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Cortical neural circuits display highly irregular spiking in individual neurons but variably
sized collective firing, oscillations and critical avalanches at the population level, all of
which have functional importance for information processing. Theoretically, the balance
of excitation and inhibition inputs is thought to account for spiking irregularity and critical
avalanches may originate from an underlying phase transition. However, the theoretical
reconciliation of these multilevel dynamic aspects in neural circuits remains an open
question. Herein, we study excitation-inhibition (E-I) balanced neuronal network with
biologically realistic synaptic kinetics. It can maintain irregular spiking dynamics with
different levels of synchrony and critical avalanches emerge near the synchronous
transition point. We propose a novel semi-analytical mean-field theory to derive the
field equations governing the network macroscopic dynamics. It reveals that the E-I
balanced state of the network manifesting irregular individual spiking is characterized by
a macroscopic stable state, which can be either a fixed point or a periodic motion and
the transition is predicted by a Hopf bifurcation in the macroscopic field. Furthermore, by
analyzing public data, we find the coexistence of irregular spiking and critical avalanches
in the spontaneous spiking activities of mouse cortical slice in vitro, indicating the
universality of the observed phenomena. Our theory unveils the mechanism that permits
complex neural activities in different spatiotemporal scales to coexist and elucidates
a possible origin of the criticality of neural systems. It also provides a novel tool for
analyzing the macroscopic dynamics of E-I balanced networks and its relationship
to the microscopic counterparts, which can be useful for large-scale modeling and
computation of cortical dynamics.
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INTRODUCTION

The mammal brain consists of tens of billions of neurons,
which process information and communicate through
electrophysiological action potentials, also known as spikes. This
large number of neurons exhibit diverse spiking behaviors across
broad ranges of spatial and temporal scales. Understanding the
origin and dynamic mechanism of this complexity is crucial for
the advancement of neurobiology, the development of therapies
for brain diseases and the future design of brain-inspired
intelligent systems.

Two striking features can be simultaneously observed at
different levels of cortical neuronal systems: 1) irregularity in
spiking times, indicated by seemingly random spiking time
that resembles Poisson process (Softky and Koch, 1993; Holt
et al., 1996) of individual neurons; 2) variability in population
firing rates, manifested in widely observed collective neural
activities such as population oscillations (Brunel and Wang,
2003; Herrmann et al., 2004) and critical neural avalanches
(Beggs and Plenz, 2003; Gireesh and Plenz, 2008; Bellay et al.,
2015; Shew et al., 2015; Ma et al., 2019), etc. Biologically, the
spiking irregularity has been proposed to originate from the
balance between excitation (E) and inhibition (I) inputs so
that spiking of neurons is driven by fluctuations (Shu et al.,
2003; Okun and Lampl, 2008; Xue et al., 2014), and has
been associated with functional advantages in efficient coding
and information processing (Denève and Machens, 2016). The
emergence of collective cortical activities originates in the fact
that neurons interact through recurrent networks (Abeles, 1991),
in which dynamic activities can reverberate. As a result, dynamic
correlations arise from structural correlations. In particular,
even weak pairwise correlation is sufficient to induce strongly
correlated collective network activities (Schneidman et al., 2006).
Collective neural activities can emerge with different amplitudes
and are often organized as critical avalanches with various sizes.
These avalanches are cascades of activity bursts in neuronal
networks. At criticality, the size and duration of avalanches
are approximately distributed according to power-laws, with
critical exponents satisfying the scaling relation (Friedman et al.,
2012; Fontenele et al., 2019). Avalanches in the critical state can
maximize the informational complexity and variability, and are
thought to have functional advantages in information processing
(Kinouchi and Copelli, 2006; Shew et al., 2009, 2011).

Traditional mean-field theory of E-I balanced networks (Van
Vreeswijk and Sompolinsky, 1996, 1998; Renart et al., 2010)
with binary neuron and instantaneous synapse explains the
spiking irregularity of individual neurons. However, it fails
to account for collective neural activities, because it predicts
an asynchronous dynamic state with vanishing correlation in
unstructured (i.e., random topology) networks. Such vanishing
correlation arises due to sparse network connectivity (Van
Vreeswijk and Sompolinsky, 1998) or shared excitatory and
inhibitory inputs cancelling correlation in dense recurrent
networks (Renart et al., 2010). In terms of rate coding, the
asynchronous state is not efficient for information processing,
as the population firing rate only exhibits a linear response
to the input rate (Van Vreeswijk and Sompolinsky, 1996) but

without firing rate variability on faster time scales. In this
case, the whole network acts as a rate unit for computation.
The traditional E-I balanced theory can be generalized in two
directions, which are biologically more plausible: structured
networks and synaptic kinetics. Firstly, heterogeneous neural
network structures (Landau et al., 2016) can induce firing rate
variability. For example, clustered network structures (Litwin-
Kumar and Doiron, 2012) can induce slow firing rate oscillations
and show stimulus-induced variability reductions. Hierarchical
modular networks (Wang et al., 2011) can support self-sustained
firing rate oscillations across different levels. Spatial networks
involving a distance-dependent coupling rule can unveil the
distance-tuned correlation relation (Rosenbaum et al., 2017;
Darshan et al., 2018) and the emergence of propagating waves
(Keane and Gong, 2015; Keane et al., 2018; Gu et al., 2019;
Huang et al., 2019) observed in experiments. Secondly, even in
unstructured networks, network firing rate oscillations can be
induced by realistic synaptic filtering kinetics (Brunel and Wang,
2003; Yang et al., 2017). Such oscillations typically occur in cases
where the synaptic decay time scales of inhibition are slower than
excitation, which is actually a biologically plausible situation if the
synaptic receptors under consideration are AMPA for excitation
and GABA for inhibition (Salin and Prince, 1996; Zhou and
Hablitz, 1998). More importantly, network oscillation can be
sparsely participated by subgroups of neurons, thus preserving
the irregular spiking feature of individual neurons (Brunel,
2000; Brunel and Hakim, 2008). Note, however, that theoretical
analysis of the macroscopic dynamics of E-I neural network with
synaptic kinetics is very difficult. Existing theory is very limited,
e.g., by requiring very special assumptions, such as the Lorenz
distribution of certain parameters (Dumont and Gutkin, 2019).

Critical avalanches can also rise from neural dynamics under
unstructured network topology (Beggs and Plenz, 2003; Kinouchi
and Copelli, 2006), while its dynamic origin is still controversial.
Previous theories have suggested that critical neural avalanches
may arise at the edge of a phase transition. Early studies indicated
that it may occur between a quiescent and active phase from
critical branching processes (Beggs and Plenz, 2003; Haldeman
and Beggs, 2005), while later experimental (Fontenele et al., 2019)
and theoretical (di Santo et al., 2018; Dalla Porta and Copelli,
2019) studies also proposed that it may occur near the onset
of synchrony. Mechanisms other than criticality that generate
avalanches with power-law distribution have also been proposed
(Martinello et al., 2017; Touboul and Destexhe, 2017; Wilting and
Priesemann, 2019b). The emergence of critical avalanches has
also been proposed to be closely related to the maintenance of E-I
balance (Lombardi et al., 2012; Poil et al., 2012; Yang et al., 2012;
Gautam et al., 2015). Nevertheless, the exact relationship between
neural criticality and E-I balance remains poorly understood, as
previous modeling studies of critical avalanches often did not
consider the properties of individual neuronal spiking.

Here, we try to address the above important open questions. In
particular, how E-I balance induced irregular spiking reconciles
with collective neural activities? E-I neural networks can organize
into a ‘sparse synchrony’ state (Brunel, 2000; Brunel and Hakim,
2008) where neurons are remained fluctuation-driven to spike
irregularly whereas firing rate oscillation emerges in population
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level. However, the relationship between E-I balance and sparse
synchrony is less clear. Most importantly, the mechanism by
which E-I balance induced irregular spiking can coexist with
critical neural activities (Bellay et al., 2015) in recurrent neural
circuit remains unclear. In this work, we first re-examine
the dynamics of integrate-and-fire (IF) E-I neuronal network
with realistic synaptic kinetics, which can manifest individually
irregular spiking activities with different synchronous levels. The
network firing rate dynamics can be effectively captured by a
set of macroscopic field equations derived by a novel semi-
analytical mean-field theory. An advantage of our theory is
that it is simple and does not require special properties of the
model. The synchronous transition point where network firing
rate oscillation emerges is predicted by a Hopf bifurcation in
the field equations. We find that critical microscopic avalanche
dynamics emerges near the onset of synchronization, with
critical exponents approximately satisfying the scaling relations,
which manifests the hallmark of criticality (Sethna et al., 2001).
The mechanism of critical avalanches could be understood as
demographic noise-driven random walks near a macroscopic
bifurcation point. On this basis, we propose that the E-I balanced
state in the microscopic spiking network corresponds to a stable
macroscopic state in the field equations. The asynchronous state,
consistent with the traditional theory, corresponds to a stable
fixed point, which can be destabilized through a Hopf bifurcation,
giving rise to a stable limit circle, corresponding to network firing
rate oscillation. As such, the E-I balanced state can incorporate
network oscillation with different synchronous levels, which
accounts for the coexistence of variability in both individual
and population scales. In order to show that the coexistence of
irregular spiking and collective critical avalanches is a widely
existent phenomenon, we empirically verify this coexistence
in up-states in the public experimental data of spontaneous
spiking activities recorded in mouse somatosensory cortex in
vitro (Ito et al., 2016). Scaling relations similar to the network
model are also found to hold in these critical data sets. Our
own analysis further indicates the universality of the observed
phenomena in model networks. The theory proposed here
explains how collective neural activities coexist with irregular
neuron spiking and reveals a possible origin of criticality in neural
systems. Compared with previous study (di Santo et al., 2018;
Dalla Porta and Copelli, 2019) showing that critical avalanches
exist around synchronous transition, our model incorporating
synaptic kinetics, E-I balance, and irregular spiking of individual
neurons provides a more biological plausible explanation about
the nature of this transition. The theory also serves as a novel tool
to study the dynamics of IF networks with biologically realistic
synaptic filtering kinetics, and thus has useful application in
large-scale modeling of brain networks.

