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Abstract

Background: Natural products have been widely investigated in the drug development field. Their traditional use
cases as medicinal agents and their resemblance of our endogenous compounds show the possibility of new drug
development. Many researchers have focused on identifying therapeutic effects of natural products, yet the
resemblance of natural products and human metabolites has been rarely touched.

Methods: We propose a novel method which predicts therapeutic effects of natural products based on their similarity
with human metabolites. In this study, we compare the structure, target and phenotype similarities between natural
products and human metabolites to capture molecular and phenotypic properties of both compounds. With the
generated similarity features, we train support vector machine model to identify similar natural product and human
metabolite pairs. The known functions of human metabolites are then mapped to the paired natural products to
predict their therapeutic effects.

Results: With our selected three feature sets, structure, target and phenotype similarities, our trained model successfully
paired similar natural products and human metabolites. When applied to the natural product derived drugs, we could
successfully identify their indications with high specificity and sensitivity. We further validated the found therapeutic
effects of natural products with the literature evidence.

Conclusions: These results suggest that our model can match natural products to similar human metabolites and
provide possible therapeutic effects of natural products. By utilizing the similar human metabolite information, we expect
to find new indications of natural products which could not be covered by previous in silico methods.

Keywords: Natural product, Human metabolite, Medicinal compound, Similarity-based prediction, Data mining

Background
In drug development field, novel drug candidates are
being continuously discovered, yet the approval rate of
the new drug is decreasing compared to the budgets
spent on the R&D [1]. Due to the large chemical space,
it is laborious and difficult to find new therapeutic com-
pounds. Even if we find new drug candidates, most of

them are filtered out in various screening steps, such as
bioactivity and toxicity. To solve this problem, many
research has turned their attention to narrower chemical
pools, like metabolites or natural products [2, 3].
When developing a new drug from a therapeutic com-

pound, comparing its structure to known human endogen-
ous metabolites is an essential step [4]. By comparing its
structure, we may discover new positive effects or un-
wanted side effects caused by having a similar chemical
structure of endogenous metabolites. Some of the drugs
have been developed to mimic the structure of human me-
tabolites [5]. Antihistamine is one straightforward example.
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By having the same binding site structure as the his-
tamine with different residual structures, antihistamine
antagonistically binds to histamine receptors and prevents
histamine from initiating allergic reaction [6]. Other drugs
like protirelin, which is a synthetic analogue of the
thyrotropin-releasing hormone, or prednisone, which is
an anti-inflammatory glucocorticoid derived from corti-
sone, have been synthesized to mimic human metabolites
and bind to their target proteins [7].
As of now, DrugBank lists 2278 approved drugs,

and Human Metabolome Database (HMDB) lists
29,266 recognized human metabolites [8, 9]. Among
the 2278 approved drugs, 177 of them are exacted or
derived compounds of human metabolites, according
to the data in HMDB. While among 29,266 human
metabolites, only 234 were developed into drugs.
Such different proportions in drugs and human me-
tabolites show the potential of new drug development
from human metabolites.
In this study, natural products have been investigated

to narrow down the chemical search space and find che-
micals with high bioactivity. Natural products, which are
secondary metabolites extracted from living organisms,
have a distinct advantage in drug screening steps, for
they are bioactive compounds in other organisms [2]. In
previous work, principal component analysis (PCA)
based chemical map was used to find natural products
which are closely located to approved drugs in various
feature spaces [10]. As a result, they found that natural
products neighboring close to approved drugs show the
same biological activity.
By definition, human metabolites also fall into the cat-

egory of natural products in a broad sense. In the previ-
ous study, it has been shown that the natural products
are more structurally similar to human metabolites than
drugs are to human metabolites [11]. Also, the number
of similar human metabolites of natural products were
much larger than that of drugs. The result is relevant to
the fact that natural products and human metabolites
are both secondary metabolites in living organisms. By
combining both human metabolite and natural product
information, we could narrow down chemical search
space with expected biological activities.
Here, we present a systematic method to discover new

