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An extensive array of virulence factors associated with S. aureus has contributed significantly to its success as a major nosocomial
pathogen in hospitals and community causing variety of infections in affected patients. Virulence factors include immune evading
capsular polysaccharides, poly-N-acetyl glucosamine, and teichoic acid in addition to damaging toxins including hemolytic
toxins, enterotoxins, cytotoxins, exfoliative toxin, and microbial surface components recognizing adhesive matrix molecules
(MSCRAMM). In this investigation, 31 West Australian S. aureus isolates of human origin and 6 controls were analyzed for relative
distribution of virulence-associated genes using PCR and/or an immunoassay kit and MSCRAMM by PCR-based typing. Genes
encoding MSCRAMM, namely, Spa, ClfA, ClfB, SdrE, SdrD, IsdA, and IsdB, were detected in >90% of isolates. Gene encoding
𝛼-toxin was detected in >90% of isolates whereas genes encoding 𝛽-toxin and SEG were detectable in 50–60% of isolates. Genes
encoding toxin proteins, namely, SEA, SEB, SEC, SED, SEE, SEH, SEI, SEJ, TSST, PVL, ETA, and ETB, were detectable in >50% of
isolates. Use of RAPD-PCR for determining the virulence factor-based genetic relatedness among the isolates revealed five cluster
groups confirming genetic diversity among the MSSA isolates, with the greatest majority of the clinical S. aureus (84%) isolates
clustering in group IIIa.

1. Introduction

Staphylococcus aureus is a frequent opportunistic pathogen
known to cause a wide variety of diseases ranging from
skin infections such as boils and carbuncles to more seri-
ous infections such as toxic shock syndrome, endocarditis,
pneumonia, and sepsis [1–4]. This has led to the emergence
of S. aureus as a common cause of hospital acquired and
community acquired infections [5, 6].

The pathogenesis of S. aureus is attributed to several
virulence factors including biofilm formation and associ-
ated prolonged persistence of antibiotic resistance and the
production of a wide array of toxins [5, 7]. A biofilm or
slime, defined as a congregation of microorganisms residing
in a protective extracellular matrix [8, 9], constitutes the

first step in initial attachment followed by colonization and
subsequent infection. Colonization is commonly associated
with an assortment of adherence factors or adhesins which
aid bacterial attachment to the host surface using microbial
surface component recognizing adhesive matrix molecules
(MSCRAMM). Over 20 different MSCRAMM, which can be
expressed in S. aureus, have been identified [10]. Major pro-
tein adhesins in this group include biofilm-associated protein
(Bap), clumping factors A and B (ClfA, ClfB), fibronectin
binding proteins A and B (FnBPA, FnBPB), collagen binding
protein (Cna), bone sialoprotein binding protein (Bbp), iron
regulated surface determinants A and B (IsdA, IsdB), serine
aspartate repeat gene proteins D and E (SdrD, SdrE), and
Protein A (Spa) [11–14]. Following adherence, the biofilm is
further strengthened by an intracellular adhesin encoded by
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the ica operons (icaA, icaB, icaC, and icaD genes) which
produce the cell surface polysaccharide poly-N-acetyl 𝛽-1-6
glucosamine (PNAG) and another antigen 336, a derivative
of cell wall teichoic acid [13, 15, 16]. A strong relationship
betweenPNAGandbiofilm formation, althoughnot absolute,
was previously reported [8, 17].

In addition to the possession of MSCRAMM, S. aureus
also produces a range of exotoxins that aid in host tissue
membrane disruption providing nutrients essential for bac-
terial cell growth [18, 19] with some also contributing to
biofilm formation. Exotoxins produced include cytotoxins,
Panton Valentine Leucocidin (PVL), and hemolysins (𝛼, 𝛽,
and 𝛾), which possess the ability to form pores in host cells
enabling lysis [20, 21]. Additional toxins encoded for and/or
produced include toxic shock syndrome toxin (TSST-1) and
the staphylococcal enterotoxins or SE (SEA-SEE, SEG-SEJ),
some of which are best characterized as superantigens in
reference to their ability to activate the proliferation of T-
cells leading to release of increasing levels of proinflammatory
cytokines [22, 23]. These also include the rare and virulent
exfoliative toxins ETA and ETB [24].