MATERIALS AND METHODS

Spiking Neuronal Network
We study a leaky IF spiking neuronal circuit. Neurons are
coupled by a random network with density p and size= NE + NI ,
which consists of NE excitatory (E) neurons and NI inhibitory (I)

neurons. Thus, each neuron in the network has on average nE =

pNE E neighbors and nI = pNI I neighbors. Each neuron also
receives no excitatory inputs modelled by independent Poisson
processes with frequency Qo, mimicking external inputs for
the circuit under consideration. We set p = 0.2, NE : NI = 4 :
1, no = nE and the network size is N = 104, unless otherwise
specified. The sub-threshold membrane potential of neuron i at
time t, denoted as Vi(t), is governed by

dVi

dt
= fα (Vi)+ Jαo

∑
j∈∂o

i
FE
∗sj(t − τE

l )

+ JαE
∑

j∈∂E
i

FE
∗sj(t − τE

l )+ JαI
∑

j∈∂ I
i

FI
∗sj(t − τI

l ),

(1)

where, Vi(t) is the membrane potential of neuron i (belonging
to type α = E, I) at time t. ∂α

i represents the α neighbors of
neuron i. The input sources for neurons include excitatory inputs
from external neurons (population O), inputs from recurrent
excitatory neurons (population E) and inputs from recurrent
inhibitory neurons (population I). The first term of Equation
(1) describes the leaky current fα (Vi) = (Vα

rest − Vi)/τα, which
has the effect to drive the membrane potential back to the
leaky potentials, which are set to be VE

rest = VI
rest = -70mV.

The membrane time constants are set as τE = 20 ms, τI =

10 ms for E and I neurons, respectively. The second to fourth
terms of Equation (1) are the external, excitatory recurrent
and inhibitory recurrent currents, respectively. Input currents
are the summations of the filtered pulse trains. Here, sj(t) =∑

n δ(t − tn
j ) denotes the spike train of the j-th neuron. The

excitatory and inhibitory synapses have latency period (delay)
τE

l and τI
l respectively. For the numerical results presented,

we consider τE
l = τI

l = 0 for simplicity (i.e., no transmission
delay), which is a reasonable approximation for local circuits.
The synaptic filter is modelled as a bi-exponential function, i.e.,
Equation (2).

Fα (t) =
1

τα
d − τr

[
exp

(
−

t
τα

d

)
− exp

(
−

t
τr

)]
, t ≥ 0. (2)

In Equation (2), we set the synaptic rise time τr = 0.5 ms for
both E and I neurons, while the synaptic decay times τE

d, τI
d

depend on the type of presynaptic neuron. We set τE
d = 2 ms

and let τI
d change from 1 to 4.5 ms to study the effect of

different E and I synaptic filtering time scales. Hence, in our
study here, τI

d serves as a control parameter to induce the
dynamical transition. Biologically, the inhibition decay time τI

d
depends on the constitution of synaptic receptors (Salin and
Prince, 1996; Zhou and Hablitz, 1998), and can also be changed
by chemicals such as narcotics (Brown et al., 2010). We point
out that suitable changes of other model parameters such as
synaptic strength, network connection density, etc., may also
induce similar dynamical transitions we are going to study below.
The integration dynamics is as follows. When the membrane
potential reaches the threshold Vth = −50 mV , a spike is emitted
and the membrane potential is reset to Vreset = −60 mV . Then,
synaptic integration is halted for 2 ms for E neurons and 1 ms
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for I neurons, modelling the refractory periods in real neurons.
Synaptic weights are set as JEO = 0.45 mV , JIO = 0.72 mV , JEE =

0.36 mV , JIE = 0.72 mV , JEI = −0.81 mV and JII = −1.44 mV ,
which will satisfy the balanced condition. Network dynamics
are simulated by a modified second-order Runge-Kutta scheme
(Shelley and Tao, 2001) with a time step of dt = 0.05 ms. For
each parameter, the network is simulated for 16 s with the first
1 s discarded to avoid a transient effect. The statistical indexes
are then computed by averaging the results of 15 trials with
randomly distributed initial membrane potentials. The dynamics
we considered here are current based. The case of conductance-
based dynamics where the input of a neuron depends on
its membrane potential is further studied in Supplementary
Material: Appendix 1. Model Extensions.

Mean-Field Theory of Network Dynamics
Derivation of the Macroscopic Field Equations
We will develop a semi-analytical mean-field theory to
approximate the average dynamics of the network by noting the
fact that 1) the network topology is homogeneous and 2) the
number of neuron N is large. The following mean-field derivation
holds for large enough N and the network size is explicitly
included in the field equations (see Equations (11), (12) below).

We denote the average membrane potential of the network as
Vα = 〈Vi〉i∈α := 〈Vi〉α, α = E, I. The goal is to derive a set of field
equations governing the temporal dynamics of Vα.

First, by noting that the convolution Fα
∗ sj(t − τα

l ) obeys the
equation(

τα
d

d
dt
+ 1

)(
τr

d
dt
+ 1

) [
Fα
∗sj
(
t − τα

l
)]
=

∑
n
δ(t − tn

j − τα
l ),

(3)

then we have(
τα

d
d
dt
+ 1

)(
τr

d
dt
+ 1

) 〈∑
j∈∂α

i
Fα
∗sj
(
t − τα

l
)〉

i∈E,I

=

〈∑
j∈∂α

i

∑
n
δ(t − tn

j − τα
l )

〉
i∈E,I

. (4)

Under mean-field approximation, each neuron is the same in
terms of their neighbors, so that〈∑

j∈∂α
i

∑
n
δ(t − tn

j − τα
l )

〉
i∈E,I
≈ nαQα

(
t − τα

l
)
, (5)

where nα is the average number of α neighbors of a neuron in
the network and Qα(t) is the mean firing rate of α type neurons,
defined as

Qα (t) = lim
4t→0

1
4t

∫ t4t

t

〈∑
n
δ(s− tn

j )
〉
j∈α

ds. (6)

In the standard definition of firing rate (Dayan and Abbott, 2001)
of a neuron, the average in Equation (6) is taken over different
simulation trials. Since ergodicity and the network homogeneity,
neurons within a population should have the same firing rate
and it can be computed through Equation (6) (i.e., population

averages can be thought as sample averages) when the network is
large enough in the stationary state. Formally, for measuring the
firing rate from data, the time interval 1t in Equation (6) has to
be finite. Here we choose 1t = 1 ms (shorter than the refractory
period) so that a neuron can at most have one spike between t and
t +1t. Then, by the definition of δ function, Qα (t) represents the
proportion of α type neurons that spike between t and t +1t as
well as the mean firing rate of α type neurons at time t with unit
per ms.

In previous analysis framework of IF neurons through
continuous stochastic processes theory (Burkitt, 2006), the
membrane potential Vi of neuron i cannot cross the spiking
threshold (Vi is restricted to (−∞, Vth) with Vth being an
absorbing boundary). This is a theoretical artefact, contrary to the
true neurophysiology. Furthermore, in numerical integration, the
resetting is achieved by finding those neurons whose membrane
potential increases over the spiking threshold in each numerical
step (Shelley and Tao, 2001). This inspires us to naturally consider
that a neuron j should have a spike at time t if Vj (t) > Vth.
Formally, we can consider Vj (t) as the membrane potential of
neuron j at time t before the resetting rule in each numerical
step, then

Qα (t) =
〈
H(Vj − Vth)

〉
j∈α, (7)

where H is the Heaviside function H (x) =

{
1, x ≥ 0
0, x < 0

. Equation

(7) explicitly builds the link that the population firing rate is
the proportion of the neurons whose membrane potential is
above the spiking threshold. As a preliminary approximation,
we assume Vj (t) obey a Gaussian distribution Pα(V) with time-
dependent mean Vα (t) and time-independent variance σ2

α. We
will verify that this assumption is plausible in the network and
dynamic regimes we studied, referring to Figure 1D later. Then,

Qα (t) =
〈
H(Vj − Vth)

〉
j∈α =

∫
∞

Vth

Pα (V) dV

=
1
2
−

1
2

erf
(

Vth − Vα
√

2σα

)
, (8)

where erf is the error function erf (x) = 2
√

π

∫ x
0 e−t2

dt. Although
there is no elementary expression for the error function, it can
be approximated by elementary functions. For example, a good
approximation that can keep the first and second moments is
erf (x) ≈ tanh( πx

√
6
). Under this approximation, we have

Qα (t) =
1
2
−

1
2

tanh
(

π
√

6
Vth − Vα
√

2σα

)
=

1

1+ exp(Vth−Vα

σα

π
√

3
)
.

