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Abstract. The carboxyterminal cytoplasmic portions 
(tails) of desmosomal cadherins of both the des- 
moglein (Dsg) and desmocollin type are integral com- 
ponents of the desmosomal plaque and are involved in 
desmosome assembly and the anchorage of inter- 
mediate-sized filaments. When additional Dsg tails 
were introduced by cDNA transfection into cultured 
human epithelial cells, in the form of chimeras with 
the aminoterminal membrane insertion domain of rat 
connexin32 (Co32), the resulting stably transfected 
cells showed a dominant-negative defect specific for 
desmosomal junctions: despite the continual presence 
of all desmosomal proteins, the endogenous desmo- 
somes disappeared and the formation of Co32-Dsg 
chimeric gap junctions was inhibited. Using cell trans- 
fection in combination with immunoprecipitation tech- 

niques, we have examined a series of deletion mutants 
of the Dsgl tail in Co32-Dsg chimeras. We show that 
upon removal of the last 262 amino acids the trun- 
cated Dsg tail still effects the binding of plakoglobin 
but not of detectable amounts of any catenin and in- 
duces the dominant-negative phenotype. However, fur- 
ther truncation or excision of the next 41 amino acids, 
which correspond to the highly conserved carboxyter- 
minus of the C-domain in other cadherins, abolishes 
plakoglobin binding and allows desmosomes to re- 
form. Therefore, we conclude that this short segment 
provides a plakoglobin-binding site and is important 
for plaque assembly and the specific anchorage of ei- 
ther actin filaments in adherens junctions or IFs in 
desmosomes. 

I 
NTERCELLULAR adhering junctions (9) are important 
structures contributing to stable and positionally or- 
dered cell-cell attachment as well as to the anchorage 

and specific intracellular arrangement of cytoskeletal fila- 
ments and contain calcium-dependent transmembrane cell 
adhesion molecules, which are members of the cadherin 
family of proteins. While intercellular contact formation and 
adhesion is effected by the aminoterminal and N-glycosyl- 
ated part of the cadherin molecule, the association of 
cytoskeletal filaments involves the carboxyterminal intracel- 
lular portion and is mediated by certain submembranous 
dense plaques of 10-35 nm thickness. Despite their struc- 
tural similarities and the fact that all junctions of this group 
contain a common major plaque protein, plakoglobin, their 
biochemical composition is markedly different. In epithelial 
cells, for example, two major types of adhering junctions can 
be generally distinguished in relation to composition and the 
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specific type of filament attached (4, 6, 8, 16, 20, 47, 52): 
(a) Actin microfilaments anchor at adherens junctions which 
occur in diverse sizes, shapes, and positions (e.g., zonula ad- 
haerens, fascia adhaerens, and puncture adhaerens), and 
contain E- or N-cadherin whose cytoplasmic portion is as- 
sociated with certain cytoplasmic proteins such as a- and 
/3-catenin, vinculin, cx-actinin, and radixin, all of which con- 
tribute to plaque formation. 

(b) Intermediate-sized filaments (IFs) 1 are anchored at des- 
mosomes (maculae adhaerentes) of variable sizes (mostly 
isodiametric and with diameters in the 0.1-5.0/zm range), the 
plaque of which contains, in addition to the intracellular por- 
tions of the desmosome-specific cadherins, i.e., desmocol- 
lin(s) (Dsc) and desmoglein(s) (Dsg), a special set of cyto- 
plasmic proteins such as plakoglobin, desmoplakin, and 
some other cell type-specific proteins (for examples see 16, 
19, 37, 44, 47). Moreover, the desmosomal cadherins repre- 
sent multigene families whose members can be expressed 
differently in relation to epithelial differentiation pathways 
(24, 26), and at least three different genes of each of the Dsg 

1, Abbreviations used in this paper: aa, amino acid; Co32, connexin 32; 
Dsc, desmocollin; Dsg, desmoglein; IF, intermediate-sized filament. 

© The Rockefeller University Press, 0021-9525/94/10/151/10 $2.00 
The Journal of Cell Biology, Volume 127, Number 1, October 1994 151-160 151 



(Dsgl-3) and the Dsc (Dscl-3) proteins have been distin- 
guished in human tissues (for review and nomenclature see 
5, 14, 45). 

While in the last few years considerable progress has been 
made in the identification of the major molecular compo- 
nents of the adhering junctions we are still far from under- 
standing the molecular principles and regulatory mecha- 
nisms involved in junction formation and in the anchorage 
of the specific kind of cytoskeletal filaments to the plaque. 
Immunoprecipitation experiments and transfection studies 
using cDNAs with deletions have shown that the cytoplasmic 
portion (tail) of E-cadherin is necessary for the formation 
and function of the zonula adhaerens (34, 35) and is inti- 
mately and stably associated with fl-catenin and/or, some- 
what less stably, with its close relative plakoglobin (for 
amino acid [aa] sequence relationship see 3, 10, 12, 30-32, 
41, 42) as well as with the vinculin-related protein a-catenin 
(18, 22, 33-36, 38-40, 52, 54). 

