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This perspective describes advances in determining membrane protein structures in lipid

bilayers using small-angle neutron scattering (SANS). Differentially labeled detergents

with a homogeneous scattering length density facilitate contrast matching of detergent

micelles; this has previously been used successfully to obtain the structures of membrane

proteins. However, detergent micelles do not mimic the lipid bilayer environment of the

cell membrane in vivo. Deuterated vesicles can be used to obtain the radius of gyration of

membrane proteins, but protein-protein interference effects within the vesicles severely

limits this method such that the protein structure cannot be modeled. We show herein

that different membrane protein conformations can be distinguished within the lipid

bilayer of the bicontinuous cubic phase using contrast-matching. Time-resolved studies

performed using SANS illustrate the complex phase behavior in lyotropic liquid crystalline

systems and emphasize the importance of this development. We believe that studying

membrane protein structures and phase behavior in contrast-matched lipid bilayers

will advance both biological and pharmaceutical applications of membrane-associated

proteins, biosensors and food science.
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INTRODUCTION

Integral and peripheral membrane proteins play an important role in signal transduction, solute
transport, energy conversion and charge separation in eukaryotic and prokaryotic cells (Gaur and
Natekar, 2010). Such membrane proteins are also important drug targets, with more than half of all
pharmaceutical compounds on the market targeting membrane proteins (Service, 2014). There are
significant experimental challenges with determining membrane protein structures in their native
state due to their limited solubility in water. Membrane protein structures should, therefore, ideally
be investigated within a native lipid bilayer environment. Although some studies have used vesicles
to investigate membrane proteins in a lipid bilayer environment, most studies to date have focused
on using detergent micelles which do not effectively mimic the lipid bilayer. In this perspective we
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describe advances in membrane protein structure determination
in detergent micelles as well as vesicles. These studies
are compared with new data obtained using bicontinuous
cubic phases.

Bicontinuous cubic phases, formed via lipid self-
assembly, consist of a single lipid bilayer convoluted over
three-dimensional space and subdividing space into two
interpenetrating aqueous networks. The lipid bilayer adopts
the shape of a theoretical surface of zero mean curvature,
but with a continually varying Gaussian curvature which is
everywhere non-positive (Luzzati et al., 1968). The three known
bicontinuous cubic phases are based on the Schoen gyroid (G)
minimal surface, the Schwartz primitive (P) minimal surface,
and the Schwartz diamond (D) minimal surface, and are denoted
QG
II , Q

P
II, and QD

II , respectively. The bulk bicontinuous cubic
phases, which have the form of a viscous sticky gel, may be
dispersed into sub-micron particles known as cubosomes, which
must be sterically stabilized against flocculation via the addition
of a polymer-based stabilizer, such as Pluronic F127 (Barriga
et al., 2019; Fornasier et al., 2020). The elegant, bilayer-based,
amphiphilic nanostructure of the cubic phase provides an ideal
matrix for the encapsulation of transmembrane and membrane-
associated proteins and peptides with a wide range of molecular
masses (Conn and Drummond, 2013). Water-soluble proteins
may also be encapsulated within the aqueous networks. The
main applications of the bicontinuous cubic phases, including as
drug delivery vehicles (Zhai et al., 2019), biosensors (Vallooran
et al., 2016) and matrices for membrane protein crystallization
(Caffrey, 2009), depend on their properties, such as the ability
to encapsulate hydrophobic and hydrophilic moieties, large
surface-area, biocompatibility, and retention of functionality for
encapsulated proteins.

Encapsulation of a specific protein can impact the underlying
cubic nanostructure depending on a range of factors including
the charge on the protein and geometric mismatch between
the protein and the aqueous channel diameter (for water
soluble proteins) or bilayer thickness (for membrane-associated
proteins) (Angelova et al., 2012; van ’t Hag et al., 2016b, 2017b;
Meikle et al., 2017). For water-soluble proteins or peptides,
encapsulation may be quantified by separating the bulk cubic
phase, or cubosomes, from the surrounding aqueous phase
via centrifugal filtration. Loading efficiency may be calculated
by using UV absorption to determine the peptide or protein
concentration in the filtrate. For poorly water-soluble peptides,
either the insoluble precipitate, or the loaded cubosomes, may
be analyzed to determine the peptide loading. Encapsulation
efficiencies of up to 90 mol% have been measured for smaller
peptides, such as some antimicrobial peptides (Conn et al., 2011;
Boge et al., 2019). In contrast, for larger proteins, such as GPCRs,
the underlying cubic nanostructure may be completely disrupted
at low protein concentrations of <3 mol% (Conn et al., 2010).