(9)
Here, the standard deviation of the voltage, σα, acts as an effective
parameter to construct the voltage-dependent temporal firing
rate. Note that this approximation scheme basing only on the
first-order statistics neglects several factors that affect the accurate
firing rate, including higher order statistics, noise correlation
and refractory time. Thus, it does not have an analytical form
and should be estimated numerically, from the steady-state mean
voltage Vss

α and mean firing rate Qss
α at the asynchronous state and
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FIGURE 1 | Synchronization and network oscillation induced by slow inhibition in balanced networks. Fast inhibition (B,E,H) induces strict balance with
asynchronous spiking and an almost steady network firing rate. Slow inhibition (C,F,I) results in loose balance, with synchronous grouped spiking and network
oscillation. Individual neurons spike irregularly in both cases. (A) Normalized E/I post-synaptic response when receiving a pre-synaptic spike. (B,C) Raster plot of the
spiking time. Each blue/red point corresponds to a spike of the E/I neuron. (D) The distribution of membrane potential. (E,F) The corresponding firing rate of E
population (blue) and the firing rate predicted by the field equations (green). (G) The pdf. of the CV of ISI of E neurons. (H,I) The blue/red curves represent the
average input E/I current of a neuron in the network and the black curves represent the difference between them. The parameters are set as Qo = 5 Hz; τI

d = 1 ms
in the fast inhibition case (B,E,H and left panels of D,G) and τI

d = 3.5 ms in the slow inhibition case (C,F,I and right panels of D,G).

Equation (9) that

σα =
Vth − Vss

α

ln[
(
Qss

α

)−1
− 1]

π
√

3
. (10)

The sigmoid transfer function Equation (9) is the intrinsic non-
linear property that induces oscillation transition in the field
model. Note that neural field models of Wilson-Cowan type
(Wilson and Cowan, 1972) would also contain a presumed
sigmoid transfer function. Field models of this type can also
qualitatively reproduce some dynamic features of E-I neuronal
networks. Here we explicitly construct the sigmoid function
from the microscopic spiking network. Thus, the quality of the
scheme depends on suitable choices of effective parameters σα

and once σα are chosen as suitable values, our field equations
can predict the dynamics of the E-I network quantitatively
(see Supplementary Material: Appendix 2. Sensitivity of the
Critical Points on the Effective Parameters, where we study
the sensitivity of the oscillation transition with respect to the
effective parameters σα ), while traditional neural field models
(such as Wilson-Cowan model) are not quantitatively related to
microscopic spiking networks in general.

Denote 8α (t) =
〈∑

j∈∂α
i

Fα
∗ sj

(
t − τα

l
)〉

E, I
as the averaged

synaptic time course of α inputs received by a neuron and from
Equations (4), (5), (9) it will obey

(
τα

d
d
dt
+ 1

)(
τr

d
dt
+ 1

)
8α =

nα[
1+ exp

(
Vth−Vα

(
t−τα

l
)

σα

π
√

3

)] ,

α = E, I. (11)

Note that each neuron receives no independent Poisson spike
trains externally with rate Qo. Thus, the input of each neuron has
a variance noQo. If we do not consider its filtering effect since the
fast decay time of excitatory synapse, by diffusion approximation
we know the external input

∑
j∈∂O

i
FE
∗sj
(
t − τE

l
)

of each neuron
can be approximated by noQo +

√
noQoξi (t), where ξi (t) is a

standard Gaussian white noise (GWN) with zero mean and unit
variance. Since {ξi (t)}i are independent GWNs,

〈√
noQoξi (t)

〉
α

can be equivalently approximated by
√

noQo/Nαξα (t), where
ξα (t) is another standard GWN. Thus, taking the average 〈.〉α of
the original Equation (1) and note that in the leaky IF model, fα
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is linear, we arrive at

dVα

dt
= fα (Vα)+ Jαo

(
noQo +

√
noQo

Nα

ξα (t)

)
+ JαE8E + JαI8I, α = E, I. (12)

In the field Equation (12), ξE (t) and ξI (t) are two independent
GWNs. We find that this approximation is independent of the
nature of noise in the spiking network model. In the network
model Equation (1), the nature of noise from external inputs
is synaptic-filtered Poisson shot noise. We further examine the
case where external inputs in Equation (1) are with GWNs and
the case of constant external input (i.e., no noise) and find
that in such cases Equation (12) can still well approximate the
macroscopic dynamics of the network [for constant external
input the network dynamics is not stochastic, but the spiking
activity still appears irregular due to the chaotic nature of
the network (Van Vreeswijk and Sompolinsky, 1996, 1998)].
Generally speaking, mean-field theory only holds when the
system size is infinity. The incorporation of noise into the field
model can smooth out the systematic errors, compensate the
finite size effect and make it closer to the true rate dynamics
statistically. Thus, for numerical simulation of the field equations
we will keep the noise terms in Equation (12) whereas the
deterministic counterpart would be used for stability analysis.

In summary, we have proposed a novel technique to derive
a set of field Equations (11), (12), to approximate the average
dynamics of the original spiking network Equations (1), (2).

Analysis of the Steady-State Dynamics
The deterministic steady-state (fixed point) of the field equations
can be found from Equations (11), (12) by letting d

dt = 0 and
assuming ξα (t) = 0, resulting in algebraic equations

fα (Vα)+ JαonoQo + JαEnEQE + JαInIQI = 0, α = E, I. (13)

where QE, QI are given by Equation (9). In our case, the synaptic
strengths and external input rates are the major parameters
determining the value of the fixed point, while synaptic decay
time would affect its stability. This is because the value of
steady-state does not depend on τα

d, τr , which can also be
seen from Equation (2) that the synaptic filter is normalized
(
∫
∞

0 Fα
∗ δ (t) = 1 independent of τα

d, τr) so that synaptic rise
and decay times would not affect the time-averaged firing rate.
Thus, the scheme here cannot capture the nontrivial effect of
synaptic filtering on affecting the firing rate [e.g., see the formula
given by Fourcaud and Brunel (2002)]. Note that in general
settings of balanced networks with dense and strong coupling
(Renart et al., 2010), the quantities no, nE, nI are of order O(N)
but the synaptic weights are of order O(N−1/2). When N is large
enough, the first term in Equation (13) can be neglected and it
reduces to

JαonoQo + JαEnEQE + JαInIQI = 0, α = E, I, (14)

which is a set of linear equations to solve the steady firing rate
QE, QI . To guarantee a unique positive solution in this case, the

sequence { JEO
JIO

, JEI
JII

, JEE
JIE
} should be in ascending or descending

order, which is the so-called balanced condition in the traditional
theory (Van Vreeswijk and Sompolinsky, 1996, 1998; Renart et al.,
2010). Thus, the theory here is a generalization of the traditional
theory of balanced network.

In the traditional theory of asynchronous dynamics, the E-I
balanced state can be considered as the existence of a stable fixed
point of Equations (11), (12). Now we can consider how the
stability of this fixed point can be changed with the aid of this
dynamic form. For the case without synaptic delay (i.e., τE

l =

τI
l = 0), the field equations are ordinary differential equations.

By taking X =
(

VE, VI, 8E, d8E
dt , 8I,

d8I
dt

)T
, the field model

Equations (11), (12) can be written in the first-order form dX
dt =

F(X) without considering the noise. The Jacobian matrix at the
steady state is

J =



−
1
τE

0 JEE 0 JEI 0

0 −
1
τI

JIE 0 JII 0

0 0 0 1 0 0

nEQ′E(VE)

τE
dτr

0 −
1

τE
dτr
−

1
τE

d
−

1
τr

00

0 0 0 0 0 1

0
nIQ

′

I(VI)

τI
dτr

00 −
1

τI
dτr
−

1
τI

d
−

1
τr



, (15)

with Q
′

α (Vα) =
πexp[(Vth−Vα)π/(

√
3σα)]

√
3σα

(
1+exp

[
(Vth−Vα)π
√

3σα

])2 estimated at the steady-

state value of Vα given by Equation (13). The eigenvalues of J
can determine the stability of the steady state. Note that many
models use single exponential function as the synaptic filter, i.e.,
τr = 0, and in this case the dynamic form becomes 4-dimensional
with X = (VE, VI, 8E, 8I)

T. For models without considering
synaptic filtering effect (that is, the case of instantaneous synapse
where τr = τα

d = 0), the dynamic form becomes 2-dimensional,
which can be considered as the dynamic form of traditional
theory without synaptic kinetics. In these cases, the stability
analysis can be performed in a similar way. In the presence of
synaptic transmission delay, the field equations would become
delay differential equations. In this case, stability analysis would
in general become more difficult.

Statistical Analysis of Model and
Experiment Data
Spike Count Series
For statistically analyzing neural dynamics, the neuron spike
train series have to be constructed from the model simulation
data or the experimental data as follows. The time axis is first
divided into consecutive time windows with sizes 1t ms. The
number of spikes of neuron i is then counted in each window to
obtain a discrete sequence Ni(t), which is designated as the spike
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count series of neuron i with time windows 1t. Alternatively,
the number of spikes of the whole neuron population can be
counted in each window. This constructs the population spike
count series Nα(t) for the E and I populations, respectively.
Furthermore, qα (t) = Nα(t)

nα1t is the population averaged firing rate
series and the power spectrum of it can indicate the collective
oscillation property. For computing certain quantities, such as
the correlation between neurons, the spike count series is filtered

by a square kernel KT (t) =
{ 1

T , t ∈ [−T, 0]
0, other

with length T and

the ensuing filtered spike train is defined as Ñi (t) = KT ∗ Ni =
1
T
∑T−1

s=0 Ni(t − s).