therapeutic compounds from natural products by using
human metabolite information. Our main hypothesis is
that natural products which are similar to human me-
tabolites will have similar endogenous effects in our
body. To define the similarity between natural products
and human metabolites, we considered molecular and
phenotypic properties by utilizing structure, target and
phenotype similarities. By encompassing these three dif-
ferent aspects of molecular interaction, we expect to
capture major features representing similarity between

natural products and human metabolites. Using the
three similarity features, we trained a support vector ma-
chine (SVM) model to match natural products to their
similar human metabolites and assigned verified pheno-
type terms to each pair. From the result, we expect to
find possible therapeutic effects of natural products,
which may serve as new leads to drug developments.

Methods
Data collection
Human metabolite information was gathered from
KEGG and HMDB [9, 12]. From KEGG, structure
and target gene data were collected for 1051 human
metabolites which have target information and are in-
volved in human metabolic pathways. Associated
phenotype terms of human metabolic pathways and
known related phenotype terms of human metabolites
were also gathered from KEGG and HMDB, respect-
ively. As a result, 934 related phenotype terms were
collected for 1033 human metabolites, with average
20 phenotypes per metabolites.
Natural product information was collected from

TCM-ID, TCMID and CTD [13]. From TCM-ID and
TCMID, we gathered the list of natural products, and
the structure data and target gene information was
downloaded for 18,583 natural products from CTD.
From DrugBank, we selected 1873 approved drugs and
collected their structure data and target gene informa-
tion. Drug and human metabolite pairs were used when
training an SVM model for selecting compounds similar
to human metabolites.
Pathway data from Context-Oriented Directed Associ-

ations (CODA) was utilized to find affected phenotype
terms of human metabolites and natural products [14].
CODA contains large endogenous information ranging
from genes to organ levels and related phenotype terms
ranging from symptom to disease, which enables us to
simulate endogenous effects of compounds. From
CODA, we extracted 1,007,771 relations among 20,046
genes and 7176 phenotypes.

The similarity between natural products and human
metabolites
To measure the similarity between natural products
and human metabolites, we utilized three features,
including structure, target and phenotype (Fig. 1).
The structural similarity has been conventionally used
to find drugs with similar biological activities [15]. In
addition to the molecular similarity, we utilized target
and related phenotype information to find similarities
in binding proteins and overall phenotypic effects
[16, 17]. The underlying hypothesis of our research is
that natural products which are similar to certain hu-
man metabolites will have similar biological functions
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as the human metabolites. Therefore we measured the
structural similarity with the whole sequence instead of
the active domain to find compounds with similar pheno-
types. With the same reasoning, when calculating the tar-
get similarity, we considered the whole amino acid
sequence to predict biological functions.

Structural similarity
The structural similarity was measured by Tanimoto co-
efficient (Fig. 1a). With structure data of human metabo-
lites and natural products in SMILES or MOL format,
hashed fingerprints were generated using the Chemical
Development Kit (CDK) to represent two-dimensional

Fig. 1 A systematic overview of the score matrix generation. Three scoring features, structure, target and phenotype, are utilized to generate
score matrix of all possible human metabolite and natural product pairs. a Structural similarity is measured by Tanimoto coefficient. Molecular
fingerprints of both human metabolite and natural product are compared using Tanimoto coefficient with bond sensitive, remove hydrogen and
stereo filter settings in CDK. b Target similarity is measured by amino acid sequence similarity between two target proteins. Amino acid
sequences of each target proteins of human metabolites and natural products are compared using Smith-Waterman algorithm. Among all
possible target sequence similarity scores, scores over top 5% of the score distribution curve are selected and averaged to generate target
similarity score of a human metabolite and natural product pair. c Phenotype similarity is measured by the random walk restart algorithm on the
CODA network. For a human metabolite and natural product pair, vectors of all phenotype scores are compared by Pearson’s correlation. The
absolute value of the Pearson’s correlation score is calculated for each human metabolite and natural product pairs. d Final score matrix is
generated for all human metabolite and natural product pairs. The matrix is later utilized to train SVM model
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structures of compounds [18]. Then the Tanimoto score
of a metabolite and natural product pair was calculated
using bond sensitive, remove hydrogen and stereo filter
settings in CDK.