The lipid bilayer structure of the bicontinuous cubic phase
can provide an ideal matrix for structure determination
in a more biomimetic environment compared to detergent
micelles. Neutron scattering with contrast-variation allows for
the isolation of scattering from individual components within a
complex system of protein, lipid(s), and solvent (water or buffer).

The neutron scattering contrast can be varied over a wide range
using the difference in neutron scattering length density (SLD)
between hydrogen and deuterium. Isotopic substitution of this
type usually has small but volume fraction defined effects on
the phase diagram of lipid mesophases in water (Vandoolaeghe
et al., 2009b; Bremer et al., 2017; Bryant et al., 2019). The
effects for hydrogens which take part in hydrogen bonding, e.g.,
water (Takahashi and Jojiki, 2017) are more complex (Bryant
et al., 2019) but may also account for small shifts in the phase
boundaries.We describe how this has been used to study proteins
in detergent micelles and vesicles and show that this has now
been successfully applied to study peptide structures in contrast-
matched lipid cubic phases. Advances in using SANS for time-
resolved studies will also be discussed.

MEMBRANE PROTEIN STRUCTURES IN
LIPID MEMBRANES

Detergents
Early attempts to study membrane proteins with contrast-
matched detergent micelles were performed on rhodopsin
in the 1970s (Osborne et al., 1978). Since that time, this
approach has been used to study the structure of other
membrane proteins (Breyton et al., 2013; Naing et al., 2018),
however, these studies tended to focus on the radius of
gyration and oligomeric state of the proteins. More recently,
structural work on membrane proteins showed how the use of
differentially labeled detergents with a homogeneous scattering
length density allowed for superior contrast-matching of the
detergent micelle; consequently, the scattering curves were a
more faithful representation of the isolated membrane protein
(Midtgaard et al., 2018). At the same time, approaches are being
developed to model the protein structure and the detergent
micelles from SANS or SAXS (Pérez and Koutsioubas, 2015;
Koutsioubas, 2017), but the impact remains modest, largely due
to the difficulties involved in working with membrane proteins.
Additionally, as detergent micelles do not mimic the lipid bilayer
environment of the cell membrane in vivo, the structure and
function of membrane proteins can be significantly affected in a
detergent environment (Bayburt and Sligar, 2010; Breyton et al.,
2013).

Vesicles
SANS has also been used to study membrane protein assemblies
and, in particular, oligomerization in liposomes (Hunt et al.,
1997). In this case, liposome polydispersity must be accounted
for which is a significant challenge. Fitting of a membrane
associated protein with vesicles was, for example, modeled using
five parameters: liposome radius, lipid thickness, lipid bilayer
SLD, protein thickness and protein SLD. Relative differences in
conformation could be detected using this method (Satsoura
et al., 2012; Heberle et al., 2013). In another study, results were
mainly focused on changes in the lipid bilayer thickness and
not the protein structures (Gilbert et al., 1999). In recent years
there has been significant progress in modeling complex phase-
behavior, such as the formation of lipid rafts in lipid-only vesicles
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using SAXS and SANS (Marquardt et al., 2015; Heberle and Pabst,
2017).

Protein-protein interference effects due to the structure
factor caused by the large number of protein monomers per
vesicle are a significant limitation when studying membrane
proteins reconstituted in vesicles. For bacteriorhodopsin the
radius of gyration was obtained in contrast-matched vesicles of
dimyristoylphosphatidylcholine (DMPC-d67-h5). However, the
study indicated that only a limited q-region (0.01–0.05 Å−1)
was free from interference effects (Hunt et al., 1997). While
the limited q-range allowed for determination of the radius
of gyration, it was not possible to obtain the detailed protein
conformation which relates to its function. Ab initiomodeling of
membrane protein structures in a lipid bilayermembrane has had
limited success to date (Breyton et al., 2013; Skar-Gislinge et al.,
2015).