Quantifying Spiking Irregularity and Firing Rate
Variability
The spiking time irregularity of a neuron can be quantified using
the CV (coefficient of variance), which is defined as the standard
deviation of the neuron ISIs (inter-spike intervals) over its mean.
Totally regular activities have CV values of 0, while Poisson
processes have CV values of 1. A higher CV value indicates
larger irregularity. We measure the firing rate variability along
the time on the individual neuron level and the population level
by the relevant Fano Factor (FF). The FF of neuron i is defined
as FFi = var(Ni(t))/ 〈Ni(t)〉. The average and the variance here
are taken across the spike count series. Similarly, population FF is
defined as FFα = var(Nα(t))/ 〈Nα(t)〉. Note that FF depends on
the time window size 1t to construct the spike count series (we
will use 1t = 50 ms). The population FF can also be computed
using the macroscopic field equations, as the field equations
predicts the population firing rate, which can be transferred to
population spike counts (by multiplying the number of neurons
in the population).

Quantifying Network Synchrony
The synchrony of the network can be characterized from
two aspects: the cross-correlation of spiking times and the
coherence of the membrane potential (Golomb, 2007). The
former quantifies the coherence of threshold events whereas the
later quantifies the coherence of the subthreshold dynamics.

We employ the commonly used Pearson correlation
coefficient (PCC) to quantify the synchrony of the spiking time.
The spike count series of neuron i is first constructed with
time window 1t = 1 ms and then filtered by a square kernel
with length T = 50 ms. The PCC between neuron i and j is
defined as cij =

cov(ni(t),nj(t))
√

var(ni(t))var(nj(t))
. The details such as filtering in

calculating PCC would affect its exact value (Cohen and Kohn,
2011), but not the qualitative change. The index

〈
cij
〉
i,j∈E, PCC

averaged over all excitatory neuron pairs, is used to quantify the
network synchrony degree of threshold events.

The voltage series of each neuron is constructed for each
millisecond that Vi

(
k
)
:= Vi (t) |t=k ms. Voltage coherence is

defined as
√

σ2
α/
〈
σ2

i
〉
α

, where σ2
α =

〈
V2

α

〉
t − 〈Vα〉

2
t is the variance

of the mean voltage Vα = 〈Vi〉i∈α and σ2
i =

〈
V2

i
〉
t − 〈Vi〉

2
t is the

variance of the voltage of neuron i. The voltage coherence of the

excitatory population is used to quantify the coherence of the
subthreshold dynamics.

We further use the CV of the excitatory population firing rate
series constructed with 1t = 1 ms to quantify temporal firing rate
variability at short timescales, which is another way of indicating
the network synchrony, as stronger synchrony indicates larger
population firing rate variability at short timescales.

Neuronal Avalanche Analysis
We measure the neuronal avalanches of the excitatory neuron
population from its population spike count series NE(t)
constructed with window (bin) size 1t. An avalanche is defined
as a sequence of consecutive non-empty bins, separated by empty
bins (with no spiking inside). The size S of an avalanche is defined
as the total number of spikes within the period and the duration
T is defined as the number of time bins it contains. To compare
different data sets in a unified standard, window size is chosen
as the average ISI of the merged spiking train (constructed by
merging the spike trains of all neurons), denoted as Tm. Thus,
it depends on the mean firing rate of neurons in different data
sets. This choice has been described as the ‘optimal’ window size
to measure avalanches (Beggs and Plenz, 2003), as excessively
small or large windows would lead to systematic bias. A further
advantage of this choice is that the measured size and duration
would approximately lie in the same scale ranges for different
data sets, allowing better comparison. The effect of different
choice of time windows for measuring avalanches is further
considered in Supplementary Figure 3 and the results are robust
for using time windows around Tm. Note that the definition of
avalanche here is the time-binning (non-causal) avalanche, which
corresponds to the case of experimental measurement (Beggs and
Plenz, 2003; Bellay et al., 2015), but is different from the causal
avalanche (Williams-Garcia et al., 2017) studied by many physical
models rooted in critical branching processes.

To empirically judge the criticality of avalanche systems is
a technically difficult issue. Inspired by the statistical property
that avalanche size should obey a power-law distribution for
scale-invariance, we adopt a two-step paradigm as follows.

First, we use a simple index to first roughly compare
under which parameter the model is closer to criticality.
The avalanche size frequency distribution histogram (S, P(S)),
is first obtained with 80 plotting-bins from minimum to
maximum size with points where P(S) = 0. The least squares
method is then used to find the best-fit-line in doubly
logarithmic coordinates, such that

∑
S
[
lgP (S)−

(
b0 + b1lgS

)]2

is minimised. After obtaining the best-fit coefficients (b0, b1), the
fitted frequency distribution values were estimated as Pfit (S) =
10b0+b1lgS. Finally, the normalised distance, defined as D =∑

S S|P (S)− Pfit (S) |/
∑

S SP (S), the average size difference per
avalanche between the actual and fitting frequency distribution
normalized by the mean avalanche size, is used to measure the
distance to the best fitting power-law distribution. The approach
here is essentially the same as the widely used κ index to assess
the proximity to criticality in experiments (Shew et al., 2009).
However, the use of κ index requires a pre-definition of the
slope of power-law (since it requires a form of the distribution
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function), which is not clear from data and was typically assumed
to be −1.5 in some literature. Instead, the index we use is more
convenient in that it does not require this pre-defined slope. This
distance acts as an index for a rough comparison about which
set is closer to criticality. However, it does not provide sufficient
statistical evidence to claim criticality even when D is very small.

Second, we use standard statistical methods to examine the
critical properties when D is relatively small. The maximum
likelihood estimation (MLE) method by NCC toolbox (Marshall
et al., 2016) is used to estimate the critical exponents. The
toolbox provides a doubly truncated algorithm based on the
MLE to find the range that passed the truncation based KS
statistics test (Marshall et al., 2016). This truncation scheme can
avoid the noise (in the small avalanche size range) and finite
size effect (in the large avalanche size range) interruption in
estimating the critical exponents. We find the largest truncated
range that can pass the KS-based test with a p value larger
than 0.1 and broader than one-third of the whole range on
the logarithm scale. This means that the data can produce a
KS-statistics value that is less than the values generated by at
least 10% of the power-law models in the truncated range. The
estimated slopes within the truncated ranges in the avalanche size
and duration distributions define the critical exponents P (S) ∼
S−τ and P (T) ∼ T−α. A third exponent is defined as 〈S〉 (T) ∼
T1/συz , where 〈S〉 (T) is the average size of avalanches with the
same duration T. This exponent is fitted using a weighted least
squares method (Marshall et al., 2016) to those avalanches that
fall into the truncated duration range for estimating α. Finally,
we examine the scaling relation (Equation (16) below) between
these three exponents, which is a hallmark for criticality from the
theory of statistical physics.

Experimental Data Analysis
We used the public experimental data measuring the neuronal
spiking activity in mouse somatosensory cortex cultures in vitro
(Ito et al., 2016). A total of 25 data sets were used and the length
of each record is 1 h, with the exception of Set 19, which was
48 min long. The recordings were performed on organo-typical
slice cultures after 2 to 4 weeks in vitro, without stimulation
(Ito et al., 2014). Spiking times were sorted with a PCA-based
algorithm (Litke et al., 2004) to locate the signals recorded with a
large and dense multi-electrode array of 512 electrodes.

Under in vitro conditions, spiking in the culture clearly shows
up-down state transition. Active spiking periods (up-state) and
silent periods (down-state) alternated slowly with a frequency
of circa 0.1 Hz. We focus on analyzing the up-state defined as
follows. For each data set, the population firing rate series was first
constructed with a time window of 1t = 10 ms and then filtered
by a square kernel with length T = 100 ms. Then, the up-state
is defined as the time periods that the population firing rates are
higher than 30% of the maximum rate of the given dataset and last
longer than 1s. We further examine the power spectral density
of the population firing rate series (before further filtering) in
the up-state, the distribution of firing rates of the neurons, CV
of ISIs and the avalanches in the up-states. The time bin for
measuring the avalanche was the mean ISI, averaged through the
up-state, of the merged spike train. To test critical properties,

we first determine whether the size and duration distribution
is close to a power-law and then estimate its critical exponents.
As in our analysis of modelling data, the doubly truncated and
statistical test algorithm from the NCC toolbox (Marshall et al.,
2016) is used. We accept the power-law distribution of a data
set if the following two conditions can be jointly satisfied: 1) the
truncated range has to be broader than one-third of the whole
range in the logarithm scale and; 2) the data in the truncated
range can pass the KS-based test with p-value larger than 0.1.
For the cases deemed to be power-law distribution, the truncated
ranges, estimated exponents and p-values in the KS-based test
are shown. For the data sets that have power-law avalanche
distributions in both size and duration, we further compare
the critical exponents 1/συz and the value α−1

τ−1 to see whether
scaling relation (Equation (16) below) holds. To test whether
power-law distribution is the intrinsic structure of the data,
we also analyze the surrogated data constructed by randomly
shuffling the ISIs of neurons in each up-state period. This random
shuffling can destroy the intrinsic temporal correlation structures
of the avalanches.

RESULTS

Network Synchrony Arises From Loose
Temporal Balance
To begin, we first intuitively illustrate the non-trivial effect of
synaptic filtering (Figure 1A) in shaping the network dynamics.
For fast inhibition decay time, the network spiking dynamics
is asynchronous (Renart et al., 2010), as shown in Figure 1B.
Such a ‘strict balance’ is the case of traditional E-I balance theory
(Van Vreeswijk and Sompolinsky, 1996, 1998) with inhibition
domination, where network inhibitory feedback can cancel the
excitatory current spill on a fast time scale (Figure 1H).