SA;B ¼
Pn

j¼1xjAxjB
h i

Pn
j¼1 xjA

� �2 þPn
j¼1 xjB

� �2−
Pn

j¼1xjAxjB
h i

Here, SA,B means the similarity between compound A
and B, while xjA means the j-th component of com-
pound A.

Target similarity
Target similarity was measured by amino acid sequence
similarity between two target proteins (Fig. 1b). For the
sequence similarity measure, we used Smith-Waterman
sequence alignment score, with the substitution matrix,
BLOSUM-62. The sequence alignment score was further
divided by the geometric mean of the self-alignment
scores to be normalized, as suggested in Bleakley’s work
[19]. From the calculated sequence alignment scores, we
set the threshold value to cover top 5% of the distribu-
tion curve [20]. All target protein pairs of human metab-
olites and natural products were then filtered by the
threshold value. Finally, the average sequence alignment
score of the remaining target protein pairs was assigned
to the human metabolite and natural product pair.

Phenotype similarity
Phenotype similarity was measured by the random walk
with restart algorithm on the CODA network (Fig. 1c).
CODA network contains large endogenous information
ranging from gene to organ levels and related phenotype
terms collected from various sources, which enable us to
roughly simulate the endogenous effect of a compound.
Random walk with restart algorithm propagates com-
pound effects from initial nodes to their immediate neigh-
bors for each step. As the step is repeated, compound
effects will spread across the whole network, assigning
probability values to each neighbor nodes [21].

psþ1 ¼ 1−rð ÞMTps þ rp0

Here, p0 is the initial probability vector, ps is a probability
vector in step s, and MT is the transition matrix of the net-
work. r represents the restart probability which is the prob-
ability of the random walker returning to its seed nodes.
For this study, restart probability (r) was set as 0.7, and we
determined that the random walker has reached the steady
state when the difference between ps and ps + 1 is less than
10− 5. After obtaining phenotype scores from the random
walk algorithm, we used Pearson’s correlation to get

phenotype similarity of all natural product and human me-
tabolite pairs.

Model generation
Using all three similarity measures, structure, target and
phenotype similarity, a score matrix was generated for all
natural product and human metabolite pairs (Fig. 1d). From
this matrix, we expect to find similar human metabolites
and map their related phenotype terms to each natural
products. However, the gold standard set for the similar
natural product and human metabolite pairs doesn’t exist.
Therefore, we used drug and human metabolite pairs in-
stead to train the SVM model. The similarity score of each
drug and human metabolite pair was calculated by the
same procedure used for natural product and human me-
tabolite pairs. Among the 1873 drugs from DrugBank, 177
drugs, which are derived or designed from human metabo-
lites, were chosen as the silver standard positive sets. The
rest of the drug and human metabolite pairs were set as an
unlabelled set and were randomly selected with the same
number of positive sets to make a training set. We gener-
ated 100 random training sets and made SVM models for
each set with 10-fold cross-validation.
To evaluate the performance of our trained models com-

pared to the models trained with single similarity measure,
each model was trained with single similarity features, and
the area under the receiver operating characteristic
(AUROC) scores were compared with the whole model.
Also, to evaluate whether our model is highly dependent
on chemical structure feature, separate models were trained
with negative sets with high structure score (> 0.77) [22].