Cubic Phases
Membrane protein encapsulation can also be studied using the
lipid self-assembly bulk bicontinuous cubic phase, which has a
significantly higher surface area to volume ratio compared to
vesicles. This affords the significant advantage that large amounts
of protein can be encapsulated, increasing the neutron scattering
signal. To prepare the bicontinuous cubic phases, lipid (50–80%
v/v) is typically mixed with membrane protein solution (50–20%
v/v) in detergent. For this preparation method, there is no point
where the protein is completely separated from the detergent
micelle or lipid bilayer (van ’t Hag et al., 2017a).

Herein, we present new data where hydrophobic peptides are
directly mixed with lipid without the need to use detergents.
We have recently shown that deuterated lipids can be used
to contrast match the lipid membrane to D2O, in order to
isolate the scattering from the peptides. This can be used to
retrieve the Bragg peaks from the cubic phase geometry due
to the scattering of the homogeneously encapsulated peptides
in the contrast-matched membrane (van ’t Hag et al., 2016a,
2019). For gramicidin A in the lipid cubic phase of monoolein
(MO), an increase in Bragg peak intensity was found with
increasing peptide concentration (van ’t Hag et al., 2019). In
contrast, the cubic phase formed by the branched chain lipid
phytanoyl monoethanolamine (PE) showed Bragg peaks at low
peptide concentrations, but limited WALP21 and WALPS53
encapsulation at high concentrations (van ’t Hag et al., 2016a,b).
This can be explained by the significantly higher lateral bilayer
pressure in the case of PE bilayers and illustrates the importance
of the physicochemical properties of the membrane.

Herein, we extend this work by investigating the peptide
structures of Gramicidin A (gA) and WALPS53 in the contrast-
matched cubic QII phase of MO (M-MO) (Figure 1). gA can
appear in two different conformations in a lipid bilayer: as
a helical dimer (PDF ID: 1MAG, Figure 1D) and/or as a
double helix (PDB ID: 1BDW, Figure 1E). The time-of-flight
SANS data, as collected during a single measurement of each
sample and scaled to peptide concentration, was in excellent
quantitative agreement with the gA form factor of a mixture of
helical dimer and double helix (Figures 1A,B). An approximately
equal contribution of each structure is in agreement with what

was found using circular dichroism spectroscopy of gA in the
diamond cubic QD

II phase of MO (Meikle et al., 2017). The
simulated form factor data was obtained using CRYSON (v 2.7)
(Svergun et al., 1998), using the gA structures (PDB ID: 1MAG
and PDB ID: 1BSW), assuming a D2O solvent concentration of
100%, and setting the contrast of the solvation shell to 0. The
form factors from CRYSONwere multiplied byNA/Mw × 10−24,
permitting direct comparison with SANS data on an absolute
scale normalized by peptide concentration.

The model peptide WALPS53 consists of two transmembrane
α-helices [amino acid sequence GWW-(LA)7L-WWA] bound by
a short hydrophilic domain [amino acid sequence S(RS)5]. In
the cubic phase of MO with a water channel diameter of ∼50
Å, the WALPS53 hydrophilic domain, with a length of ∼46 Å
(based on a distance of 3.5 Å between α-carbons) (van ’t Hag
et al., 2016b), would be able to bridge the water channels based
on geometrical considerations. The two peptide conformations
investigated are therefore (i) one where the transmembrane α-
helices are present as a dimer (Figure 1F) and (ii) another where
the structure is fully extended (Figure 1G). A model structure of
theWALPS53 dimer was generated using the iTasser server (Yang
et al., 2015), while the extended structure was generated from
that dimer by manually rotating the C-terminal helix (S30-A53)
around residue R29 by an angle of ∼180◦ using PyMol (Version
1.2r3pre, Schrödinger, LLC). This simple two state model allows
for comparison of the two extreme conformations: extended vs.
compact. We note, however, that in the extended conformation
the two helices are expected to be able to move freely around
the linker region. The form factors for the fully extended
and compact structures were calculated for each structure as
described above for gA. The SANS data with two different peptide
concentrations showed that the peptide is present as a dimer in
the gyroid cubic QG

II phase at 0.2 and 0.4 mol% and 35% v/v
D2O. The data for WALPS53 are noisier than data for gA due to
the significantly lower peptide concentrations which also resulted
in a narrower available q-range after subtraction. Nevertheless,
the SANS data shows good quantitative agreement with the
simulated form factor of the dimeric form of the peptide as
predicted by the iTasser server.