This scenario of strict balance breaks down when inhibition
becomes slow, which induces an effective delay in the inhibitory
cancellation (Figure 1I). Such a delay before the cancellation
would induce a window during which excitatory current spills
over the network, resulting in the collective spiking shown in
Figure 1C. The strength of the collective activity depends on
the length of this excitation-dominant window. As inhibition
becomes dominant again after a delay, a temporal quiescent
episode ensues after the collective spiking. Thus, slow synaptic
inhibition induces network oscillation, as was also shown in
previous studies (Brunel and Wang, 2003; Yang et al., 2017;
Huang et al., 2019). In this ‘loose balance’ scenario, the
network maintains balance on a slower time scale. In this
case, as excitation and inhibition dominate alternately, the
strict balance is temporally broken on a fast time scale. Note
that in the loose balance state, the delay in the inhibitory
cancellation is merely a few milliseconds (Figure 1I), consistent
with the inhibition tracking delays observed in experiments
(Okun and Lampl, 2008).

Alternatively, these different collective behaviors can be seen
from the network population firing rate dynamics. The network
firing rate in the strict balance, asynchronous state is almost
steady (Figure 1E), whereas the loose balance induces firing
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FIGURE 2 | The mean-field theory prediction of the dynamic transition of the spiking network. (A) A schematic diagram of the mean-field reduction from spiking
neuronal network to macroscopic neural field. (B) The excitatory firing rate in the asynchronous steady-state (τI

d = 1 ms) under different strengths of external input
and different network sizes. Blue symbols, obtained by the field equations with numerically estimated σα under different input rates Qo, fits well with the network

simulations (blue dashed lines). Green symbol-lines are obtained by the field equations fixed σα =

√
J2
αonoQoτα for Qo = 5 Hz. Synaptic strengths Jαβ are multiplied

by 1.41 and 1.15 in the cases of N = 5000 and N = 7500, respectively to maintain the usual scale Jαβ ∼ O(N(−1/2)). (C) Deterministic field equations predict that a
Hopf bifurcation occurs with the increase of inhibitory decay time τI

d at a critical value around τI
d ≈ 3 ms (indicated by a vertical dashed line). The real part and

imaginary part divided by 2π of the dominant eigenvalue are denoted by the solid and dashed lines, respectively. Blue circles are peak frequencies of the excitatory
firing rate oscillation from network simulation. (D) The PCC and coherence index show the emergence of network oscillation as τI

d increases. (E) The CV of
population firing rate increases with the increase of τI

d . (F) The average CV of ISIs and the ratio between mean firing rate and peak frequency of network oscillation.
(G) The average FF of individual neurons (left axis), and the FF of the network population spiking counts in network and field model (right axis). Time windows for
measuring FFs are 50ms. Averages are taken across the excitatory population for the measurements in panels (D–G). The external input is set as Qo = 5 Hz in
panels (C–G).

rate oscillation (Figure 1F), with fast firing rate variability at
the population level. The emergence of oscillation implies a
regularity of the population dynamics of the network. However,
it is important to stress that the spiking of the neurons is
still highly irregular. There are at least two reasons for this
irregularity. First, the population oscillation is quasi-periodic
rather than periodic due to the stochastic nature of the network
dynamics. Second, and more importantly, each collective burst
in the network is randomly participated in by a small portion
(∼10% on average) of neurons in the network. These neurons
spike with a firing rate much smaller than the network oscillation
frequency, referring to Figure 2F. This can also be understood
from the fact that the firing rate is still low at the peaks of
spiking activity corresponding to spiking synchrony (Figure 1F).
As such, the dynamical phenomenon here with loose balance
was also referred to as ‘sparse synchrony’ (Brunel and Hakim,
2008). The histogram counts of the coefficient of variance (CV)
of the inter-spike intervals (ISIs) of neurons (see Materials
and Methods) in the network are shown in Figure 1G. In
both asynchronous and synchronous states, the overall value
of the CV is around 1, indicating that the spiking irregularity
approximately resembles the Poisson process (Holt et al., 1996).
As our mean-field theory assumes that the membrane potentials
of the neurons in the network approximate Gaussian, we further
analyze the distribution of the membrane potentials. As shown
in Figure 1D, in both fast and slow inhibition cases the

distribution is not totally Gaussian and instead right skewed,
a feature of the finite threshold IF dynamic (Brunel, 2000;
Keane and Gong, 2015). However, the skewness (defined as
the third central moment divided by the cubic of the standard
deviation) and kurtosis (defined as the fourth central moment
divided by the quartic of the standard deviation) measuring the
deviation from Gaussian are (−0.67, 3.12) and (−0.66, 3.3) in
the fast and slow inhibition cases respectively, which are not
far from (0, 3) for the case of Gaussian distribution. Thus, our
theory that assumes a Gaussian distribution is still effective, as
will be shown later.

Mean-Field Theory Predicts the
Synchronous Transition
The network dynamic transition induced by a looser E-I balance
can be characterized by the dynamics of population firing rate
(Figures 1E,F). However, it is theoretically challenging to analyze
the population dynamics of IF networks with synaptic kinetics.
Here, we propose a novel mean-field approximation theory to
derive the macroscopic dynamic equations of an IF network,
i.e., Equations (11), (12), referring to a schematic diagram in
Figure 2A. This technique for deriving the macroscopic field
equations is highly generalizable. Extensions to the cases of time-
varying inputs and conductance-based dynamics are presented in
Supplementary Material: Appendix 1. Model Extensions.
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For numerically estimated σα (i.e., use Equation (10) to
compute σα under different external input strength Qo), the
mean firing rate of the network can be correctly estimated from
the field Equations (11), (12) (Figure 2B blue). We further
consider whether the field equations can predict the firing rate
with fixed parameters σα. Following the derivation of Equation
(12), if we simply assume dVi

dt ≈ const − Vi
τα
+ Jαo
√

noQoξi (t),
then Vi is Gaussian distributed with standard deviation σα =√

J2
αonoQoτα. Figure 2B green shows the corresponding results

of fixed σα =
√

J2
αonoQoτα for Qo = 5 Hz. It cannot predict the

exact firing rate but can correctly predict the linear response
to external input, a property of asynchronous balanced network
(Van Vreeswijk and Sompolinsky, 1996).

The dynamic difference between the asynchronous state and
synchronous state can already be predicted by the field equations
in terms of the population firing rate dynamics, as shown in
Figures 1E,F. The mechanism is explained by a Hopf bifurcation
in the field equations through stability analysis (see Materials and
Methods), as shown in Figure 2C. In the case of fast inhibition,
the fixed point of the field model is generally a stable focus, whose
Jacobian has complex eigenvalues with negative real parts. In this
case, the network firing rate only fluctuates mildly due to noise
perturbations. When τI

d increases, the fixed point will lose its
stability through a supercritical Hopf bifurcation, as indicated
by a pair of its dominant complex conjugate eigenvalues λ =

α± iω crossing the imaginary axis. The Hopf bifurcation predicts
that the stable fixed point will give way to a stable periodic
solution, whose amplitude grows from zero. The frequency of
the periodic motion can be estimated as ω/2π in the linear
order. This prediction is approximately equal to the numerically
measured peak frequency of the network excitatory firing rate
oscillation near the critical bifurcation point, as shown by the
blue circles in Figure 2C. Previous studies have shown that
E-I networks can undergo a transition to oscillation through
perturbation analysis by assuming the form of the network
steady-state firing rate solution (Brunel and Wang, 2003; Brunel
and Hakim, 2008) and the phenomenon has been associated with
a Hopf bifurcation of rate equations with effective transmission
delay (Brunel and Hakim, 2008). However, there is no direct
connection from the spiking networks to the heuristic rate
equations in that theory. Here, our mean-field approach with
the aid of macroscopic field equations derived from microscopic
neuronal network straightforwardly reveals the Hopf bifurcation
mechanism during this transition to sparse synchrony state. Note,
however, that sparse synchrony states can also be achieved in
purely inhibitory neuronal networks without synaptic kinetics
(Brunel and Hakim, 1999).

As shown in Figure 2D, the network synchrony increases
dramatically after τI

d crosses the Hopf bifurcation point.
Figure 2E shows that the network temporal firing rate variability
(see Materials and Methods) increases conspicuously during
this transition, which is also qualitatively predicted by the field
equations. The CV of ISIs averaged over the excitatory population
is shown in Figure 2F. During the onset of collective oscillation,
the averaged CV of ISIs first slightly decreases and then increases
(as the strong bursting oscillation activity develops at around
τI

d ≈ 4 ms, referring to Figure 3A bottom panel) while its overall

value is around 1. The coexistence of irregular spiking and
collective oscillation can be understood from the ratio between
the mean firing rate of neurons and peak frequency of network
oscillation. If each oscillation is participated by all the neurons,
then the ratio should approach one. However, as can be seen from
Figure 2F, the synchrony is sparse (Brunel and Hakim, 2008)
in that this ratio is nearly 0.1 after oscillation onset, implying
that each oscillation is randomly participated by only 10% of
the neurons. Equivalently, each neuron only spikes sparsely and
randomly participates in about 10% of the collective oscillations,
giving rise to high variability of the ISI. As τI

d further increases
to bursting onset, this ratio rapidly increases to approaching
one, implying that almost all the neurons participate in each
oscillation in the bursting state, where the inhibitory feedback is
too slow such that the excitatory current can spill over the whole
network in the excitatory dominant period.

