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ABSTRACT
Vancomycin-resistant enterococci (VRE), consisting of pathogenic Enterococcus faecalis and E. faecium, is a
leading cause of hospital-acquired infections (HAIs). We recently repurposed the FDA-approved human
carbonic anhydrase (CA) inhibitor acetazolamide (AZM) against VRE agent with the likely mechanism of
action for the molecules being inhibition of one, or both, of the bacterial CA isoforms expressed in VRE.
To elucidate how inhibitor binding to the enzymes relates to MIC, we further characterised the inhibition
constants (Ki) against the E. faecium a-CA (Efa-CA) and c-CA (Efc-CA), as well as against human CA I (hCAI)
and human CA II (hCAII) to assess selectivity. We have also utilised homology modelling and molecular
dynamics (MD) simulations to gain a better understanding of the potential interactions the molecules are
making with the targets. In this paper, we elaborate on the SAR for the AZM analogs as it pertains to MIC
and Ki for each CA.
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1. Introduction

Vancomycin-resistant enterococci (VRE) is a member of the notori-
ous group of drug-resistant ESKAPE pathogens1 and is considered
a serious threat to public health by the Centres for Disease
Control and Prevention2. VRE encompasses a host of Enterococcus
species, facultative anaerobic Gram-positive bacteria that are able
to withstand harsh conditions and colonise surfaces in healthcare
settings3. The earliest report of VRE from 1899 revealed it as a
leading cause of infective endocarditis4. Later studies also indi-
cated that VRE is a leading cause of pelvic, neonatal and urinary
tract infections (UTIs)5. In the 1970s, VRE primarily consisted of
Enterococcus faecalis, which accounted for over 90% of clinical
enterococcal isolates during the first wave of VRE infections6.
However, since the 1990s, the leading causative agent of VRE has
been Enterococcus faecium with now more than 70% of isolated
strains being resistant to vancomycin6. Furthermore, VRE was
responsible for a 10% mortality rate among nearly 55,000 reported
cases in 20172,7. However, the mortality rate climbs for those with
systemic blood-stream infections reaching as high as 30%8.
Patients at high risk for VRE infection include those in long-term
healthcare facilities, intensive care unit patients, organ transplant
patients and patients with weakened immune systems.

Lack of effective treatment is a primary reason making VRE dif-
ficult to treat. Linezolid and daptomycin have been approved by
the FDA as therapeutics for treatment of systemic VRE, with

daptomycin showing a slightly increased survival rate compared
to linezolid8. However, linezolid presents toxicity concerns includ-
ing myelosuppression, serotonin syndrome, neuropathy, and lactic
acidosis which may limit the length of treatment9. The synergistic
30:70 quinupristin-dalfopristin combination was also approved by
the FDA in 1998, but the combination’s high toxicity prevents the
therapy from being frequently utilised, except as a last-resort
measure9. Thus there is an urgent need for the development of
new anti-VRE therapeutics.

Our team previously screened a library of FDA-approved drugs
against VRE strains and discovered that the human carbonic anhy-
drase (hCA) inhibitor acetazolamide (AZM) possessed anti-entero-
coccal activity with a minimum inhibitory concentration (MIC) of
0.5 lg/mL10. Our team then carried out a hit-to-lead optimisation
campaign centred on the AZM scaffold and generated a series of
AZM analogs, many of which displayed significant potency against
VRE strains tested11. However, the mechanisms of action were not
fully understood. It was speculated that the molecules may be tar-
geting the E. faecium a- and/or c-carbonic anhydrases (Efa-CA and
Efc-CA, respectively) inside the bacteria.

Carbonic anhydrases (CAs) are ubiquitous metalloenzymes that
exist in prokaryotes and eukaryotes. The role of CAs is to catalyse
the conversion of carbon dioxide to bicarbonate, most often
mediated by a Zn2þ ion, in order to maintain the pH homeostasis
of the biological system. There are four main CA families that are
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genetically independent from each other: a-, b-, c-, and d-CAs12,
while new families are still being discovered13. The a-CAs are
widely distributed among vertebrates, bacteria, algae, and plants
and is the only isoform expressed in humans, while b-, d- and
c-CAs are distributed across different kingdoms, including in
archaea and bacteria14,15. It is yet to be established whether either
Efa-CA and/or Efc-CA are essential in VRE, but CAs have been
demonstrated to be essential in other pathogens such as
Helicobacter pylori16,17 and Neisseria gonorrhoeae18,19. We hypothe-
sise based on the efficacy of our known human CA inhibitor scaf-
fold that one or both of these genes may be essential for VRE
growth as well. However, the inhibitory activity of these molecules
against either Efa-CA or Efc-CA has never been characterised.
Therefore, our group set out to fill this gap in knowledge and to
quantify the inhibitory activity of the reported anti-VRE com-
pounds against both VRE-CA isoforms. We then assessed the
structure-activity-relationship (SAR) for the series against both
VRE-CAs, compared to the activity against human isoforms hCA I
and hCA II, and also investigated possible protein-ligand interac-
tions in Efa-CA that could explain binding affinity using molecular
dynamics (MD) simulations. The results from these studies are
reported herein.