Even less is known about the interaction of molecules of 
desmosomal cadherins with desmosomal plaque proteins 
and IFs. In cell transfection experiments using cDNA con- 
structs encoding chimeric proteins, we have recently shown 
that the cytoplasmic carboxyterminal segment of desmocol- 
lin Dscla is sufficient for the assembly of a specific plaque 
that contains desmoplakin and plakoglobin and is competent 
in IF anchorage (51, see also 13). On the other hand, in epi- 
thelial cells transfected with cDNA constructs encoding chi- 
meras combining the connexin32 (Co32) transmembrane 
portion with a Dsgl tall we noticed a stable dominant-negative 
effect, resulting in the inhibition of formation of chimeric 
junctions as well as of all endogenous desmosomes (51). 

To find the mechanism(s) responsible for the unexpected, 
inhibitory and dispersive dominant-negative effect of Dsgl 
tails on desmosome assembly and thus on intracellular IF ar- 
rangement and to identify the Dsg tail domain(s) involved 
and potential molecules binding to it, we have extended these 
experiments by transfections of constructs in which the tail 
was partially deleted. Here we report the identification of a 
short Dsg segment involved in plakoglobin binding which is 
important for desmosome formation. 

Materials and Methods 

Plasmid Construction 
The construction of a plasmid clone encoding a chimeric polypeptide con- 
sisting of the four transmembrane domains of rat liver Co32 and the cyto- 
plasmic segment of bovine Dsg 1 has been described (51). Carboxyterminal 
deletion mutants were produced from the construct in the Bluescript vector 
(plasmid clone BICoDg) with the help of conveniently located unique re- 
striction endonuclease sites and subsequent integration of the new gene 
fragments (flanked 5' by HindIII and 3' by the blunt-ended restriction endo- 
nuclease site used for truncation) between the HindIII and blunt-ended NarI 
sites of plasmid derivative Blx which contains the synthetic oligonucleotide 
(5'-AAGCTTGGAGC~GCCTGACTAGCTAGGATCC-3'; the three stop 
codons in all three reading frames are underlined) in the polylinker of the 
Bluescript vector. The following restriction endonucleases were used for 
truncation: Bali for construction of B1CoDg(209), NdeI for BICoDg(134). 

Some mutants were constructed with the help of polymerase chain reac- 
tion (PCR). FOr construct B1CoDg(168) primers Dg-O-I (5'-GGAGC~GCC- 
CC'ICsOCCJC_d2GGG-3') and Dg-O-2 (5'TT1"C_d3ATCCTACAACAGCCCA- 
CAGAGCC-3') were used in PCR from B1CoDg. The NarI/BamHI PCR 
fragment was subcloned into the NarI/BamHI-digested vector BICoDg. In 
this case the TGA sequence localized further downstream within the multi- 
ple cloning site of Bluescript was used as a stop codon. Construct 
BICoDgd(168-210) was prepared by ligation of the BaiI/XbaI fragment en- 

coding the Dsgl tail (starting from position 210) into the BamHI/XbaI re- 
striction endonuclease sites of B1CoDg(168). For BICoDgd(32-75) a PCR 
fragment was amplified using primers Dg-O-1 and Dg-O-5 (5:TATAGA- 
TCTIU~CCTICCACTGCCCACGAG-3~ and BICoDg and the resulting 
fragment was subcloned with the help of NarI and BglII into BICoDg. 

The HindIIFXbaI inserts of all Bluescript clones were further subcloned 
into the eukaryotic expression vector pHflAPr-l-neo, containing the neo- 
mycin resistance gene (cf. 51). In addition, the coding sequence of rat con- 
nexin43 (Co43; of. 1) was amplified from rat heart cDNA using primers 
43-O-I (5'-AAAGTCGACG~AAAGAGAGGTGCCCA-39 and 43-0-2 (5" 
AAATCTAGATTAAATCTCCAGGTCATC-39 and cloned into the Sail/ 
XbaI sites of pHflAPr-l-neo. The correct construction of all recombinant 
plasmids was checked by nucleotide sequencing. 

Cell Culture, DNA Transfections, and Cell 
Coupling Assays 
Human vulvar carcinoma A-431 cell lines stably expressing CoDg (132 and 
B5) were described previously (51) and in addition new cell lines were 
selected from A-431 cells transfected as described (cf. 51). Geneticin was 
added 72 h after transfection at a final concentration of 1 rag/ml and at least 
four independent stable cell lines were established for each construct. In 
transient transfection experiments cells were fixed 72 h after transfection. 

Transfected and untransfected cells were assayed for intercellular cou- 
pling by following the spreading of dye (Lucifer Yellow) microinjected into 
individual cells essentially as described (28 and references cited therein). 