In addition to spiking time variability, we further examine the
fluctuations of firing rate in a short time scale (time window
50ms) by Fano Factor (FF) (Teich et al., 1997). As shown in
Figure 2G, the change of FF of the individual neurons (see
Materials and Methods) is similar to that of CV (Figure 2F),
indicating that the individual firing rate fluctuation does not
increase with the onset of collective synchrony. In contrast,
the change of population FF (Figure 2G, and see Materials
and Methods for details) is similar to the spiking correlation
(Figure 2D) and temporal variability of firing rate (Figure 2E).
This trend was further qualitatively confirmed by the field model
prediction, as shown in Figure 2G. Thus, it appeared that the
observed collective oscillation is a network property rather than
an individual neuron property. Hence, the network collective
oscillation activity is compatible with individual neuron irregular
spiking. The latter property is the prominent feature of E-I
balance (Okun and Lampl, 2009).

In summary, strict balance with asynchronous network
spiking is predicted by a stable focus whereas loose balance with
sparsely synchronous network spiking is predicted by a stable
limit circle in the field equations. Both strict and loose balance
conditions support the irregular spiking of individual neurons.

Scale-Free Neuronal Avalanches Near
the Critical Transition Point
For our mean-field theory of balanced networks, the Hopf
bifurcation predicts that a global oscillation emerges in the field
equations with oscillation amplitude growing continuously from
zero. This picture is similar to a second-order phase transition
in statistical physics when oscillation amplitude is taken as
the order parameter. Thus, we measure the spiking avalanches
(see Materials and Methods) to examine whether this kind of
criticality can result in scale-invariant spiking behaviour, i.e.,
critical avalanches, as observed in experiments (Beggs and Plenz,
2003; Friedman et al., 2012; Bellay et al., 2015; Fontenele et al.,
2019). Figure 3B illustrates the time course of an avalanche.

To more clearly compare the feature of avalanche dynamics,
raster plots of the spiking time of excitatory neurons in three
typical cases are shown in Figure 3A. These plots illustrate the
asynchronous state (upper panel), the onset of synchrony and
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FIGURE 3 | Critical dynamics near the onset of collective oscillation. (A) The raster plots of the spiking time of the excitatory neurons at τI
d = 1.2 ms (upper panel),

τI
d = 3 ms (middle panel), and τI

d = 4.3 ms (lower panel). (B) An example of the time course of an avalanche. (C) The distance between the avalanche size
distribution and its best-fitting power-law distribution. (D) The PSD of the network excitatory firing rate. (E) The probability density distribution of the avalanche size.
(F) The probability density distribution of the avalanche duration. (G) The mean avalanche size with respect to a given avalanche duration. For panels (D–G), the
blue, green and red curves correspond to the cases of τI

d = 1.2, 3, 4.3 ms, respectively. (H) Scaling relation Equation (16) approximately holds for critical states
(τI

d = 3 ms) with different input strengths Qo, where the dashed line represents Equation (16) exactly holding. The inset shows an approximate linear relationship
between exponents τ and α. Here, Qo = 5 Hz is used in panels (A–D) and the example of panels (E–G) is Qo = 8 Hz.

oscillation (middle panel) and the developed collective oscillation
(lower panel). Power spectrum density (PSD) analysis of network
firing rate is shown in Figure 3D. The asynchronous state
appears without collective oscillation (frequency peak) and the
avalanche size and duration distributions are exponential-like, as
shown by the blue curves in Figures 3E,F. It is thus subcritical.
Alternatively, the asynchronous state can be considered as very
noisy population oscillations that are participated by neurons
very sparsely. The onset of synchrony is usually accompanied
by a frequency peak of fast oscillation situated within the
gamma bands, which is thought to have functional importance
in various cognitive processes (Herrmann et al., 2004). This fast
oscillation is temporally organized as scale-invariant avalanches,
with power-law-like size and duration distributions, as shown
by the green curves in Figures 3E,F and it is thus a critical
state. It can be seen from Figure 2D that the average pairwise
correlation is still low in the critical state, since the avalanches
at this stage are only randomly participated by a small portion
of neurons (Figure 2F), which reconciles the coexistence of
weak pairwise correlation and strong clustered spiking patterns
(Schneidman et al., 2006). The collective oscillation state has
more slow frequency peaks and the avalanche size and duration
distributions have heavier tails (corresponding to the red curves
in Figures 3E,F) compared with the critical state, which are
features of a supercritical state. This is because avalanches from
collective oscillations with specific harmony can produce typical
scales, giving rise to heavy tail in the avalanche size or duration
distribution. From Figure 3D, we see that the PSD at critical state

shows a peak at around 100Hz accompanied by its harmonies on
top of a power-law decay P

(
f
)
∼ f−β. Such a ‘scale-free’ behavior

on PSD is observed in different local field potential data (He,
2014). By linear regression, we estimate that the decay exponent
β ≈ 3.5 in the critical state. Such decay in supercritical have a
smaller exponent β ≈ 2. Overall, these exponents lie in the typical
range observed in local field potential data (such as EEG and
EcoG) where β ranges from 1 to 4 (He et al., 2010) and the
value of beta is shown related to physiological or cognitive states
(He et al., 2010).

To compare the critical properties of difference dynamic
states, we first examine the distance D between the avalanche size
distribution and its fitted power-law distribution (see Materials
and Methods), an efficient way to roughly judge which dynamic
state is closer to criticality, as power-law distribution is its
most striking feature. Figure 3C shows that the distance D is
smallest when the network is poised near the Hopf bifurcation
point predicted by the mean-field theory. Next, we confirmed
the statistical significance of power-law distribution through
truncated K-S test (see Materials and Methods) for dynamic
states sufficiently close to the minimum of D. The existence of
power-law distribution is only partial evidence of criticality, as
other mechanisms could generate power-law distribution (Yadav
et al., 2017). Finally, we further examined the scaling relation
(Sethna et al., 2001) in the critical state (see Materials and
Methods). The estimated slopes within the truncated ranges in
the avalanche size and duration distributions define the critical
exponents P (S) ∼ S−τ and P (T) ∼ T−α. A third exponent is
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defined as 〈S〉 (T) ∼ T1/συz , where 〈S〉 (T) is the average size of
avalanches with the same duration T. The third scaling feature
can be found in both the subcritical and critical cases (Figure 3G),
in accordance with previous experimental findings (Friedman
et al., 2012). We find that the scaling relation (Sethna et al., 2001)

α− 1
τ− 1

=
1

συz
(16)

approximately holds at the critical state. The exact value of
critical exponents may depend on the details of the system.
To demonstrate this, we slightly vary the input strength Qo
from 4 to 8 Hz and the network still shows significant critical
properties at the critical value τI

d = 3 ms. As can be seen in
Figure 3H, different exponents keeping the scaling relation
Equation (16) can be found by varying the input strength
Qo. This phenomenon, together with the approximate linear
relationship between exponents τ and α (inset of Figure 3H), is
in accordance with the results measured in vivo in the primary
visual cortexes (V1) of various animals (Fontenele et al., 2019)
across a wide range of neural activity states, as well as our
experimental data analysis later. The scaling relation expressed
by Equation (16) provides additional evidence that the avalanches
in the microscopic network occurring near the bifurcation point
of the mean-field equations possess the properties of criticality.
Interestingly, a recent theoretical study (Zierenberg et al., 2018)
suggested that changing the external imposed input in vitro can
tune the criticality of neural tissue (i.e., to make it approach
to or deviate from criticality) and it is latter confirmed in
neuromorphic chips (Cramer et al., 2020). In line with this idea,
our modeling study here predicts that around the critical states,
slightly tuning the strength of external input can maintain the
criticality of the network but modulate the critical exponents of
the scale-free avalanches, which may be an interesting testable
prediction for in vitro experiments.

Note that an avalanche can be understood as a temporal
propagation of spiking activity in a network. These temporal
propagations occur when the excitatory current temporally
spill over the network and the avalanche size depends on
the strength of the propagations, referring to Figures 1H,I.
In the strict balanced state where excitation is cancelled by
inhibition very fast, only small size avalanches can occur and
the avalanche distribution is thus subcritical. On the contrary, in
the loose balanced state with sparse network oscillations, large
avalanches with typical scales can be induced by the temporal
domination of excitation and the avalanche distribution can
become supercritical. Only near the transition point where the
macroscopic dynamic is also noise-driven, avalanches occur with
all scales and the avalanche distribution thus can be scale-
free. More specifically, on the macroscopic scale, the dynamical
process of avalanche corresponds to a noise-induced excursion
of the population firing rate. As our measurement of avalanches
in the network by individual spiking times requires a fine time
scale, and the information in this fine scale is averaged out in
the field model, thus, information describing small avalanches
vanishes in the field model, which only predicts the global firing
rate dynamics. Although it is still difficult to directly link the

microscopic avalanches dynamics to the macroscopic firing rate
dynamics, the scale-invariance property of criticality inspires that
the properties of burst activities (avalanche) in the macroscopic
scale can shed light on the origin of power-law scaling in the
microscopic network.