Validation
To evaluate the performance of our SVM model, we
used 10-fold cross-validation on drug and human me-
tabolite pairs. The performance of the trained model on
natural products was evaluated by the natural product
derived drugs. Newman’s work provides lists of drugs
which are derived from natural products [23]. Among
them, we selected 391 drugs which are derived from or
mimic of natural products. Indications of selected drugs
were parsed from DrugBank, and we calculated the pre-
cision and recall of our method in predicting at least
one of these indications. Finally, we found literature evi-
dence to confirm the association between natural prod-
ucts and phenotypes. In PubMed abstracts, we manually
counted co-occurrence of natural products and associ-
ated phenotypes, supported by the Jaccard Index and the
Fisher’s exact test [24, 25].

Results
Correlation of similarity measures
Correlations among three similarity measures were com-
puted to confirm whether some features are reliant on
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the others. For the measurement, Pearson’s correlation
(r) was used for each feature scores of all positive set
pairs. Target and phenotype features showed the highest
correlation (r = 0.564) compared to structure and target
(r = 0.452) or structure and phenotype (r = 0.531) fea-
tures. Both target and phenotype features are generated
from the target gene information of natural products
and human metabolites, and it is reflected in the correl-
ation. However, the overall correlation is low, showing
that our model is not dependent on any single feature.

Performance evaluation
We computed AUROC score of our trained SVM model
and compared with the other models trained with a sin-
gle feature. The test set was generated by randomly
selecting negative sets to match the ratio to the positive
sets. As a result, the model trained with all features
showed the highest performance (AUROC = 0.893) com-
pared to the models trained only with structure
(AUROC = 0.888), target (AUROC = 0.747) and pheno-
type (AUROC = 0.707) features (Fig. 2a). Among all fea-
tures, the structure feature had the highest score,
reflecting its dominant role in our model. It was an ex-
pected result since we used drugs derived from human
metabolites as a positive set in the training of the SVM
model, where most of them had high structural similar-
ity. To check the influence of the other features on our
model, we tested our models on the test set with high
structure similarities which was constructed by selecting
drug and human metabolite pairs satisfying Tanimoto
scores higher than 0.77. Based on previous studies, Tani-
moto score of 0.77 was set as a threshold value for judg-
ing structural similarity [11]. By filtering the structurally
similar drug-metabolite pairs, we decreased the effect of
structure feature and trained our model. The model
trained with all features showed the highest performance

(AUROC = 0.744) while the models trained with other
features, structure (AUROC = 0.583), target (AUROC =
0.644) and phenotype (AUROC = 0.579), showed similar
performance (Fig. 2b). From the result, we could confirm
that although the structural similarity is the dominant
feature in our model, the other features, target and
phenotype similarities, are also important in the model.
In this study, we found similar human metabolites and

mapped their related phenotype terms to each natural
products. To evaluate the performance of phenotype
prediction, precision and recall values were calculated
for the verified phenotype terms of natural products.
Natural products which are being used as drugs were se-
lected as a positive set. For the indications listed in the
DrugBank for each natural product drug, we evaluated
whether our model can predict at least one indication of
them. In Fig. 3, blue bar represents natural product and
human metabolite pairs which are predicted by our
method as being similar, and grey bar represents the
randomly matched natural product and human metabol-
ite pairs. The predicted pairs (precision = 0.018, recall =
0.246) generally show four times higher performance
than the random pairs (precision = 0.004, recall = 0.062).
Since the number of negative sets is 100-folds larger
than the number of positive sets, the precision was very
low. However, the comparison with the random samples
shows that our result holds statistical importance.

Literature validation for natural products and associated
phenotype
The natural product and human metabolite pairs and
resulting associated phenotype terms were validated by
external literature (Table 1). Total 1930 natural product
and human metabolite pairs, composed of 442 natural
products and 365 human metabolites, were predicted by
our method. Using PubMed abstracts, we counted