Immunofluorescence Microscopy 
Cells grown on glass coverslips were fixed and permeabilized either with 
methanol/acetone or with 3 % formaldehyde/0.1% saponin as described (cf. 
29). For immunostaining the following primary antibodies were used: (a) 
rabbit serum raised against a synthetic peptide corresponding to the cyto- 
plasmic loop of rat liver Co32 (28); (b) rabbit serum against the cytoplasmic 
carboxyterminal peptide of human Co43 (28); (c) murine mAb Dg3.10 
against bovine Dsg which reacts with a carboxyterminal epitope of bovine 
and human Dsg (23, 46); (d) a mixture of murine mAbs DpI and DpII&2- 
2.15, 2.17, and 2.19 against desmoplakin (7); (e) guinea pig antibodies 
against bovine desmoplakin (kindly provided by Dr. H. Heid, German Can- 
cer. Research Center, Heidelberg, FRG); (f) murine mAbs against 
plakoglobin as the previously described mAb PG 5.1 (8) and mAb 11E4 
(generously provided by Dr. Margaret Wheelock, University of Toledo, 
OH); (g) murine mAb lu-5 against cytokeratins (11); (h) rabbit antibodies 
against E-cadherin (kindly provided by Dr. R. Kemler, Max-Planck- 
Institute, Freiburg i. Br., FRG); and (i) routine mAb bVIN-1 against human 
vinculin (Sigma Chem. Co., St. Louis, MO). The first antibodies were de- 
tected by Texas-red conjugated anti-mouse or anti-guinea pig antibodies or 
by FITC-conjngated anti-rabbit antibodies (Dianova, Hamburg, FRG) and 
visualized by epifluorescence microscopy. 

For staining ofactin-containing structures formaldehyde/saponin fixation 
was used and cells were treated for 20 rain with FITC-phailoidin (Sigma 
Chem. Co.) at a concentration of 10/~g/nd in PBS, washed 5 rain in PBS 
and embedded in elvanol. 

Immunoprecipitation and Immunoblotting 
Cells were metabolically labeled with [35S]methionine mostly overnight 
(150 pCi/10-cm Petri dish in medium with reduced methionine), washed in 
PBS and briefly incubated in hypotonic buffer (10 mM Tris-HC1, pH 7.4, 
2 mM DTT, and 20 /~M 4-amindinophenyl-methansulfonyl-fluoride 
[APMSF] with or without 2 mM EDTA and 2 mM EGTA). The suspension 
was homogenized, centrifuged at 1000 g for 5 rain, and the supernatant 
treated with twice concentrated immunoprecipitation lysis buffer (100 mM 
Tris-HCl, pH 7.5, 2% NP40, 300 mM NaCI, and 20 ~tM APMSF and 
4 mM EDTA), with or without 1% deoxycholate. After centrifugation 
(20,000 g, 10 rain) the supernatants were incubated with the appropriate an- 
tibodies (overnight at 4°C) and then for 1 h at room temperature with 15 
mg protein A-sephamse (Pharmacia P-L Biochemicals Inc., Milwaukee, 
WI) equilibrated in immunoprecipitatlon buffer. Beads were then washed 
five times with PBS, one time with PBS/I% Triton X-100 and the immune 
complexes were subjected to SDS-PAGE followed either by autoradio- 
graphic detection of labeled polypeptides or immunoblot reaction using the 
alkaline pbospbatase system as described (51). 
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Figure 1. Schematic represen- 
tation of some of the Co32- 
Dsg chimeric polypeptides 
used in the present study and 
phenotypic characteristics of 
the human A-431 ceils trans- 
fected with the corresponding 
cDNAs. As their aminotermi- 
hal part all constructs con- 
tained a segment of rat liver 
Co32 (left of vertical arrow) 
comprising all four transmem- 
brahe domains (black) and ex- 
tending to the arginine R(13) 
located 13 aa positions after 
the fourth transmembrane re- 
gion. This residue was directly 
adjacent to a glycine residue 
G(6) present in the cytoplas- 

mic tail portions of different Dsg. The complete Dsg tall from G(6) to K(471) was present in construct Co-Dsg, including the intracellular 
anchor domain (IA, white), the C-domain (C, stippled) and the large Dsg-specific extension (DgS, hatched) whereas various parts of the 
tall were deleted in the other constructs, aa next to the deleted parts (internal deletions are indicated by brackets) are in bold face (giving 
the relative position from the Dsg transmembrane domain), aa introduced during cloning are also indicated (normal print). The position 
of the epitopes and major antibody binding sites used for immunological detection are shown by arrowheads (Co for rabbit antibodies 
to Co32; Dg for murine mAb Dg3.10; 23). Several stably transfected A-431 cell clones synthesizing the specific chimeric polypeptides 
were analyzed by immunofluorescence microscopy for the presence of desmosomes using desmoplakin antibodies (DP), for the colocal- 
ization of the Co-Dsg chimeras with plakoglobin (PG), and for the capacity of the chimeric proteins to form gap junctions (G J). These 
results are summarized on the right. 
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Figure 2. Assays for intercellular coupling and transfer of dye mole- 
cules (Lucifer Yellow) microinjected into individual cells and 
visualized by fluorescence microscopy (a and b) were evaluated 10 
min later by counting the number of positive cells in the neighbor- 

