance, they can both be used to specifically detect the members of the genus Saproleg-
nia. The LAMP method is inexpensive and more rapid and sensitive compared to qPCR; there-

fore, we propose the use of LAMP for sensitive detection of pathologically relevant levels of

Saprolegnia for on-site applications. However, to quantify Saprolegnia loads, qPCR is more

useful, especially when the epidemic threshold of the disease is known. Incorporation of the

LAMP method and qPCR into real-time LAMP would provide the best outcome for detection

and quantification. This would enable monitoring the dynamics of Saprolegnia spp. in the

Fig 7. The sensitivity of LAMP. Ten-fold dilution S. salmonisDNA ranging from 1 fg to 100 ng were used in the presence of 1000X

SYBR Green I. Color changes from golden brown to green indicates a positive reaction. The concentrations of template DNA are

indicated, NTC = no template control, represents a negative control. The reactions were performed in triplicate and were repeated

three times.

https://doi.org/10.1371/journal.pone.0250808.g007
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Fig 8. Direct detection of zoospores. A. qPCR and B. LAMP. One and ten zoospores were used in each reaction, S.

salmonisDNA (10 ng/μl) was used as the positive control while no template control (NTC) was used as the negative

control. Each sample was performed in triplicate and was repeated three times.

https://doi.org/10.1371/journal.pone.0250808.g008

Table 3. Specificity of qPCR and LAMP.

Species Isolation Source qPCR result LAMP result

S. salmonis (+ control) Pond water from J.M. Malone and Sons fish farm (Lonoke, AR) + +

S. ferax Infected crayfish tissue (Bowling Green, OH) + +

S. parasitica RAS water from The Freshwater Institute (Shepherdstown, WV) + +

S. diclina Pond water from J.M. Malone and Sons fish farm (Lonoke, AR) + +

S. delica Pond water from J.M. Malone and Sons fish farm (Lonoke, AR) + +

A. astaci Infected crayfish tissue (Bowling Green, OH) - -

P. sojae Infected soybean (Bowling Green, OH) - -

Fusarium spp. Water from cichlid aquaria (Bowling Green, OH) - -

D. magna Water from BGSU Greenhouse reservoir (Bowling Green, OH) - -

E. coli TOP10 (Invitrogen, CA) - -

https://doi.org/10.1371/journal.pone.0250808.t003
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water, and at what points their level becomes an issue. Real-time LAMP has been reported for

the detection and quantification of Enterocytozoon hepatopenaei [62] and Ustilago maydis [63]

and future research should investigate its development use for to detect Saprolegnia and other

oomycete pathogens.
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