The increasing trend towards development of persistent
antibiotic resistance improves the ability of this pathogen to
resist treatment with antibiotics [5, 25] a fundamental feature
in the development of chronic infections. Aim of this study
was to determine the diversity of distribution of the major
MSCRAMM and toxins among theWest Australian S. aureus
isolates of human origin, using serological and/or genotypic
analysis and determine their genetic relatedness.

2. Materials and Methods

2.1. Collection of Strains. A total of 19 human S. aureus strains
donated by different clinical pathology laboratories to the
School of Biomedical Sciences in West Australia were kindly
donated by Mr. Alain Delhaize, Senior Technical Manager,
responsible for managing this collection.The remaining 12 S.
aureus isolates were collected from the laboratory medicine
students enrolled in medical microbiology (Human Ethics
approval number SoBS 04/11) and 5 accredited capsular (CP)
positive or negative control strains were kindly provided by
Professor Gerald Pier, Channing Laboratory, Brigham and
Women’s Hospital. The 5 accredited CP positive or negative
control strains used in this investigation included Strain M
(CP1), Smith Diffuse (CP2), Strain Newman (CP5), USA 400
(CP8), and LAC USA 300 (CP neg). The 6th control strain
was ATCC� 29213�, a strong biofilm former. All strains were
subjected to preliminarymicrobiological testing to confirm S.
aureus [26] and methicillin-sensitivity (MSSA) as described
elsewhere [5]. All S. aureus strains were stored at −80∘C
on cryobeads (Blackaby Diagnostic Pty Ltd., WA) for future
studies. Positive ATCC toxin typing controls used in this
studywereATCC 13565� for𝛽-hemolysin, ATCC49775� for
PVL and 𝛾-hemolysin, ATCC 51651� for TSST-1, and ATCC
8096� for 𝛼-hemolysin.

2.2. Bacterial Strain Growth. Pure colonies of S. aureus
strains were inoculated in sterile nutrient broth dispensed in

McCartney vials and incubated at 37∘C for 24 hrs in a shaker
incubator.

2.3. DNA Extraction. All strains were subjected to DNA
extraction using the Mo-Bio DNA Extraction Kit (MO BIO
Laboratories, Inc., Carlsbad, CA). All extracts were stored at
−20∘C until used.

2.4. Detection of Genes Encoding PVL and mecA. Utilization
of the GenoType�MRSA assay (Hain Lifesciences) was used
for detection of PVL and the presence of methicillin resis-
tance. Briefly, DNA was isolated from cultured media and
amplified with biotinylated primers. The amplified product
was bound using a DNA strip technology that permitted
visual identification of the presence of mecA and PVL genes
in S. aureus.

2.5. Detection of S. aureus Enterotoxins. A SET-RPLA Toxin
Detection Kit purchased from Thermo Fisher Scientific
Australia was used to serologically type SEA, SEB, SEC,
and SED. Briefly, latex sensitized with a combination of
antienterotoxin A–D types serially diluted and added to
the bacterial suspension. After 24 hrs incubation at room
temperature, each well was observed for agglutination, which
indicated the presence of enterotoxins.

2.6. Genotyping of S. aureus Strains. Determination of the
presence of enterotoxins, mentioned in Section 2.5, was
further confirmed by genotyping. Because the scope of
detection of the exotoxins produced by the S. aureus isolates
was limited because of the lack of availability of serological
kits, the presence of a number of other toxins, described
below, was carried out by genotyping.

The primers used in this investigation with their respec-
tive melting temperature (𝑇

𝑚
), band size, and references are

shown in Table 1. Briefly, the conditions used for detection of
different virulence factors were as follows.

Amplification of TSST-1, clfA, clfB, can, and spa was
performed at 95∘C for 5min, 30 cycles of 95∘C for 30 sec, 𝑇

𝑚

for 30 sec, and 72∘C for 45 sec with a final extension of 72∘C
for 10min.