Results 

Our observation that the introduction of additional des- 
moglein (Dsgl) tails in the form of Co-Dsg chimeras 
resulted, in different cultured epithelial cells, in the disap- 
pearance of all desmosomes (51) has led to the working hy- 
pothesis that this effect may be due to the depletion of a criti- 
cal endogenous cytoplasmic molecule that binds to Dsg tails 
(for N-cadherin see also 21). Therefore, we designed experi- 
ments in which the chimera-integrated Dsgl tails were sys- 
tematically deleted and mutated (Fig. 1). By studying the 
synthesis and distribution of desmosomal proteins in A-431 
cells transfected with eDNA constructs carrying such dele- 
tions and by immunoprecipitation of Dsg complexes we 
wanted to identify possible partner molecules binding in 
vivo to certain Dsg segments. In addition, we assayed for 
cell-cell transfer through the connexons of gap junctions by 
microinjection of Lucifer Yellow dye and found that Co-Dsg 
transfected cells were as poorly coupled as normal, i.e., non- 
transfected A-431 cells whereas cells transfected with des- 
mocollin tail-containing constructs such as Co-Dsc (of. 51) 
show markedly increased dye transfer (Fig. 2). All results 
described in the following have been obtained from stably 
transfected cell clones. 

hood of the injected cell (at least 10 injections per cell line exam- 
ined). (a) Co-Dsg transfected cells of line B5. (b) Cells transfected 
with cDNAs for both Co-Dsg and Co43. (c) Histogram showing 
the quantitative evaluation (n = number of positive, i.e., coupled 
cells) for non-transfected A-431 ceils (NTC), Co-Dsg-transfected 
cells of line B5, cells double-transfected (B5 cells transfected with 
cDNA encoding Co43), and Co-Dsc-transfected cells (see 51). 
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Figure 3. Immunofluorescence microscopy showing the distribution of desmosomal proteins in untransfected human A-431 cells (a and 
b) in comparison to A-431 cells transfected with a DNA clone producing the chimeric protein Co-Dsg(209) (c-d'). Untransfected cells 
were reacted with murine mAbs to desmoplakin (Dp, a) or Dsg (Dg, b) showing the typical punctate distribution of desmosomes. Trans- 
fected A-431 cells shown here were double-stained with rabbit antibodies to Co32 (Co, c and d) and monoclonal antibodies to either des- 
moglein (Dg, c') or desmoplakin (Dp, d'). Note the absence of dotted arrays of desmosomal staining in most transfected cells, with the 
exception of a small area with some very small desmosome-like dots in a cluster of cells showing drastically reduced immunofluorescence 
reaction of the transgene product (arrows in c' and lower right part of d and d'). Note also the codistribution of chimera Co-Dsg(209) 
with the endogenous Dsg2 of A-431 cells, most of which appears to be at the cell surface. The desmoplakin reaction in d' is diffusely 
spread over the cytoplasm in most cells but the fluorescence intensity shown here has been reduced to optimize the appearance of the 
brilliantly fluorescent recovered desmosomes in the lower right. Bars, 50 #m. 
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Figure 4. Double label immunofluorescence microscopy of A-431 cells transfected to produce protein Co-Dsg(209) using rabbit antibodies 
against Co32 (a) and monoelonal mouse antibodies against plakoglobin (a') demonstrating the frequent colocalization of both antigens 
at the cell surface and in intracellular vesicle-like structures. Bar, 50/xm. 

In Co-Dsg- and Co-Dsg(2og)-expressing Cells 
Desmosomal Proteins Are Continually Synthesized but 
Not Assembled into Desmosomes 

Recently, we reported a cDNA clone encoding a chimeric 
protein containing the four transmembrane domains of rat 
liver Co32 and the entire cytoplasmic tail region of bovine 
Dsgl. Expression of this clone in the notoriously desmo- 
some-rich human epithelial cells of line A-431 led to two 
spectacular effects: (a) the inability of the synthesized chi- 
meric proteins to assemble into chimeric junctions as, for 
example, observed for similar constructs with Dscla (51), 
and (b) the disappearance of all the numerous endogenous 
desmosomes (51). 

