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ABSTRACT

We propose here KineticDB, a systematically com-
piled database of protein folding kinetics, which
contains about 90 unique proteins. The main goal
of the KineticDB is to provide users with a diverse
set of protein folding rates determined experimen-
tally. The search for determinants of protein folding
is still in progress, aimed at obtaining a new under-
standing of the folding process. Comparison with
experimental protein folding rates has been the
main tool for validation of both theoretical models
and empirical relationships during the last 10 years.
It is, therefore, necessary to provide a researcher
with as much data as possible in a simple and easy-
to-use way. At present, the KineticDB contains the
results of folding kinetics measurements of single-
domain proteins and separate protein domains
as well as short peptides without disulfide bonds.
It includes data on about 90 unique proteins and
many mutants that have been systematically accu-
mulated over the last 10 years and is the largest
collection of protein folding kinetic data presented
as a database. The KineticDB is available at http://
kineticdb.protres.ru/db/index.pl.

INTRODUCTION

The problem of protein folding is one of the most
fundamental in molecular biology. The progress in under-
standing the protein folding helps predicting protein 3D
structures (1), resulting recently in the designing of princi-
pally novel proteins (2,3). The ever-increasing computer
potential gives an opportunity to perform molecular
dynamics simulations for the folding of small proteins
(4,5). Also, in the last decade, the understanding of protein
folding processes has resulted in the development of first
crude models of protein folding provided the protein 3D
structure is known (6–11). The relevance of protein fold-
ing models is often tested as the ability to predict protein
folding rates (8–11), although reproducing other features

of protein folding such as the ‘all-or-none’ transition or
the folding nucleus is also important. Simultaneously,
a number of empirical and bioinformational methods
has been developed, which provide additional informa-
tion on protein folding determinants as well as allowed
predicting protein folding rates from tertiary, secondary
or primary protein structure (12–15). Prediction of pro-
tein folding rates is of special value because aggregation
directly depends on the rate of protein folding.

The validation of predictions using experimental data
was first undertaken in the empirical study of Plaxco and
coworkers (12). At the same time, Jackson published her
seminal review (16) that reports folding kinetics data of all
proteins studied by that moment. Since then the test for
correlation of predicted values with experimental results
has become widely used in theoretical studies of protein
folding (8–11,17). However, updating the initial dataset
collected by Jackson was a rather hard job since experi-
mental papers most often described one experiment per
paper and there was no protocol for presenting folding
kinetic results. Such a protocol was suggested only in
2005 by Maxwell and coworkers (18), where the folding
kinetics data for 30 proteins having no evident fold-
ing intermediates were collected at standard conditions.
Simultaneously, the Protein Folding Database (PFD)
was developed (19,20). It has a well-developed interface
and systematically collected experimental data on protein
folding kinetic studies. Also, it has a form for depositing
researcher’s own folding kinetics data. At the moment, the
PFD contains folding kinetics data of about 40 unique
proteins and many mutants.

In this article, we present our KineticDB with fold-
ing kinetics data of about 90 unique proteins, which is
available at http://kineticdb.protres.ru/db/index.pl. The
current version of the KineticDB contains single-domain
proteins, separate protein domains and short peptides
without disulfide bonds in their native structure. The
KineticDB is the result of our 10-year manual collec-
tion of protein folding kinetic data from literature used
in our theoretical research. The dataset underlying
the KineticDB database has proved to be useful for a
number of theoretical, empirical and bioinformational
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studies of protein folding (15,21–24). The KineticDB is
a valuable additional resource alternative to the PFD.

DESCRIPTION OF KINETICDB

The KineticDB is a relational database realized using
MySQL and a number of Perl scripts. Each record of
the KineticDB relates to a single protein folding kinetics
measurement extracted from the original paper and gives
details of the experimentally studied protein, its best avail-
able tertiary structure, experimental conditions, reference
to the original paper and experimental results.

Details of the experimentally studied protein include the
full name of the protein, its acronym, its source organ-
ism (‘synthetic’ for de novo designed proteins), the protein
sequence and its length, the initial and end positions
related to the whole sequence if a fragment of the protein
was used for experimental studies.

Details of the best available structure corresponding to
an experimentally studied protein include the code of the
file with the structure according to the Protein Data Bank
(26), the corresponding chain identifier inside the file,
the identifiers of the start and end residues of the frag-
ment corresponding to the experimentally studied protein,
the sequence of the fragment, its length and mutation
with respect to the wild-type sequence, and the identifier
of the fragment according to the Structural Classification
of Proteins (27). In addition, the method of structure reso-
lution with the resolution value (in the case of X-ray struc-
ture) and with the number of models (in the case of
structure determined by the method of nuclear magnetic
resonance) is also included. For some proteins, there is
no exact match in the Protein Data Bank to the protein
studied experimentally. In this case, the structure of the
closest homolog is given. Though, in the case when there is

no structure of a close homolog, nothing is given at all.
We understand that the choice of the best available struc-
ture corresponding to the experimentally studied protein
is ambiguous. In order to take this into account, there is
a possibility to change the Protein Data Bank identifier
of the best structure or to have even several structures for
a protein at the organizational level of the database. It
should be noted that for proteins studied by Maxwell
et al. (18), we took Protein Data Bank structure identifiers
recommended in their paper, while for other proteins
we took PDB structures that were selected during the
theoretical and empirical investigations on the prediction
of protein folding rates (11,13,15,25).
Details of experimental conditions include pH, tempera-