Amplification of fnBpA, fnBpB, hlb, sdrE, bbp, isdA, and
sdrD and sdrE genes was performed at 95∘C for 5min, 35
cycles of 95∘C for 30 sec, 𝑇

𝑚
for 30 sec, and 72∘C for 45 sec

with a final extension of 72∘C for 10min. Primers for isdB
were developed in this study and amplified with the following
conditions at 35 cycles of 95∘C for 30 sec, 𝑇

𝑚
for 1min, and

72∘C for 2min with a final extension of 72∘C for 10min.
Amplification of hla genes was performed at 95∘C for

5min, 38 cycles of 95∘C for 30 sec, 𝑇
𝑚
for 30 sec, and 72∘C

for 45 sec with a final extension of 72∘C for 10min. While
amplification of sea, seb, sec, sed, see, seg, seh, sei, and sej was
performed at 95∘C for 5min, 30 cycles of 95∘C for 2min, 𝑇

𝑚

for 1min, and 72∘C for 1min with a final extension of 72∘C for
5min, amplification of eta and etb was performed at 95∘C for
5min, 30 cycles of 95∘C for 1min, 58∘C for 1min, and 72∘C for
1min with a final extension of 72∘C for 10min. Amplification
of hlb was performed at 95∘C for 5min, 35 cycles of 95∘C for
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Table 2: Distribution of MSCRAMM detected by genotyping.

Gene encoding Number of positive isolates (%)
SpaA 28 (90.32%)
FnBPA 2 (6.45%)
FnBPB 13 (41.93%)
Cna 12 (38.71%)
ClfA 26 (83.87%)
ClfB 27 (87.1%)
SdrD 28 (90.32%)
SdrE 30 (96.77%)
Bbp 14 (45.16%)
IsdA 28 (90.32%)
IsdB 30 (96.77%)

45 sec, 𝑇
𝑚
for 45 sec, and 72∘C for 1min with a final extension

at 72∘C for 10min.
All PCR products were subjected to electrophoresis on a

1.5% agarose gel and stained with 0.8𝜇L/100mL of Midori
Green DNA Stain (Nippon Genetics) in a 1x Sodium Borate
Buffer (1x SB Buffer). O’RangeRuler DNA Ladder, 100–
1500 bp (Fermentas), was used to observe approximate band
sizes on the gel which was visualised on UV transilluminator.

2.7. RAPD Analysis. Three sequence primers previously
published were used for RAPD-PCR test to provide more
information on clinical, student, and control strains used in
this study [36]. Primers C (5-AGGGAACGAG-3), OPA9
(5-GGGTAACGCC-3), and OPA13 (5-CAGCACCCAC-
3) were used for amplification using 1 cycle of 94∘C for 60 sec,
35 cycles of 94∘C for 35 sec, 33∘C for 30 s, and 72∘C for 65 sec,
followed by 1 cycle of 72∘C for 7min [36].

All PCR products were run on a 1% agarose gel in 1x SB
Buffer. Gel was stained with Midori Green and viewed under
UV transilluminator. Bacterial DNA was randomly selected
to run in duplicate to ensure reproducibility of amplifica-
tion. Bands were scored in binary code with a factor of 1
representing presence of band and a factor of 0 representing
absence of bands. Results of the 3 primer sets were banded
to produce a dendrogram using UPMA (DenoUPMA,
http://genomes.urv.cat/UPGMA/index.php) and using the
Jaccard coefficient to determine the relatedness and level of
similarity between the isolates used in this study.

3. Results and Discussion

Several MSCRAMM were detected by genotyping in a high
percentage of S. aureus isolates. These included genes encod-
ing the proteins ClfA, ClfB, Spa, SdrD, SdrE, IsdA, and IsdB
(Table 2). On the other hand, genes encoding the Bbp, FnBpB,
and Cna proteins were detectable in less than 50% of the
isolates, gene encoding FnBpAprotein being detectable in the
smallest percentage of the isolates.

The average number of MSCRAMM detected in this
study was approximately 7, with 27 strains having a range of
>6–10 (data not shown). In only 4/31 strains, 5MSCRAMMor

Table 3: Distribution of different toxins detected by genotyping
and/or serotyping.