To study the molecular basis of these effects and the contri- 
bution of individual Dsg subdomains we transfected cells 
with Co-Dsg deletion mutants lacking the codons for the last 
262 aa, including the epitope of mAb Dg3.10 (23). Expres- 
sion of this cloned construct Co-Dsg(209), which encodes 
a new and much shorter chimeric protein (Fig. 1), also 
resulted in the disappearance of punctate desmoplakin im- 
munostaining at cell-cell borders and of all desmosomal 
structures, leaving only a weak and homogenous cytoplas- 
mic fluorescence (data not shown; compare also Fig. 3, a and 
b with ae). Similar to Co-Dsg, Co--Dsg(209) codistributed 
with plakoglobin at the cell surface (Fig. 4). The endogenous 
Dsg, which in this cell line is mostly, if not exclusively Dsg2 
(26, 45), was now selectively detected with mAb Dg3.10 and 
again appeared rather evenly dispersed over the cell surface 
membrane, particularly along cell-cell contacts (Fig. 3 c'). 
Double label immunofluorescence microscopy showed that 
this distribution was similar to that of the chimera encoded 
by Co-Dsg(209), as detected by antibodies specific for rat 
Co32 (Fig. 3, c and c'). In addition, some weakly immuno- 
stained, dot-like, probably vesicular cytoplasmic structures 
were also noted at variable frequency. These results indicate 
that the last 262 at, with all the three Dsg-specific carboxy- 
terminal domains, including the repeating units (13, 23), did 
not contain any information necessary for the negative- 
dominant effects of desmosome disruption and inhibition of 
desmosome assembly. 

While cells with intense synthesis of the Co-Dsg chimera 
were totally negative for punctate desmosomal protein im- 
munostaining, small groups of cells that were only weakly 
positive for Co-Dsg(209) had recovered and showed finely 
punctate arrays of Dsg and desmoplakin immunostaining 
along cell-cell borders (compare Fig. 3, c and c', d and d'). 
Furthermore, Dsg and desmoplakin colocalized in the same 
small desmosomal dots (not shown) which, however, here 
appeared to be smaller than those detected in untransfected 
A-431 cells (compare Fig. 3, a and b with c' and d'). This 
pattern of heterogeneity suggests that low expression of cer- 
tain Co-Dsg constructs in individual cell colonies allows the 
recovery of desmosomal structures. 

To examine whether the observed changes of desmosome 
assembly and of desmoplakin staining were due to altera- 
tions in the expression and/or the stability of the proteins in- 
volved, we performed comparative immunoblot analyses of 
total cellular proteins (Fig. 5). These results showed that in 
steady state culture conditions the total amounts and the 
sizes of the desmosomal proteins were not considerably 
affected and that neither down-regulation of expression nor 
degradation of protein had taken place (Fig. 5, a and b, show 
examples for Dsg and desmoplakin). We have previously 

Figure 5. Immunoblot analysis of un- 
transfected A-431 cells (lane l) and 
cells transfected (lane 2) to express 
Co-Dsg(209). Equal amounts of 
protein from total cell lysates were 
separated by SDS-PAGE, transferred 
to nitrocellulose, and reacted with 
monoclonal antibodies to Dsg (a) or 
desmoplakin (b). Note the similar in- 
tensity of the alkaline phosphatase 
reaction in the untransfected and the 
transfected cells. Bars on the left 

margin denote the relative positions of coelectrophoresed reference 
proteins (from top to bottom: myosin, 205,000 Mr; /~-galactosi- 
dase, 116,000 Mr; phosphorylase b, 97,400 Mr; BSA, 67,000 Mr; 
ovalbumin, 45,000 Mr; carbonic anhydrase, 29,000 Mr). 
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Figure 6. Fluorescence microscopy of A-431 cells (clone B5) transfected to produce chimeric protein Co-Dsg, comparing the distribution 
of actin-containing filaments (a), visualized with FITC-labeled phalloidin, and of E-cadherin (b and c) with that of desmoplakin as a marker 
of desmosomes (c' shows the same field as c) visualized by immunofluorescence using rabbit antibodies (b and c) or, in double-label im- 
munofluorescenee, with a monoclonal murine antibody (c'). Two large and representative fields are shown in b and c, presenting extended 
membrane staining mostly in small distinct junctions of the puncture adhaerens type, in the absence of desmosomes (compare c and c'). 
Note also the typical cable arrays of actin filament bundles in a, with apparent anchorage sites at cell contact points identifiable by E-cad- 
herin antibodies (as in b and c). Bars, 50/~m. 

shown that in these cells the amounts of the chimeric Co-Dsg 
protein and the endogenous Dsg were similar (51). 

Co-Dsg Chimeras Disrupt Desmosomes Selectively 

We then examined whether the expression of the Co-Dsg 
chimeras and the disappearance of all desmosomes had any 
effect on the assembly of other cell contact structures, partic- 
ularly the actin-tilament anchoring adhering junctions con- 
taining E-cadherin and vinculin. Immunofluorescence mi- 
croscopy using antibodies to actin, E-cadherin and vinculin 
showed these proteins in their characteristic localizations, 
indistinguishable from those seen in nontransfected A-431 
cells (Fig. 6). Many of the actin filament cables were inti- 
mately associated with plasma membrane attachment struc- 
tures in regions of cell-cell contact (Fig. 6 a) which in turn 
were strongly positive for E-cadherin (Fig. 6, b and c) and 
vinculin (not shown). Double-label immunolocalization re- 
vealed the specific effect of transfections with Co-Dsg and 

Co-Dsg(209) with particular clarity (Fig. 6, c and c'): Adhe- 
rens junctions, as identified by the presence of E-cadherin, 
are present (Fig. 6 c), whereas desmosomes are totally ab- 
sent (Fig. 6 c'). 