2. Materials and methods

2.1. Expression and purification of VRE CAs

Both Efa-CA and Efc-CA were recombinantly expressed and puri-
fied as follows. A pHis2 plasmid (GenScript) containing either the
Efa-CA sequence or Efc-CA sequence was used for the expression
of hexa-histidine tagged protein in a bacterial culture. The plasmid
was transformed into competent BL21 (DE3) E. coli cells (Novagen,
catalog no. 70953) according to manufacturer recommendation.
Starter cultures were grown at 37 �C with shaking at 225 rpm
overnight. One litre of autoclaved Luria-Bertani broth containing
100 mg/mL ampicillin and 1mM ZiCl2 was inoculated with a 10-ml
aliquot of the starter culture and grown at 37 �C with shaking at
225 rpm to an OD of 0.8 before being cold shocked and induced
with 500mL of IPTG (1M). The induced cultures were grown for
16 h at 17 �C with shaking at 225 rpm. Bacterial cell pellets were
spun down at 4000 g for 20min and resuspended in 1� PBS con-
taining 0.5mM TCEP, 5% glycerol, pH ¼ 7.4 to which 5mg lyso-
zyme was added to aid in lysis. The resuspended bacterial cells
were incubated on ice for 20min and then lysed via sonication.
Lysed bacterial cells were pelleted by centrifugation at 14,000 g
for 1 h to remove cellular debris, and the supernatant was loaded
onto a nickel-NTA column equilibrated with 1x PBS containing
0.5mM TCEP, 5% glycerol, pH ¼ 7.4. Once flowthrough was col-
lected, the protein was eluted using a 0–500mM imidazole step-
wise gradient in the same equilibration buffer, and fractions were
collected. Fractions that contained the desired protein, as deter-
mined by SDS-PAGE, were combined and subjected to TEV prote-
ase for His-tag cleavage. After the addition of TEV, the protein
was dialysed for 4 h against 1� PBS containing 0.5mM TCEP, 5%
glycerol, pH ¼ 7.4. The dialysed protein solution was loaded back
onto a nickel-NTA column equilibrated with 1x PBS containing
0.5mM TCEP, 5% glycerol, pH ¼ 7.4 for the subtraction of TEV
followed by its elution with the same buffer containing 500mM
imidazole. The protein eluted prior to the imidazole was concen-
trated using Amicon Ultra Centrifugal Filters and purified by
size-exclusion chromatography (SEC) on an S100 column using
running buffer 1x PBS containing 0.5mM TCEP, 5% glycerol, pH ¼
7.4. Fractions that contained the protein of interest as confirmed

by SDS-PAGE were concentrated, flash frozen, and placed in
�80 �C for future use.

2.2. Carbonic anhydrase CO2 hydration catalytic assay and Ki
determination

The assay was performed according to previously published proto-
cols19–24. Recombinant Efa-CA and Efc-CA was obtained as
described above and hCA I and hCA II were purchased from
Millipore Sigma (hCA I Catalog# C4396-5MG; hCA II Catalog
#C6624-500UG). Ki values were determined from inputting the IC50
values into the Cheng–Prusoff equation25 for Ki from catalytic
inhibition constants.

2.3. Protein preparation and ligand docking

All computational protein and ligand preparation and docking
was performed using programs available within the Maestro inter-
face of the Schr€odinger Small Molecule Drug Discovery Suite
(Schr€odinger, LLC, New York, NY, software release 2021–2). The
Efa-CA homology model built from previous work13 was utilised
for protein preparation. The homology model was processed using
the Protein Preparation Wizard from the Schr€odinger platform.
During the pre-processing step, bond orders were assigned, the
CCD database was used, hydrogens were added, zero-order bonds
to metals were created, disulphide bonds were created, and heter-
oatom states of pH 7.0 ± 2.0 were generated with Epik. The struc-
ture was then refined by sampling water orientations using
PROPKA pH 7.4, followed by the removal of waters 3.0 Å beyond
heteroatoms and with fewer than 3 hydrogen bonds to non-
waters. The last step of refinement involved restrained minimisa-
tion by converging heavy atoms to an RMSD of 0.3 Å using the
OPLS4 forcefield.