DISPERSED CUBIC PHASES FOR
THERAPEUTIC PROTEIN DELIVERY

It was recently shown that the internal structure of cubosomes
(dispersed cubic phases) can also be contrast-matched (Yepuri
et al., 2019). These nanoparticles can be used for the delivery
of therapeutic and antimicrobial peptides, imaging agents and
hydrophobic drugs (Mulet et al., 2013; Zhai et al., 2015).
Polymeric stabilizers, such as Pluronic F127 and Tween 80, used
to prevent aggregation of the cubosomes are known to affect the
internal cubic phase nanostructure. For phytantriol cubosomes,
deuterated phytantriol was used to prove that Tween 80 was
distributed throughout the internal lipid bilayer network and not
just on the surface, which led to a phase transition to the more
swollen and less curved primitive cubic QP

II phase (Yepuri et al.,
2019). This demonstrates that SANSwith contrast-matched cubic
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FIGURE 1 | (A–C) SANS data showing H-MO and peptide encapsulation in 92% D-MO/8% H-MO (M-MO) at a range of peptide concentrations at 20◦C in D2O.

(A,B) Gramicidin A (1.9 kDa) concentrations reflect 1.6, 3.1, and 5.3 mol% with respect to MO and at 40% v/v D2O: diamond cubic QD
II phase. (C) WALPS53 (5.9

kDa) at 0.2 and 0.4 mol% with respect to MO and at 35% v/v D2O: gyroid cubic QG
II phase. The SANS data was treated by first subtracting the MO cubic phase as

background, then scaled to peptide concentration, and then a further incoherent background was subtracted. The calculated form factors were obtained using

CRYSON. (D–G) were created using PyMOL and show cartoon representations of the secondary structures with side-chains shown as lines. They were obtained

using PDB ID (D) 1MAG: helical dimer and (E) 1BDW: double helix. (F) WALPS53–1 dimer as generated using the iTasser server (Yang et al., 2015) and (G)

WALPS53–2 (extended version of WALPS53–1).

phases can also be used to study dispersed cubic phase systems,
and opens up the possibility to study release of bioactives from
cubosome nanoparticles using this technique.

TIME-RESOLVED STUDIES ON
MULTI-COMPONENT SYSTEMS USING
SANS

The non-destructive nature of the neutron beam makes SANS
suitable for in situ kinetic studies. We describe how this has
been used to study lyotropic liquid crystalline systems to date,
and could be used in the future, to study the kinetics of
hybrid protein-lipid materials. Kinetic studies are of fundamental
importance for understanding what happens during delivery and
digestion of therapeutic proteins (Conn and Drummond, 2013;
Mulet et al., 2013), enzymatic reactions in lipid phases for use
as biosensors and biofuel cells (Nazaruk et al., 2008; Vallooran
et al., 2016), and during in meso crystallization of membrane
proteins for high-resolution structure determination (Cherezov,
2011; van ’t Hag et al., 2014; van ’t Hag et al., 2019; Caffrey, 2015;
Zabara et al., 2017).