The level of connexin(s) in untransfected A-431 cells and 
in A-431 cells expressing Co-Dsg (clone B5) was below the 
level of detection with antibodies against human Co32 and 
Co43. We therefore transfected B5 cells with a Co43- 
encoding gene construct. Immunofluorescence microscopy 
of selected double-transfected cell clones showed the effi- 
cient incorporation of both transgene products: as in B5 
cells, Co-Dsg was rather evenly distributed over the plasma 
membrane but Co43 now formed large gap junctions, many 
of which were negative for Co-Dsg (results not shown), 
resulting in effective cell-to-ceU coupling (Fig. 2). In parallel 
cotransfection experiments, Co43 colocalized well with the 
connexin-desmocollin chimera Co-Dsc (see 51). 

Although the assembly of connexons is still poorly under- 
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stood, our data suggest that the Dsgl tail in Co-Dsg, but not 
that of Dsc in Co-Dsc chimeras (51), interferes with the abil- 
ity of the transmembrane part of this connexin to cluster into 
paracrystaUine gap junctions and also prevents the integra- 
tion of these chimeras into preexisting gap junctions. 

The C Domain of the Dsg Tail Is Responsible for 
Desmosome Disruption 

To understand which part of the Dsg tail is important for des- 
mosome disruption we prepared several deletion mutants 
(Fig. 1). As shown, mutant Co-Dsg(209) lacking the Dsg- 
specific end domains of 262 aa is still able to disrupt desmo- 
somes. In contrast, neither chimera Co-Dsg(168) which 
lacks further 41 aa representing the end of the C-domain, nor 
mutant Co-Dsg(134) lacking the entire C-domain affected 
desmosome formation, as determined by immunolocaliza- 
tion with desmoplakin and Dsg antibodies in transfected cell 
lines (Fig. 7). While in some places the Co-Dsg chimeric 
proteins showed colocalization with plakoglobin we also en- 
countered many plasma membrane regions that were 
strongly positive for plakoglobin (Fig. 7 a') but negative for 
Co32 (Fig. 7 a). 

To test whether this short, 41-aa-long segment of the 
C-domain is sufficient for desmosome destruction we con- 
structed mutant Co-Dsgd(168-210), with an internal dele- 
tion of these aa (Fig. 1). The expression of this chimera did 
not disrupt desmosomes (Fig. 8). Surprisingly, however, 
protein Co-Dsgd(168-210) was not only transported to the 
cell surface but formed gap junction-like clusters (Fig. 8, 
a-c) which, however, were not stained by desmoplakin (Fig. 
8 a') and plakoglobin (Fig. 8 b') and did not appear to anchor 
cytokeratin fibrils (Fig. 8 c'). The specificity of this effect 
was also demonstrated by the introduction of another inter- 
nal deletion mutant (construct CoDsgd(32-75); cf. Fig. 1) 
into A-431 cells which induced the same desmosome-nega- 
five phenotype as chimera Co-Dsg (not shown). 

Plakoglobin Can Bind to the C Domain of Dsg 

To determine which polypeptide(s) directly interact with the 
cytoplasmic Dsgl-tail, in particular with the 41 aa of the 
C-domain, we performed a series of immunoprecipitation 
experiments. Using Co32 antibodies, we were, for example, 
able to precipitate protein Co-Dsg from metabolically la- 
beled A-431 cells of clone B5, as seen by autoradiography 
(Fig. 9 a) and by immunoblot analyses using Dsg and Co32 
antibodies (not shown). In these experiments we consistently 
and specifically observed coimmunoprecipitation of only 
one additional polypeptide of molecular mass ~83 kD to- 
gether with Co-Dsg, independent from the specific calcium 
and desoxycholate addition (Fig. 9 b). Immunoblot analysis 
with mAb PGS.1 showed that this polypeptide was plako- 
globin (Fig. 9 c). An identical reaction was obtained with 
mAb 11FA which recognizes a different plakoglobin epitope 
(not shown; see also Materials and Methods). Under the 
same conditions E-cadherin antibodies co-precipitated two 
major proteins of 90 and 100 kD, i.e., ~ and/~-catenin, and 
a miniscule amount of plakoglobin (Fig. 9 b), confirming 
and extending the data of previous authors (e.g., 22, 34, 39; 
see also Introduction). 