To consider the avalanche in the macroscopic scale, one
should inspect the fluctuation behavior of a macroscopic signal
x(t) of the network, such as the mean firing rate, etc. An avalanche
is a process that starts growing at x (0) = xth + ε(ε→ 0+) and
at the first time it goes back to x (T) = xth at time t = T. Here,
xth is a threshold above which the avalanche is defined. The
quantity T turns out to be the first-passage time (FPT) (back to
xth) of this process and it defines the duration of an avalanche.
The area S =

∫ T
0 x(t)dt in this process defines the size of the

avalanche. The scale-free behavior at the synchronous transition
point may be understood as the general feature of dynamical
systems near a bifurcation point when subjected to demographic
noise dx

dt ∼
√

xξ(t) (di Santo et al., 2017). This is because in the
critical state of the E-I network, neurons are subjected to Poisson-
like noise input with very weak correlation. Thus, according to
a Gaussian approximation given by the central limit theorem,
the overall fluctuation of population activity density scales with
its square root as given by the central limit theorem (Benayoun
et al., 2010; di Santo et al., 2018). Noise-driven random walker
theory predicts that power-law distribution of the avalanche
is a general feature of a dynamical system subjected to such
kind of noise when near the Hopf bifurcation (actually, general
bifurcations) point. Specifically, although the dynamic form of
this macroscopic signal may not be explicit in the field equations,
we can heuristically consider a situation that X (t) = x− xth
obeys an intrinsic dynamic as the normal form of the amplitude
dynamics of Hopf bifurcation but driven by noisy force modeled
as GWN. The Langevin equation it obeys is

dX
dt
= aX − X3

+ η (X, t) . (19)

The first part of Equation (19) is the normal form of
the oscillation amplitude dynamics of a supercritical Hopf
bifurcation (Marsden and McCracken, 2012), where periodic
motion arises when a increases across the bifurcation point a = 0.
The second part η (X, t) is the noisy driving force, where the
fluctuation scales with square root of the activity. Thus, it has the
form η (X, t) = h+

√
Xξ(t), where h is the mean bias, including

the effect from recurrent excitatory, recurrent inhibitory and
external inputs. ξ(t) is a standard GWN. The fact is that avalanche
dynamics given by the first-passage process of Equation (19) can
be mapped to the case of random walks in logarithmic potential
(di Santo et al., 2017) by a scaling analysis (details in di Santo
et al., 2017). Under this approach, the FPT distribution of the
avalanche process can be solved by absorbing boundary approach
in an analytical way, resulting in

P (T = t) =

(√
2ε
)1−4h

0( 1
2 − h)

t
4h−3

2 exp
(
−

2ε2

t

)
. (20)
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FIGURE 4 | Coexistence of irregular spiking and critical avalanches in experimental data sets. (A) The raster plot of spiking time of data Set 1 in a period. Each point
corresponds to a spike of a neuron. Indexes are sorted according to the total number of spikes during the whole recoding time. The red/yellow segments in the top
indicate the up/down states. (B) The distribution of the neurons firing rate in up and down states. (C) The power spectral density of the population firing rate in up
and down states. In panels (B,C), the examples are shown by an up and a down period of data Set 1. (D) Boxplots of the CV distribution across neurons in different
data sets. (E–G): critical avalanche properties of data Set 1. (E) Probability density distribution of the avalanche size. (F) Probability density distribution of the
avalanche duration. (G) Mean avalanche size with respect to the given avalanche duration. The power-law distributions of size and duration are destroyed by
surrogated data with shuffled ISI (denoted by blue curves). (H) Scaling relations between critical exponents of different data sets, similar to Figure 3H.

This explains the power-law distribution relation P (T) ∼ T−α

with α = 3
2 − 2h and other exponents can be obtained by

scaling argument (di Santo et al., 2017), although the relation
between the avalanche critical exponents in the macroscopic
scale and the microscopic scale needs further exploration. In all,
irregular microscopic spiking leads to macroscopic fluctuation,
which becomes the dominant effect that shapes the dynamic
when near the macroscopic bifurcation point. The scale-free
avalanche dynamics in the microscopic spiking network at the
critical state may be understood as the scaling features of the
first-passage dynamics near the Hopf bifurcation point in the
macroscopic field model.

Coexistence of Irregular Spiking and
Critical Avalanches in Experimental Data
In the following, we further analyze public experimental data
measuring the in vitro neuronal spiking activity of mouse
somatosensory cortex cultures (Ito et al., 2016) (25 data sets in
total), to confirm whether the coexistence of irregular spiking and
collective critical avalanches is a widely existent phenomenon.

For the in vitro experimental data, spiking in the culture clearly
shows up-down state transition (Sanchez-Vives and McCormick,
2000; Luczak et al., 2007). Active spiking periods (up-state) and
silent periods (down-state) alternate slowly with a frequency of
circa 0.1 Hz, referring to Figure 4A. We focus on analyzing
the up-state (see the definition in Materials and Methods) for
the following reasons. First, neurons in up-states exhibit more
spiking and stronger oscillation trends, which can be seen from
the power spectral density (PSD) in Figure 4C. On the contrary,
spikes were too few in the down-state, thus up-states are more
likely to represent normal neural activities and closer to the
dynamic regime we have studied in the model. Furthermore, the
neurons recorded in data exhibit heterogeneity (Ito et al., 2014),
i.e., broad distribution of individual firing rate, which is different
from our modeling results with homogeneous random network
topology. However, the spiking of neurons in up-state is more
homogeneous, which can be seen from the evener distribution
of firing rates of neurons (Figure 4B). Taken together, we expect
that our modeling results may explain partial properties of the
experimental data in up-states.
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While most of the data sets display heavy tails in the
distributions of avalanche size and duration (Supplementary
Figures 4, 5), we find that nine of the 25 data sets exhibit both
size and duration distributions that correspond to power-laws
according to our standards (see Materials and Methods). Among
them, seven sets contain critical exponents that approximately
satisfy the scaling relation Equation (16) with errors < 0.1.
Further details of the analysis results of the data sets are
presented in Supplementary Table 1, which estimated the critical
exponents of the data sets. These estimated critical exponents
α, τ and 1

συz are also close to the ranges found in our model.
The statistical results of these seven data sets are shown in
Figures 4D,H. The boxplots of the distribution of CV of ISI
across neurons in each set are shown in Figure 4D. Typical
values of CV of neuron ISI are around 1∼1.5, a range similar to
the model prediction, indicating irregular spiking. Figures 4E–
G illustrates the avalanche size and duration statistics of Set 1.
Power-law distribution of avalanche size and duration can be
observed. For surrogated data, where the inter-spike intervals of
neurons were randomly shuffled, power-law distributions cannot
be maintained, indicating that the critical properties are intrinsic
in the data. As shown in Figure 4H, the scaling relationship
between critical exponents (i.e., Equation (16)) approximately
holds for these data sets. For these critical data sets, we also
find a linear relationship between exponents τ and α (as seen
in the inner panel of Figure 4H) whereby α = 1.36τ− 0.37,
while the slope is slightly different from the value in our
model with α = 1.21τ− 0.154 (inner panel, Figure 3H) and a
previous study (Fontenele et al., 2019) with α = 1.28τ− 0.28.
These results, obtained from experimental data, indicate the
phenomena of the model that irregular neuron spiking can
collectively organize as scale-invariant critical avalanches are also
widespread in vitro, complementing the profound finding of
this wide-spread phenomenon between different cortical states
in vivo (Fontenele et al., 2019). Note that the model we study
here does not have the property of slow transition between up
and down states, which in general involves additional adaptation
mechanisms (Jercog et al., 2017; Tartaglia and Brunel, 2017).

DISCUSSION

In summary, we have shown that E-I balanced IF networks
with synaptic filtering kinetics can reconcile the coexistence
of irregular spiking and collective critical avalanches near a
synchronous transition point. The mechanism is unveiled by
the macroscopic field equations derived by a novel mean-field
theory which effectively capture the network dynamics. Finally,
we further show that the phenomenon can be widely observed in
the up-states of spontaneous spiking activities recorded in vitro
in mouse somatosensory cortex cultures.

The E-I Balanced State Reconciles With
Different Levels of Synchrony
Traditionally, E-I balance (Okun and Lampl, 2009) has been
deemed to be the origin of neuron spiking irregularity. Classical
mean-field theory (Van Vreeswijk and Sompolinsky, 1996,

1998; Renart et al., 2010) predicts that irregular spiking is an
asynchronous state with low spiking time correlation. However,
input synchrony (Stevens and Zador, 1998) has also been
shown to contribute to the property of irregular spiking. This
varied understanding renders a question on how to effectively
characterize the dynamic of the E-I balance state.

Here, we study E-I networks that incorporates synaptic
kinetics and the critical transition from strict to looser balance,
where individual neurons continue to spike irregularly during
these different dynamic states. Thus, individual irregular spiking
is compatible with asynchronous (Renart et al., 2010) or sparse
synchrony (Brunel and Hakim, 2008) state (i.e., synchronous
inputs). Our theory shows that the balanced state can be a
stable fixed point or a stable limit cycle on the macroscopic
scale. The former induced by strict balance corresponds to
the asynchronous state in accordance with the traditional
theory, while the latter induced by loose balance corresponds
to collective network oscillation, with critical dynamics during
the transition between them. The critical dynamics where
neurons are weakly synchronous also provides an explanation of
how weak pairwise correlation can induce abundant collective
behavior (Schneidman et al., 2006). Our study thus gives an
effective characterization that the E-I balanced state can be a
stable state of different characteristics (fixed point or limit cycle)
in the macroscopic scale.