ture, denaturant concentration, buffer and type of dena-
turing agent. The field ‘Other’ contains all other relevant
information. All conditions refer to the point where loga-
rithms of folding and unfolding rate in water are obtained.
Thus, in the case when the denaturing agent is a chemical
denaturant, the denaturant concentration in this section
is given as zero. Other conditions are suggested to be kept
constant at all denaturant concentrations studied. How-
ever, we do not focus very much on the experimental con-
ditions; the main goal of this section is to show to what
extent conditions differ from the standard ones (18).
Experimental results include natural logarithms of pro-

tein folding and unfolding rates extrapolated to water, the
natural logarithm of the mid-transition rate of folding
(which is equal to the mid-transition rate of unfolding),
transition state coordinate, free energy of unfolding in
water, type of protein folding kinetics behavior: two-
state (single-exponential throughout all experimental
conditions studied) or multi-state (if multi-exponential
kinetics was observed at least at some range of denaturant
concentration). Also, there are slopes of changing the free

Figure 1. Screenshot of the central part of the page with the list of proteins. There is the menu for displaying different
parameters as well as the table with protein folding kinetics measurements.

Nucleic Acids Research, 2009, Vol. 37, Database issue D343



energy values of unfolding and natural logarithms of
protein folding and unfolding rates with denaturant
(the so-called ‘m-values’) that are given only if a chemical
denaturant is used. And finally, the temperature and
denaturant concentration of the mid-transition are given.
It should be noted that if a chemical denaturant is used,
the temperature of mid-transition is the same as the
temperature corresponding to in-water folding/unfolding
rates, while in the case of an experiment with temperature
denaturation the denaturant concentration is the same as
in the case of in-water protein folding/unfolding rates.
It should be noted that in the current design the data-

base reflects our theoretical and empirical studies of pro-
tein folding rates prediction (9,13,15). That is, if a protein
was studied in several different conditions, we selected the
measurement done at conditions closest to the standard
ones: 258C, pH 7.0 and the absence of a denaturant. This
is also in agreement with the paper of Maxwell et al. (18).
However, in the future we may include also additional
experiments with the same protein.

USE OF KINETICDB

The KineticDB has a simple interface consisting of a
few pages.

The home page offers an opportunity either to go to
the database summary table or to search in the database
for particular protein(s). In the menu there is a link to the
‘Help’ option that describes the meaning of all fields of
the database. The main page contains links to the related
resources as well.

The page with the list of proteins (Figure 1) initially
contains only a small part of the database records,
for which several fields are shown. Using controls on
the page one can choose to display all database records.
By checking appropriate boxes one can choose any set
of database records with any parameters to be shown.
The protein list can be sorted by any parameter, ascend-
ing or descending. Each parameter name is supplied with a
pop-up hint with the meaning of the parameter (Figure 1).
Each protein has links to the Protein Data Bank (26),

Figure 2. Screenshot of part of an individual page with an example of protein folding kinetic measurement.
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Structural Classification of Proteins (27) and PubMed
databases. The database identifier in the first column is
linked to the individual page of the experiment (Figure 2).

An advanced search page allows searching in the data-
base by keywords and filter the results by some parameters.

Our database is made for researchers who would like
to test model relationships both for all proteins experi-
mentally studied by now and for different groups of pro-
teins. Analytical tools are being developed to make use
of the accumulated data to support the selected set of
the already developed different methods of protein folding
rate prediction.

CONCLUSIONS AND FUTURE DIRECTIONS

We have proposed here the basic design of KineticDB,
a systematically compiled database of protein folding
kinetics. The main goal of the KineticDB is to provide
users with regularly updated information about diverse
data on protein folding kinetics in a well-documented
manner. At the moment the search for determinants of
protein folding kinetics is still in progress with the goal
of obtaining a new understanding of the folding process.
It is, therefore, necessary to keep as much data as possi-
ble in a simple and easy-to-use way to facilitate testing
new models and theories of protein folding against experi-
mental data. Also, the KineticDB can be used as a unified
dataset to compare performance of different methods of
prediction of protein folding rates.

At present the KineticDB contains the results of protein
folding kinetics measurements of single-domain proteins
or separate protein domains as well as short peptides with-
out disulfide bonds. It includes about 90 unique proteins
and many mutants that have been systematically accumu-
lated over the last 10 years, and is the widest collection
of protein folding kinetics data compiled as a database.
Moreover, it is possible to add the measurements of new
proteins and/or mutants as new information becomes
available; the impending work is to include in the database
protein folding kinetics measurements of proteins with
disulfide bonds as well as the measurements in conditions
other than standard. Also, we are going to incorporate the
results of using multiple variants of protein structure.
In order to make the database as wide and up-to-date
as possible, we are addressing research community with
a request to send us references containing new protein
folding kinetics data. We will be grateful for any contri-
bution to the database concerning both bug reports and
new protein folding kinetics data.
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