Encoding gene Number of positive isolates (%)
Staph enterotoxin A 8 (25.8%)
Staph enterotoxin B 6 (19.35%)
Staph enterotoxin C 3 (9.68%)
Staph enterotoxin D 0 (0%)
Staph enterotoxin E 0 (0%)
Staph enterotoxin G 19 (61.29%)
Staph enterotoxin H 4 (12.9%)
Staph enterotoxin I 9 (29.03%)
Staph enterotoxin J 0 (0%)
TSST-1 8 (25.8%)
PVL 0 (0%)
Alpha toxin 30 (96.77%)
Beta toxin 13 (49.93%)
Exfoliative toxin A 1 (3.23%)
Exfoliative toxin B 1 (3.23%)

less were detected. Compiled results for MSCRAMM typing
are shown in Table 2.

Among the toxins, the most prevalent toxin detected by
genotyping among the S. aureus isolates was 𝛼-toxin, 2nd and
3rd most prevalent detected toxins being the enterotoxin G
and 𝛽-toxin (Table 3). The genes encoding other toxins were
prevalent in less than 30% of the isolates, with the lowest ones
being the exfoliative toxins A andB.No strainwas positive for
genes encoding PVL toxin.

Twenty-three strains possessed genes encoding 2–4 dif-
ferent types of toxins. Only 3 strains possessed the gene for
one toxin and 5 strains expressed genes for >5 toxins. The
average number of toxins produced by the S. aureus strains
in this study was 3 toxins (data not shown).

The SET-RPLA Toxin Detection Kits were able to detect
fewer toxins as compared to SE genotyping (Table 4). Of
the 8 SEA positive S. aureus strains, only 3 were detected in
serotyping and, of 6 SEB positive strains, only 1 was detected
in serotyping (Table 4). Of the 3 SEC positive strains, only
2 were detected by serotyping; however the genotyping and
serotyping correlated with 0 positives by both methods (not
significant at 𝑝 < 0.05 level but substantial at 𝑝 < 0.06).

PCR typing was more sensitive than immunoassays in
detecting the genes associated with toxin production.

Accredited test capsular control strains were not positive
for genes encoding SED, SEE, PVL, ETA, or ETB. All test
control strains were positive for 𝛼 and 𝛽 and the TSST toxins
and Spa, ClfA, ClfB, SdrE, and SdrD MSCRAMM (Table 5).

Smith Diffuse S. aureus (CP2) expressed 9 MSCRAMM
and 9 toxins, the highest of the control strains. Strain M
(CP1) expressed 9 MSCRAMM and 8 toxins, USA 400 MW2
(CP8) expressed 9 MSCRAMM and 7 toxins, LAC USA 300
(CP neg) expressed 9MSCRAMM and 6 toxins, ATCC 29213
expressed 8 MSCRAMM and 7 toxins, and Strain Newman
(CP5) expressed 8 MSCRAMM and 6 toxins.
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Table 4: Correlation of serotyping versus genotyping methods for the major superantigenic enterotoxins.

Toxin Serotyping (𝑛 = 31) Genotyping (𝑛 = 31) Pearson correlation
coefficient 𝑟

SEA 3 (9.68%) 8 (25.8%) 0.553
SEB 1 (3.23%) 6 (19.35%) 0.371
SEC 2 (6.45%) 3 (9.7%) 0.891

SED 0 (0%) 0 (0%)
Not possible to calculate 𝑟
value but it can be assumed

to be 1.0

Table 5: Typing of control S. aureus strains.