Immunoprecipitation experiments in which the different 
Co32-Dsgl mutant chimeras were compared (Fig. 9 c) 

Figure 7. Immunofluorescence micrographs of transfected A-431 
cells of subclone 168-a expressing the chimeric tail deletion protein 
Co-Dsg(168). Co-Dsg(168) as detected by rabbit antibodies to 
Co32 (Co) appears at cell surface sites or in small intracellular ag- 
gregates (a) which are not stained by monoclonal plakoglobin anti- 
bodies (a'). Notably, the plasma membrane localization of both 
proteins differs significantly (arrows) although Co-Dsg(168) can be 
transported to and detected at the cell surface. Immunofluorescence 
microscopy with monoclonal desmoplakin antibodies (b) demon- 
strates that these cells contain normal-appearing desmosomes. 
Bars, 50/zm. 
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Figure 9. Autoradiograms (a and b) and immunoblot reaction (c) 
of immunoprecipitates from transfected A-431 cells. Immunopre- 
cipitates were separated by SDS-PAGE (relative positions of marker 
proteins are mostly as in Fig. 3 and indicated on the left margin: 
fl-galactosidase, phosphorylase b, BSA, ovalbumin, and carbonic 
anhydrase). (a) Immunoprecipitates from Co-Dsg-producing cells 
(clone B5) obtained with rabbit antibodies against Co43 (lane 1) 
or Co32 (lane 2). Note that a specific Co-Dsg band is only seen 
in lane 2 and that this also contains plakoglobin (these two polypep- 
tides are indicated by dots: Co-Dsg, top, plakoglobin, bottom). (b) 
Immunoprecipitates from A-431 cells (clone B5) transfected to ex- 
press chimera Co-Dsg, using rabbit antibodies to rat Co32 (lane 
1 ) or to E-cadherin (lane 2). Note coprecipitation (arrowheads) of 
Co-Dsg (top) with plakoglobin (bottom), in contrast to the copre- 
cipitation of E-cadherin (top) with catenin(s) (bottom) and a very 
low amount of plakoglobin. (c) Immunoblot reaction of murine 
monoclonal plakoglobin antibody with proteins in immunoprecipi- 
tates obtained with rabbit antibodies against Co32 from A-431 cell 
lines stably expressing Co-Dsg (lane 1), Co-Dsgd(209) (lane 2), 
Co-Dsgd(168) (lane 3) and Co-Dsgd(168-210) (lane 4). Imrnuno- 
blot reaction, visualized by the alkaline phosphatase detection sys- 
tem, is only seen in lanes 1 and 2. 

Figure 8. Double label immunofluorescence microscopy of A-431 
cells producing the chimeric deletion protein Co-Dsgd(168-210). 
The left panel (a-c) shows the distribution of the mutant deletion 
protein, reacted with rabbit Co32 antibodies, in comparison with 
structures immunostained with mAbs to desmoplakin (a', Dp), 
plakoglobin (b', Pg) or cytokeratins (c', CK). Although Co-Dsgd- 
(168-210) can form gap junction-like plaque structures these are 
not codistributed with desmosomeal proteins and do not appear as 
specific sites of intermediate filament anchoring. Bars, 50/zm. 

demonstrated that Co32 antibodies also precipitated chimera 
Co-Dsg(209) in association with plakoglobin, whereas 
plakoglobin was not detected in association with immuno- 
precipitated chimeric proteins Co-Dsg(168) and Co-Dsgd- 
(168-210). This was in agreement with our double label 
immunofluorescence experiments in which plakoglobin colo- 
calized with Co-Dsg and Co-Dsg(209) but not with 
Co-Dsg(168) or Co-Dsgd(168-210), indicating that the last 
41 aa of the C-domain contribute significantly to plakoglobin 
binding. 

Discussion 

Desmoglein Dsgl binds plakoglobin (27, 42, this study). Our 
detailed mutational analysis now has localized the Dsgl tail 
region that is responsible, in transfected cells, for the 
dominant-negative effect on desmosome formation and sta- 
bility to a relatively short segment of 41 aa at the end of the 
intracellular cadherin-specific domain (ICS domain; cf. 23, 

45; C-domain in Fig. 1) which is 285 aa away from the car- 
boxyterminus of this protein. This region is homologous to 
the carboxyterminal domain characteristic of the much 
shorter desmocollins Dscl-3 type a and the classical cadhe- 
rins, is most conserved in aa sequence between the diverse 
cadherins (Fig. 10) (cf. 15, 17, 23-26, 45, 49) and has been 
shown in E-cadherin to be contained in the region responsi- 
ble for the binding of plakoglobin and/or the catenins and 
thus, directly or indirectly, for the specific anchoring of actin 
microfilaments (3, 18, 20, 22, 30-36, 38--41, 52, 54). The 
binding of catenins and plakoglobin to other cadherins such 
as N-cadherin also takes place at the C-domain (cf. 18, 22, 
38, see also 21). In a different study, we have further shown 
that it is this C-domain which in Dsc is needed for the bind- 
ing of plakoglobin, notably in the central part containing the 
repeating units (cf. 10, 12, 41), and the assembly of a plaque 
competent in the specific anchorage of IFs (51, Troyanovsky, 
S. M., R. B. Troyanovsky, L. G. Eshkind, R. E. Leube, and 
W. W. Franke, manuscript in preparation). We conclude that 
the terminal section of the C-domain contains both informa- 
tion common to different cadherins such as that for the bind- 
ing of plakoglobin and distinguishing information such as 
that for the exclusion of catenins from desmosomal cadhe- 
rins and for the specific interaction with other components 
of the desmosomal plaque. 