To prepare for ligand docking, AZM was placed in the known
catalytic binding site near the Zn2þ ion. A grid was generated
with the Receptor Gride Generation program in Glide using AZM
as the workspace reference ligand and setting the Zn2þ ion as a
metal coordination constraint. All other parameters were set to
default settings. Ligands were prepared using LigPrep with default
ligand preparation settings. After ligand preparation, AZM and the
ligands of interest were docked into the binding site with Glide
using Extra Precision (XP) and default docking settings. The ligand
poses with the best Glide-XP scores that formed a coordination
between the sulphonamide moiety and the Zn2þ ion were carried
forward into the molecular dynamic simulations.

2.4. Molecular dynamics simulations of ligand binding

All MD simulations were performed using the Desmond (D. E.
Shaw Research) program available in the Maestro interface of the
Schrodinger platform (software release 2021–2). In preparation for
the MD simulations, a solvation model was built with System
Builder powered by Desmond using the following parameters. The
solvent model was predefined as TIP3P with boundary conditions
set to orthorhombic. The box size calculation was set to buffer
with box volume minimised. Ion and salt placement was excluded
within 5Å of the ligand, and ions were placed to neutralise the
calculated charge. Additionally, 0.15M NaCl was added to
the model.

Once the solvation model was built, molecular dynamics simu-
lations were run using Desmond. Each simulation time was set to
72 ns with recording intervals of 10 ps. Ensemble class was set to

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 1839



NPT with a temperature of 300.0 K and pressure of 1.01325 bar.
The remaining simulation parameters were set to default settings.
Convergence time for each ligand was determined by noting the
time at which the reported ligand RMSD appeared to
have stabilised.

3. Results and discussion

3.1. Structure-activity relationship data

To further understand the structure-activity relationship, we have
collected the inhibition constants (Kis) against Efa-CA, Efc-CA, hCA
I and hCA II (Table 1) for all the analogs developed against VRE
reported in our previous studies11

Compared with AZM, the addition of branched alkyl bulk adja-
cent to the amide carbonyl position generally improved potency
against both Efa-CA and Efc-CA with one exception. Progression
from methyl (AZM) to ethyl (1) to iso-propyl (2) provided stepwise
improvement against Efa-CA with Ki values of 56.7, 37.5 and
23.7 nM, respectively. A similar trend was observed against Efc-CA,
as AZM displayed a Ki of 322.8 nM and was improved to 218.4 nM
in the iso-propyl derivative 2. Interestingly, the tert-butyl analog 3
maintained similar potency against Efa-CA (Ki ¼ 29.8 nM) com-
pared to 2 but led to about a 2-fold reduction of potency against
Efc-CA (Ki ¼ 440.8 nM) compared to 2. When the alkyl group was
linearly extended an additional methylene from the amide car-
bonyl, the series of analogs with increased alkyl branching (426)
was generally less potent against both EfCAs compared to the ser-
ies with the branch point adjacent to the carbonyl. Conversely,
extending the linear alkyl chain to an n-hexyl substituent in ana-
log 7 increased the Ki values against Efa-CA and Efc-CA to 78.8 nM
and 631.7 nM, respectively.

A set of cycloalkyl derivatives provided additional, tractable
SAR data points against both Efa-CA and Efc-CA. The first cohort
of matched molecular pairs in which the cycloalkane branch point
was directly adjacent to the amide carbonyl followed a similar
trend against Efa-CA as was observed for the branched alkanes.
For example, expansion of the ring from three to four to five car-
bons improved potency for the series with the cyclopentane ana-
log 10 displaying the most potent Ki (9.8 nM) of any analog thus
far. However, similarly to what was observed for the branched
alkanes, there appears to be a potency limit with respect to
increased ring size as the cyclohexane derivative 11 was the least
potent of this group (Ki¼49.3 nM), followed by the quaternary 1-
methyl substituted 12 (Ki¼44.5 nM). Placing the methyl substitu-
ent at the 4-position in 13 slightly improved Efa-CA binding
(Ki¼29.6 nM) but not to the level observed for the cyclopentane
derivative 10. Interestingly, Efc-CA preferred the cycloalkane modi-
fications. Contrary to the Efa-CA binding data, the cyclohexane
derivative 11 was the most potent of the series with a Ki of
131.1 nM. Increasing the alkyl branching on the cyclohexane ring
at either the 1- or the 4-position as in analogs 12 and 13, respect-
ively, reduced Efc-CA binding to Ki values over 200 nM.

The second set of cycloalkane derivatives (15218), in which a
methylene linker is inserted between the carbonyl and the ring
generally improved potency against Efa-CA across the board with
all analog Kis ranging from 11�22 nM. The cyclopentane analog
17 did display about 2-fold reduced potency compared to its
matched molecular paired analog 10, but this cohort generally
was the best performing as a group against Efa-CA. However, just
as observed for the branched alkane analogs (427), extension of
the linker was detrimental to Efc-CA activity for analogs 15218
with values consistently less potent compared to the nearest

neighbour counterparts not containing the methylene insertion.
Adding a second methylene to the linker for the cyclopentane
(19) and cyclohexane (20) derivatives reduced potency against
both isoforms compared to the single methylene derivatives.