Control stain Detectable toxin genes
ATCC 29213 SEA, SEC, SEG, SEI, TSST, 𝛼-toxin, 𝛽-toxin
Strain M (CP1) SEA, SEC, SEG, SEH, SEI, TSST, 𝛼-toxin, 𝛽-toxin
Smith Diffuse (CP2) SEA, SEB, SEC, SEG, SEH, SEI, TSST, 𝛼-toxin, 𝛽-toxin
Strain Newman (CP5) SEA, SEG, SEI, TSST, 𝛼-toxin, 𝛽-toxin
USA 400 MW2 (CP8) SEA, SEC, SEG, SEH, TSST, 𝛼-toxin, 𝛽-toxin
LAC USA 300 (CP neg) SEG, SEH, SEI, TSST, 𝛼-toxin, 𝛽-toxin
Control strain Detectable MSCRAMM
ATCC 29213 FnBPA, Spa, ClfA, ClfB, Bbp, SdrE, SdrD, IsdA
Strain M (CP1) FnBPA, Spa, Cna, ClfA, ClfB, SdrE, SdrD, Bbp, IsdA
Smith Diffuse (CP2) FnBPA, FnBPB, Spa, Cna, ClfA, ClfB, SdrE, SdrD, IsdA
Strain Newman (CP5) FnBPB, Spa, Cna, ClfA, ClfB, SdrE, SdrD, Bbp
USA 400 MW2 (CP8) FnBPA, Spa, Cna, ClfA, ClfB, SdrE, SdrD, Bbp, IsdA
LAC USA 300 (CP neg) FnBPA, FnBPB, Spa, Cna, ClfA, ClfB, SdrE, SdrD, Bbp

Amplification with primers OPA09 and OPA13 yielded 4
RAPD patterns from 3 distinct bands each whereas amplifi-
cationwith primer C yielded 6 RAPDpatterns from4 distinct
bands. Presence or absence of bands resulted in binary
data that was analyzed to produce a dendrogram. Using
RAPD analysis, 5 cluster groups displaying the distribution of
MSCRAMM and toxins between the groups were discernible
(Figure 1).

The cluster cut-off point was determined at 33% level of
similarity (0.333) resulting in 5major cluster groups (Table 6),
namely, Cluster of Ia and Ib (level of similarity 0.667 to 0.800),
Cluster of IIa and IIb (level of similarity 0.333 to 0.750),
Cluster of IIIa and IIIb (level of similarity 0.333 to 1.000),
Cluster of IVa and IVb (level of similarity 0.500–0.600), and
Cluster of V (level of similarity 1.000), which were used to
compare the cluster groups (Table 6).

It can be seen that the majority of S. aureus isolates were
clustered into group IIIa, with 58% (18/31) of the isolates
displaying clonal similarity of MSCRAMM and toxins. The
majority of clinical strains (16/19) were clustered in group
IIIa suggesting a common source of infection of patients in
hospitals (Table 7). Student strains, on the other hand, were
dispersed into several cluster groups (Ia, IIa, IIb, IIIa, IIIb, Iva,
and IVb) indicatingmultiple potential sources for acquisition
of infection. The control strains were clustered in groups Ia,
IVa, and IVb.

Greater diversity of cluster groups associated with the
studentMSSA isolates also indicated greater diversity of their
clonal origins.

MRSA strains are known to be highly clonal [37].
However, unlike the diversity reported recently with MSSA
isolates in Europe, genetic diversity of virulence factors
associated with clonal complexes of West Australian MSSA
isolates has not yet been reported. Vandendriessche et al.
[38] demonstrated high genetic diversity of MSSA carriage
isolates from animals and humans on pig, veal, dairy, beef,
and broiler farms using spa typing and multilocus sequence
typing (MLST). These studies supported a previous report
[39] on the heterogeneity and genetic diversity of MSSA
isolated from clinical specimens in a teaching hospital in
Germany using spa typing, MLST, and enterotoxin genotyp-
ing. In contrast, the genetic diversity of the MSSA isolates
determined in this investigationwas determined based on the
prevalence of bothMSCRAMM and enterotoxin genotyping.

A large array of virulence factors [12, 15, 19] is involved in
the pathogenesis of infections caused by S. aureus. Whether
the information gained in this study on the relative prevalence
of the genes encoding different virulence antigens and con-
finement of the majority of WA clinical isolates to a single
cluster group (IIIa) offers an opportunity for formulation
of potential strategies for the development of an effective
vaccine capable of combatting infections caused by this
pathogen in Western Australia remains to be determined.
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Figure 1: RAPD-based dendrogram indicating the genetic relatedness among S. aureus isolates including the control isolates.
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Table 6: Distribution of the known MSCRAMM and toxins produced by the strains used in this study.