SAXS and SANS have commonly been used to study the phase
transitions and geometric pathways between lyotropic liquid
crystalline phases formed by a single amphiphile/surfactant in
water (Hamley et al., 1998; Angelov et al., 2007; Vandoolaeghe
et al., 2009a; Squires et al., 2015; van ’t Hag et al., 2017b),

whereby X-ray studies have a much higher time resolution but
are limited by radiation damage and a single contrast. In 2000
it was reported that a significant increase in the neutron flux
and detector size enabled time-resolved studies of relatively fast
surfactant phase transitions in solution, elucidating the transition
from micelles to vesicles as well as nucleation and growth of
oil droplets with measurement times of 30 s (Egelhaaf et al.,
2000). Additionally, hydrogels, polymer systems, emulsions, and
surfactant lamellar phases are examples of systems that have
been studied under flow, using Rheo-SANS. Bulk surfactant
lamellar phases were suggested to form multi-lamellar vesicles
under shear via intermediate cylinders or buckling. Currently
most Rheo-SANS measurements focus on a time average and the
ensemble structure formed by a single amphiphile (Eberle and
Porcar, 2012). It was suggested that studying transient structural
reorientation of complex fluids requires powerful neutron
sources and techniques, but that multicomponent systems and
contrast-matching will become invaluable for understanding
the relation between the rheological properties and membrane
structure by using new sources, such as the European Spallation
Source and new techniques including examination of steady
perturbed states (Glinka et al., 2020).

Angelov et al. used a combination of SANS and SAXS to show
that the cubic phase behavior of the ternary system consisting of
MO, water and octyl glucoside (OG) undergoes phase separation.
At low temperatures the swollen cubic phases were found to
have OG encapsulated within the lipid bilayer. In contrast, when
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heated to higher temperatures the OG molecules were suggested
to be released into the aqueous water channels (Angelov et al.,
2007; Angelova et al., 2011). Additionally, using SAXS the
protein neurotrophin was found to impact the curvature of
MO-eicosapentaenoic-water cubic phases within milliseconds,
leading to a hydrated mixed QD

II/Q
G
II shell connected to a lamellar

core phase (Angelov et al., 2014). Multi-phase liquid-crystalline
nanoparticles with the cubic phase forming lipid MO have
also been observed in a ternary mixture with capric acid and
water (Killian, 2003). Recently, the complex phase behavior
resulting from the interactions of silica nanoparticles with a
ternary water-oil system was extensively studied using SANS
with contrast-variation. Nanoparticles were found to aggregate
at domain boundaries which led to a change in the liquid
crystalline domain size (Marlow et al., 2019). In the case of
triphilic star-polyphiles, hybrid double chain surfactants with a
hydrocarbon and fluorocarbon chain, contrast-variation SANS
was successfully used to show that the membrane was fully
de-mixed into hydrocarbon and fluorocarbon domains in the
hexagonal phase, demonstrating more complex phase behavior
than that found in amphiphiles (de Campo et al., 2011).

Using the contrast-matched MO cubic phase we were able
to follow the in meso crystallization of the biologically relevant
transmembrane peptides glycophorin A (GpA) (Trenker et al.,
2015) and DAP12 (Knoblich et al., 2015) using SANS. Peptide
crystal growth was directly related to a significant decrease in
form factor scattering intensity of the peptides. For DAP12 a
transient fluid lamellar Lα phase was observed. In contrast, for
GpA the lamellar crystalline Lc phase of the peptide single crystals
was observed. This suggested that the specific mechanism is
peptide and protein dependent (van ’t Hag et al., 2019). This
was the first time in meso crystallization was studied from the
protein-eye perspective as previous studies using SAXS and
SANS without contrast-matching focused, by necessity, on the
lipid phase (Efremov et al., 2005; van ’t Hag et al., 2016c; Zabara
et al., 2017).

DISCUSSION

We have described current progress on the use of detergent
micelles and vesicles to determine membrane protein structures.
To date, neither of these environments have proved wholly
successful in determining membrane protein conformations in a
lipid bilayer environment. While membrane protein studies with
phospholipid nanodiscs have recently gained a lot of attention
(Bayburt and Sligar, 2010; Skar-Gislinge and Arleth, 2011) we
note that they face significant challenges with regards to contrast-
matching, mainly due to the use of an encircling helical protein
belt that keeps the nanodiscs together. The new data presented
herein, to the best of our knowledge, represents the first time
that specific membrane protein conformations were determined
in contrast-matched bicontinuous cubic phases using SANS. This
is a promising approach for studying membrane proteins that
are too small for structural studies with Cryo-EM (<100 kDa)
(Cheng, 2018) and too large for NMR (>25 kDa) (Liang and
Tamm, 2016).