Fig. 2 AUROC value of models generated from different feature sets. SVM models are trained with single features and compared with the model
trained with the whole feature sets. a For random test set, SVM model trained only with structure feature shows as high AUROC as the model trained
with the whole feature sets. b For structurally similar test set (Tanimoto score≥ 0.77), all features contribute to improve the overall performance
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co-occurrence (nc) of each pair and calculated Jaccard
Index (JI) and Fisher’s exact test score (nf ), compared to
the random pairs. To check the difference from the ran-
dom set, we performed Mann-Whitney U test and calcu-
lated corresponding p-values [26]. A p-value lower than
0.05 was considered statistically significant. The average
number of co-occurrence was ten times higher in our
result pairs (nc = 45.09, p-value = 0.0021) than in random
pairs (nc = 3.77). Also, the average Jaccard index score
and Fisher’s exact test score were comparably higher in
our result pairs (JI = 1.87 × 10− 3, nf = 266, p-value =
0.0001) compared to random pairs (JI = 8.21 × 10− 5, nf =
38). We further confirmed the association between nat-
ural products and phenotypes paired by similar human
metabolites. Among 4168 natural product and pheno-
type pairs, the average co-occurrence of a pair (nc = 3.78,
p-value = 0.016) was higher than the random pairs (nc =
1.47). The average Jaccard index score as similar in our
result pairs (JI =1.13 × 10− 3, p-value = 0.0155) and ran-
dom pairs (JI = 1.16 × 10− 4). Finally, the Fisher’s exact
test scores of our result pairs (nf = 52, p-value = 0.0011)
were remarkably higher than the random pairs (nf = 6).

These results show that our method can successfully as-
sociate phenotype terms to natural products using hu-
man metabolite information.

Discussion
Currently, our method only covers three broad fea-
tures; structure, target sequence and overall pheno-
type correlation. However, there are still many
detailed features which can be used to measure simi-
larities between natural products and human metabo-
lites. For further improvement, other various factors
may be included, and the overall performance should
be measured to capture the most relevant feature
sets. With further improvements, we believe that our
method can serve as a new search tool to find drug
candidates from natural products.

Conclusions
Identifying therapeutic compounds with high bioactiv-
ity is an essential step in drug discovery. Due to the
large chemical space, many researchers have turned
their attention to natural products, which has
strength in high bioactivity and traditional medicinal
use cases. Most of the research has focused on chem-
ical similarities or literature evidence to find thera-
peutic compounds from natural products. Here, we
propose a different approach based on human metab-
olite similarity. Using structure, target and phenotype
similarities, our method finds similar human metabo-
lites and their associated phenotypes for natural prod-
ucts, introducing a new method of finding therapeutic
compound candidates for drug development.
By utilizing human metabolite information, we can

find bioactive compounds with therapeutic effects, un-
handled in the previous literature based or chemical
similarity-based methods. Similarity to human metabo-
lites were calculated by considering molecular and
phenotypic properties of natural products. Using struc-
ture, target and phenotype features, our method showed
the highest performance (AUROC = 0.893) compared to
the other methods trained with a single feature. When
applied to the natural product derived drugs, our
method could successfully identify indications of the
drugs with high precision. These results support that
similarity to human metabolites can serve as a new

Fig. 3 Performance of predicting natural product derived drugs.
For all natural product derived drugs listed in the DrugBank, we
evaluated whether our model can predict at least one indication
of them. The blue bar represents natural product and human
metabolite pairs which are predicted by our method as being
similar, and grey bar represents the randomly matched natural
product and human metabolite pairs. The predicted pairs generally
show four times higher performance than the random pairs

Table 1 Literature validation for natural products, human metabolites and phenotype association

Natural product-human metabolite Natural product – phenotype

Our method Random Our method Random

Co-occurrence 45.09 3.77 3.78 1.47

Jaccard index 1.87 × 10−3 8.21 × 10− 5 1.13 × 10− 3 1.16 × 10− 4

Fisher’s exact testa 266 38 52 6
aThe number of significant associations satisfying the Fisher’s exact test p-value threshold (p-value < 0.001)
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paradigm of natural product research, aside from litera-
ture or chemical similarity-based methods. We further
found literature evidence for the association between
natural products and phenotypes by manual curation.
From the result, we could find that many of the pheno-
type terms mapped to natural products have been clinic-
ally researched in many studies.
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