Possible Origin of Crackling Noise in
Neural Systems Around Synchronous
Transition Point
The criticality of neural systems has been long debated (Wilting
and Priesemann, 2019a). Previous experimental and theoretical
studies (Beggs and Plenz, 2003; Lombardi et al., 2012; Poil et al.,
2012; Yang et al., 2012) have suggested that critical avalanches
exist in the E-I balanced state, while many simplified models
use unrealistic neural dynamics (such as spreading processes on
networks) and the definition of E-I balance is usually ambiguous.
Our study of IF network with realistic synaptic kinetics considers
realistic irregular asynchronous or synchronous spiking in E-I
balanced state, and reveals that that critical avalanches exist near
the synchronous transition point between these states, offering a
more biologically plausible explanation of the origin of scale-free
dynamics in neural systems.

Our theory is thus consistent with the understanding that
criticality occurs at the edge of a synchronous transition (di
Santo et al., 2018; Dalla Porta and Copelli, 2019; Fontenele et al.,
2019) with intermediate levels of spiking variability (Fontenele
et al., 2019), and that critical avalanches can temporally organize
as collective oscillations (Gireesh and Plenz, 2008). It may
appear that the co-existence of scale-free avalanches with scale-
dependent network oscillations is contradictory. This can be
understood by the accumulation-release processes of large
avalanches where the system takes a typical period of time to
accumulate before another large avalanche release, leading to a
rhythm of large avalanches (Wang et al., 2016). Furthermore, the
portion of large avalanches takes dominant effects on modulating
the network oscillation, whereas the whole avalanches are still
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scale-free distributed. On the contrary, how these avalanches are
modulated by individual oscillation of neurons may be another
interesting problem for further exploration.

Some previous modeling studies also indicate that critical
avalanches emerge near synchronous transitions. For example,
(di Santo et al., 2018) studied spatially coupled units modeled by
cubic normal form rate equations. Their physical model facilitates
theoretical treatment but omits too many biological components
(Dalla Porta and Copelli, 2019) studied a probability spiking
model but without theoretical characterizing the transition
dynamics. They focused on the analysis of population activity
without considering the irregular spiking and E-I balanced input
of individual units. Oscillation component can also be included
in physical model of branching process (Pausch et al., 2020),
while being away from the criticality in branching process
means either explosion or being completely in salience, which
is not biologically desirable. Thus, the biological reality of our
model with synaptic filtering kinetics, E-I balance and irregular
spiking time in individual neurons is well beyond these previous
studies. Significantly, in our model, the synaptic transmission
is not instantaneous due to the filtering effect, which renders
difficulty in the distinction of the spatially causal relation
(Martinello et al., 2017) between successive spiking. The time
binning avalanches we measure here are temporally causal (as in
experimental measurements) but not necessarily spatially causal
in the network. Thus, our estimated critical exponents do not
agree with the spatially causal avalanches produced by critical
branching processes (Haldeman and Beggs, 2005) (i.e., directed
percolation (DP) class), which predicts the classical results τ =

1.5, α = 2, 1
συz = 2. Indeed, critical exponents different from the

DP class have been found in previously reported experiments
(Palva et al., 2013; Fontenele et al., 2019). Our own analysis of the
experimental data (Figure 4H) also confirmed the variation of the
exponents while maintaining the scaling relationship Equation
(16). Furthermore, the linear relationship between exponents τ

and α, also found in recent studies (Dalla Porta and Copelli,
2019; Fontenele et al., 2019), may depend on detailed properties
of the underlying circuit and its dynamic origin remains to be
further explored.

Another prediction of critical theory is that different
avalanches can be collapsed into a single scale function (Sethna
et al., 2001) at criticality. Such data collapse is a stricter criterion
to probe criticality than the scaling relation Equation (16) we use
here. It would be interesting to further explore whether there is
a unique scale function that different avalanches can be collapsed
into and how different oscillation components in the network can
modulate its shape (Miller et al., 2019).

A Macroscopic Description of IF
Neuronal Networks With Synaptic
Kinetics
Traditional theory of E-I IF neuronal networks makes use
of diffusion approximation (Amit and Brunel, 1997). For
current-based dynamics without synaptic kinetics, Fokker Planck
equation of membrane potential distribution can be constructed
and firing rate can be derived by first-passage time theory (Amit

and Brunel, 1997). Furthermore, the stability of the stationary
membrane potential distribution can be analyzed through linear
perturbation (Brunel, 2000), which can predict the transition
from asynchronous spiking to sparse synchronous state through
a Hopf bifurcation. On the contrary, our theory here analyzes
stability of the dynamic of the mean membrane potential itself.
Importantly, when synaptic kinetics is included, a complete
analytical treatment does not exist. For example, the firing
rate could only be derived asymptotically through a singular
perturbation method by assuming fast decay synapses (Fourcaud
and Brunel, 2002), whereas more ad hoc assumptions have to be
further imposed for conductance-based dynamics (Brunel and
Wang, 2001), and the oscillation properties of the network could
only be analyzed by assuming a heuristic form of the network
steady-state firing rate solution (Brunel and Wang, 2003). On the
contrary, our semi-analytical theory can unifiedly treat networks
with current-based or conductance-based (see Supplementary
Material: Appendix 1. Model Extensions) dynamics with or
without synaptic kinetics.

A more challenging but also more useful issue that has
attracted much recent attention is to find macroscopic transient
dynamic descriptions, e.g., rate equations, of the neuronal
networks. Schaffer et al. (2013) derived the complex firing rate
equations of IF networks through the eigenfunction expansion
of the Fokker-Planck equation under diffusion approximation.
Deriving rate equations of adaptive non-linear IF networks
has also been studied (Augustin et al., 2017) under some
effective approximation of the Fokker-Planck equation. Montbrió
et al. (2015) derived the rate equations for quadratic IF
networks using the Lorentzian ansatz. This approach has been
generalized to including gap junctions (Laing, 2015) and synaptic
filtering kinetics (Dumont and Gutkin, 2019). Schwalger et al.
(Schwalger et al., 2017) developed a method to derive the
stochastic rate equations of adaptive IF networks based on
mean-field approximation of the renewal equation. In general,
analytical theory works for specific conditions and thus is highly
specific and with strong complexity. Furthermore, most proposed
theories failed to capture the synchronous transitions induced by
the synaptic filtering effect studied in our model.

Instead of being theoretically perfect, here we seek for
simplicity and effectiveness. The key novel feature of our
framework (see detailed derivations in Materials and Methods)
is that the mean-field equations of the macroscopic dynamical
variables can be closed by the voltage-dependent mean firing
rate (i.e., Equation (9)). While many previous theoretical
analyses of E-I network usually require the assumption of
low input correlation (Van Vreeswijk and Sompolinsky, 1998;
Brunel, 2000), the formula here is constructed by counting
the number of neuron spiking in a small time window but
not required to explicitly consider the correlation of neurons,
which allows it to essentially capture the sub and supra
threshold microscopic dynamics of a spiking network. Our
novel scheme to derive the dynamic equations governing the
first-order statistics of the neural network is not completely
analytical, since the derivation neglects several factors that shape
the network dynamics, including higher order statistics, noise
correlation and refractory time. All these neglected factors have
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been incorporated into the effective parameters, σα, given
by Equation (10). Nonetheless, this semi-analytical theory
provides a simple yet useful method to analyze dynamic
features directly related to the network firing rate, such as
synchrony, criticality and response to dynamic stimuli. The
semi-analytical nature of the theory results in the simple form
of the macroscopic field equations, which facilitates further
generalization. Previous work (Wong and Wang, 2006) proposed
another semi-analytical theory for deriving rate equation from
spiking neural networks. That method is a direct generalization
of the classical Wilson-Cowan model (Wilson and Cowan,
1972) with presumed f-I curves (the relationship between input
current and output rate). The derived field equations include
the synaptic gating variables and thus can capture the synaptic
filtering effect. Yet, unlike our approach here, that analysis
cannot directly predict the dynamical properties of the spiking
network (e.g., criticality, network oscillations) from the derived
field equations.

Outlook
It is straightforward that the mean-field analysis introduced here
can be used in the study of neural dynamics across a diverse
range of topics. It can be easily generalized to include other
factors by assuming different macroscopic variables in the field
model. Possible extensions of the analysis include studying the
effects of multiple neuronal populations and synaptic receptor
types, cluster or spatially extended network connections, adaptive
behaviors such as short-term plasticity, etc. Thus, our work
allows further exploration of the mechanism that determines
the role of synaptic kinetics in working memory retrieval
(Mongillo et al., 2008), self-organized critical phenomena due
to plasticity (Levina et al., 2007; Millman et al., 2010) and
spatially causal avalanches or waves (Keane and Gong, 2015;
Keane et al., 2018; Gu et al., 2019) arising from competition
between Hopf and Turing instability (Huang et al., 2019). As a
theory that links microscopic neuronal spiking and macroscopic
collective activity that are consistent in several aspects with
real neural dynamics with regard to E-I balance and neural
criticality, our theory also establish a base to model large-scale
brain connectomes (Haimovici et al., 2013; Chaudhuri et al.,
2015; Wang et al., 2019), to study large-scale brain networks
and information processing with realistic multiscale complex
dynamics. In the experimental data analysis, we have confirmed
the wide coexistence of irregular spiking and critical avalanches
in the up-states of in vitro neuronal cultures, but our model
could not reproduce some features in the experimental data
sets: the uneven distribution of firing rates of neurons may
require a heterogeneous network topology; the up-down states
transition may require adaptation mechanisms in a slower

time scale (Jercog et al., 2017; Tartaglia and Brunel, 2017).
It would be interesting to further generalize our theory to
models with such features. The potential applications of our
theory listed here will receive the further exploration they
deserve in due course.
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