Considering the high sequence homology in the C-domain 
of the diverse cadherins, including members of the Dsc and 
Dsg subfamilies (Fig. 10), it is remarkable to note that this 
region displays discrete differences in its interaction with 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Figure lO. Comparisonofthe 
Dscla KVYLCGQDEEHKHCEDYVFSYNYEGKGSLAGSVGCC--SDRQEEEGLEFLDHLEPKFRTLAKTC IKK* 
Dsgl KAYAYADEDEGRPSNDCLLIYDIEGVGSPAGSVGCC--SFIGEDLDDSFLDTLGPKFKKLADISLGKESY amino acid sequences (one 
E-cad KAAD---TDPTAPPYDSLLVFDYEGSGSEAASLSSLNSSESDKDQDYDYLNEWGNRFKKLADMYGGGEDD* letter code) of the carboxyter- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  minal portion oft.he tail do- 
mains of human desmocoUin 

Dscla (Dsda; from reference 50), desmoglein 1 (Dsgl ; from reference 53) and E-cadherin (E-cad; from reference 2) in an optimized 
alignment to show amino acids identical (asterisks) or conservatively exchanged (dots) between Dsgl and Dscla (top) or Dsgl and E-cad- 
herin (bottom). 

various members of the plakoglobin/B-catenin/armadiUo 
gene product family of proteins: in E-cadherin and some 
other classical cadherins it can bind B-catenin and/or- 
although with seemingly lesser stability-plakoglobin (22, 
30-32, 42), whereas in desmogleins (this study, 42)and des- 
mocollins (Troyanovsky, S. M., R. B. Troyanovsky, L. G. 
Eshkind, R. E. Leube, and W. W. Franke, manuscript in 
preparation) it seems to bind preferentially plakoglobin. A 
third and even different binding pattern is observed in the 
APC tumor suppressor gene product of colorectal carci- 
nomas which apparently binds effectively ~-catenin (43, 48). 

In addition to the C-domain, other regions of the Dsg tail 
have also a marked influence on the topogenic behavior of 
the Co-Dsg chimeras. For example, although both C-domain- 
deficient chimeras Co-Dsg(168) and Co-Dsgd(168-210) 
cannot bind plakoglobin, the latter protein forms gap junc- 
tion-like structures in the transfected cells whereas the for- 
mer does not. A possible explanation might be that the large 
Dsg-specific domain of 261 aa contributes to the intramem- 
branous lateral assembly of complex, i.e., gap junction-like 
structures whereas the extensively truncated forms are un- 
able to cluster in this specific way. 

The mechanism by which the introduction of Dsg tail do- 
mains interferes so dramatically with desmosome assembly 
and the arrangement of the IF system is still unknown. We 
can exclude, however, several simple explanations. Clearly, 
the synthesis of all major desmosomai proteins continues in 
the cells suffering from the dominant-negative effect, and the 
resulting proteins are sufficiently stable and correctly in- 
serted into the plasma membrane where they tend to concen- 
trate at cell-cell boundaries but do not aggregate in the form 
of junctions. Both the normal endogenous desmosomal pro- 
teins as well as the chimeric proteins are also not enriched 
in endocytotically derived vesicles as it has been shown for 
epithelial cells uncoupled in the presence of low calcium 
concentrations (for references see 6, 16, 47). 

In our previous paper (51) we have mentioned the deple- 
tion by competition hypothesis that also appeared attractive 
to Kintner (21) as an explanation for his results with various 
deletion forms of N-cadherin in Xenopus laevis embryos. 
Our results showing that the inhibition phenotype correlates 
with plakoglobin binding are obviously compatible with the 
hypothesis that the plakoglobin concentration in the cyto- 
plasm and/or at the plasma membrane is critical so that the 
entrapment of some of it by the extra Dsg tail segments intro- 
duced would generally disturb the equilibrium with plako- 
globin bound to E-cadherin and the desmosomal cadherins. 
However, there are still other arguments questioning this ex- 
planation and alternative explanations have been discussed 
elsewhere (51). We are currently analyzing in greater detail 
the complexes of endogenous Dsg and its mutants that form 
in the transfected cell and also try to determine the stereo- 
chemistry and relative binding affinities of these molecules 
in vitro. 
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Note Added in Proof After acceptance of this manuscript we learned of 
an article reporting plakoglobin binding in vitro to the same region of des- 
moglein that we have identified in living cells in the present paper: Mathur, 
M., L. Goodwin, and P. Cowin. 1994. Interactions of the cytoplasmic do- 
main of the desmosomal cadherin Dsgl  with plakoglobin. J. Biol. Chem. 
269:14075-14080. 
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