We suggest that the use of contrast-matched cubic phases,
as presented herein, is also suitable for investigating the
structures of large and complex membrane proteins. Membrane
proteins may be reconstituted directly into the cubic phase
from a solution with deuterated detergents. Alternatively, the
use of 100% D-MO (rather than 92% D-MO and 8% H-
MO as presented herein) and H-detergent will also lead to
contrast-matched cubic phases. Furthermore, swollen cubic
phases could be employed for membrane proteins with a
large hydrophilic domain (Zhai et al., 2020). The complex
phase behavior in lyotropic liquid crystalline systems is evident
in time-resolved studies and emphasize the importance of
this development.

The use of SANS with contrast-matching has the potential
to further advance our understanding of encapsulated proteins
and other additives in lyotropic lipid cubic phases. Many
questions remain, such as do large amphiphilic proteins
encapsulate within the cubic phase water channels or
in the cubic phase domain boundaries? How do protein
molecules from several cubic phase domains feed the protein
crystals during in meso crystallization? How do the lipid
bilayer physicochemical properties affect protein structures
(Frewein et al., 2016)? How can we improve the use of lipid
nanoparticles with therapeutic peptides for oral delivery by
studying digestion of the protein-lipid materials? Therapeutic
peptides have shown to be a promising treatment for cancer,
viral infections as well as multi-drug resistant bacterial infections
(Walsh, 2014). However, their effective delivery remains
a challenge.

Additionally, protein and peptide interactions with the cell
membrane are of significant importance for pharmaceutical
applications with more than half of all drugs on the market
targeting membrane proteins (Service, 2014). Biological
cell membranes consist of hundreds of different lipids and
display complex phase behavior (Sarkar et al., 2019). We
believe that studying membrane protein structures and phase
behavior in contrast-matched lipid bilayers will advance
biological and pharmaceutical applications, biosensors and
food science. Combined with recent advances in chemical
and biological deuteration, neutron scattering technology
and instrumentation we expect a bright future for this
research field.

MATERIALS AND METHODS

Materials
H-MO, gramicidin from Bacillus aneurinolyticus,
hexafluoroisopropanol (HFIP) and methanol-d1 (MeOD)
was purchased from Sigma Aldrich (St Louis, MO). Hamilton
syringes were obtained from Hamilton Company (Reno,
NV) and syringe couplers from TTP Labtech (Cambridge,
MA). WALPS53 with >95% purify was purchased from
CS Bio, Inc. (Menlo Park, CA, USA) and mass and
purity were confirmed (van ’t Hag et al., 2016b). The
synthesis of D-MO was described in a previous publication
(van ’t Hag et al., 2019).
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Sample Preparation
Initially, the exchangeable hydrogens of H-MO and D-MO
were exchanged for deuterium using MeOD. Homogeneous
peptide/lipid mixtures were obtained by co-dissolving the
peptide with the appropriate H/D-MO mixture: gA with H/D-
MO was dissolved in 260 µL MeOD or WALPS53 was dissolved
in 100 µL HFIP, and then mixed with H/D-MO in 160 µL
MeOD. While in the gA samples the hydrogens remained
fully exchanged, the co-solvation process for WALP53 led to
an exchangeable H/D ratio of ∼1:4. Most of the solvent was
evaporated using a stream of N2, followed by freezing in liquidN2

followed by lyophilizing overnight. D2O was loaded into the first
100µL Hamilton syringe, the second syringe was loaded with the
peptide/lipid mixture after it was molten at 40◦C. Samples were
mixed at 35% v/v or 40% v/v D2O.

Small-Angle Neutron Scattering (SANS)
SANS measurements were performed on BILBY at the ANSTO
OPAL reactor in time-of-flight mode using neutrons with
wavelengths between 3 and 12 Å (Sokolova et al., 2019; van
’t Hag et al., 2019). The sample detector distances were 1.8m
(horizontal curtains), 2.8m (vertical curtains) and 6.0m (rear).
The collimation length was 6.7mm and a sample aperture of
7.5mm was used. Using the Mantid software (Arnold et al.,
2014) the data was put on absolute scale using a direct beam
measurement and corrected for scattering contributions from
the background.
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