Group Strains and subgroups (𝑛) MSCRAMM Toxins

I
Group Ia (3) FnBPA, FnBPB, Spa, Cna, ClfA,

ClfB, SdrE, SdrD, Bbp, IsdA, IsdB
SEA, SEC, SEG, SEH, SEI, TSST,
𝛼-toxin, 𝛽-toxin, ETA, ETB

Group Ib (2) FnBPB, Spa, Cna, ClfA, ClfB, SdrE,
SdrD, Bbp, IsdA, IsdB

SEB, SEG, SEH, SEI, TSST, 𝛼-toxin,
𝛽-toxin

II
Group IIa (2) FnBPa, FnBPB, SpA, ClfA, ClfB,

SdrE, SdrD, IsdA, IsdB SEB, SEG, TSST, 𝛼-toxin

Group IIb (1) FnBPB, SdrE, SdrD, IsdA, IsdB SEC, 𝛼-toxin

III
Group IIIa (18) FnBPA, FnBPb, SpA, ClfA, ClfB,

Cna, Bbp, SdrE, SdrD, IsdA, IsdB
SEA, SEB, SEC, SEH, SEI, TSST,
𝛼-toxin, 𝛽-toxin

Group IIIb (1) Spa, Cna, ClfA, ClfB, SdrE, SdrD,
IsdA, IsdB SEC, SEG, TSST, 𝛼-toxin

IV
Group IVa (5) FnBPA, FnBPB, Spa, ClfA, ClfB,

SdrE, SdrD, Bbp, IsdA, IsdB
SEA, SEC, SEG, SEH, SEI, TSST,

𝛼-toxin, 𝛽-toxin

Group IVb (4) FnBPA, FnBPB, Cna, Spa, ClfA,
ClfB, SdrE, SdrD, Bbp, IsdA, IsdB

SEA, SEC, SEG, SEH, SEI, TSST,
𝛼-toxin, 𝛽-toxin

V Group V (1) FnBPA, FnBPB, SpA, Cna, Clfa,
Clfb, SdrE, SdrD, Bbp, IsdA, IsdB

SEA, SEB, SEC, SEG, SEH, SEI,
TSST, 𝛼-toxin, 𝛽-toxin

Table 7: Cluster groups of clinical versus student versus control
strains.

Cluster
groups

Clinical strains
(𝑛 = 19)

Student strains
(𝑛 = 12)

Control strains
(𝑛 = 6)

Ia 1 1 1
1b 2 0 0
IIa 0 2 0
IIb 0 1 0
IIIa 16 2 0
IIIb 0 1 0
IVa 0 3 2
IVb 0 2 2
V 0 0 1

Strategies used for the development of vaccines against
infections caused by S. aureus targeting a limited number of
single antigens is unlikely to be effective for global vaccine
usage because of differences in the distribution of genes
encoding different virulence factors participating in the
establishment of infection. Of interest is a relatively recent
study in which patients afflicted with S. aureus bacteremia
were reported to display different antibody responses to
19 different MSCRAMM of each bacterial strain that was
isolated from these patients [25]. Ideally, an effective S.
aureus vaccine must generate protective immunity that can
neutralize the major exotoxins and interfere with adhesion
facilitated by the major MSCRAMM participating in attach-
ment/colonization of this pathogen to the niche host tissue.
Many different types of vaccines including MSCRAMM-
based vaccines [40], capsular polysaccharide, and/or PNAG-
based conjugate vaccines [3, 15, 40] involving conjugation of
one to 3 MSCRAMM [27, 40] or selected inactivated toxins
including 𝛼-toxin encoded by the hla gene [3, 28, 40–43] have
been evaluated using passive and/or active immunization of

mice. However, none of these vaccines were considered to
be providing satisfactory protection raising doubts on the
possibility of ever developing an effective vaccine against S.
aureus infections for use in humans [44], particularly after the
report of antigenic competition subsequent to coadministra-
tion of CP-based and PNAG-based conjugate vaccines [45].
Fortunately, not all the potential options for the development
of an effective vaccine against infections caused by S. aureus
have been exhausted if one was to take the relative distri-
bution/prevalence and cluster grouping of virulence antigens
among the clinical isolates into account for the development
of a universal vaccine against infections caused by S. aureus.
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