Two sets of matched molecular pairs compare the saturated
cyclohexane (11 and 20) to a phenyl substitution (14 and 21)
with varying linker length from the carbonyl. For the cyclohexane
to phenyl substitution attached directly to the carbonyl (11 and
14) the activity was essentially equipotent against Efa-CA, while
the phenyl derivative was more active against Efc-CA (Efa-CA Ki ¼
131.1 nM, Efc-CA Ki ¼ 94.8 nM). This activity difference between
isoforms was more pronounced with respect to the matched
molecular pair containing a two-methylene linker (20 and 21). In
this case, the phenyl-containing derivative was superior to the
cyclohexane against both EfCAs, with a 10-fold increase in activity
against Efa-CA with a Ki value of 6.4 nM and a 2-fold improvement
against Efc-CA with a Ki value of 148.4 nM. One takeaway from
this data is that an aromatic pendant group seems to be preferred
for Efc-CA activity, but only in some instances for Efa-CA activity.

Another general trend that was observed for EfCA activity
involves the polar pendant group in analogs 22225. Addition of
heteroatoms into the cycloalkane ring system were generally toler-
ated for Efa-CA with Ki values ranging from approximately
20�80 nM with the least potent being the N-methylpiperazine
analog 25 and most potent being the morpholine derivative 24.
However, this cohort consistently outperformed all other analogs
with respect to Efc-CA with Ki values ranging from 56�110 nM
suggesting a preference for polarity in the active site of Efc-CA.
Analog 24 was the most potent in this series against both Efa-CA
and Efc-CA with Ki values of 20.1 nM and 56.4 nM, respectively.

The final set of analogs were designed with targeted modifica-
tions to remove different atoms in the scaffold to determine their
essentiality for binding the EfCAs. In analogs 26228, the amide
carbonyl was removed, leaving three analogs with simply an
amine linkage. This resulted in a reduction of binding affinity by
more than 2- to 3-fold for both Efa-CA and Efc-CA across the set
when compared to the carbonyl-containing counterparts (AZM,
11, and 14, respectively). Modification of the thiadiazole central
ring to the thiazole by removing the nitrogen directly adjacent to
the sulphonamide in 29 resulted in a 6-fold reduction in binding
affinity against Efa-CA and a 3.5-fold reduction against Efc-CA,
indicating that this particular nitrogen is important for binding
against both isoforms. Modification of the central thiadiazole to
the benzenesulfonamide in 30 also resulted in reduction of bind-
ing and antimicrobial activity against both isoforms.

In general, modifications that improved activity against the Efa-
CA also improved activity against the human isoform hCA II (an
a-CA isoform), while improving selectivity over hCA I. For example,
the extension of the alkyl linker to two methylene units improved
hCA II activity but was detrimental to hCA I activity, while main-
taining potency against Efa-CA. Analog 21 with the phenyl moiety
was among the most potent against Efa-CA with the widest
selectivity window over hCA I of more than 100-fold. The data
also suggest the polar pendant groups were well tolerated among
all CAs tested with the morpholine derivative providing sub-56 nM
Ki values across all four CAs tested.

Another point to note is that no clear correlative trends were
observed between EfCA Ki values and MIC potency, at least when
considering the most potent antibacterial analogs 6, 7, and 20 as
these analogs (MIC values of 0.015, 0.015, and 0.007mg/mL,
respectively, full data set published by Kaur et al.11) generally
lagged behind the rest in terms of EfCA binding. Alternatively, for
the molecules that displayed significantly reduced antibacterial

1840 W. AN ET AL.



Table 1. Inhibition constants (Ki) against the a-EfCA, c-EfCA, hCAI and hCAII.

Cmpd Structures

Ki (nM)

Efa-CA Efc-CA hCA Ia hCA IIa
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O
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(continued)

Table 1. Continued.

Cmpd Structures

Ki (nM)

Efa-CA Efc-CA hCA Ia hCA IIa
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aKi data for analogs against hCA isoforms previously reported21.
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activity (26230) there were tangible reductions in EfCA activity
that could, at least in part, explain the reduced antibacterial activ-
ity. However, additional variables may confound the comparisons
between EfCA and antimicrobial activity such as permeability of
the molecules to reach the EfCA within the bacterial cell, differen-
tial essentiality between the two EfCAs for bacterial survival, or
the possibility of additional targets. At this point more information
is necessary to draw clear correlative conclusions about the rela-
tionship between EfCA inhibition and antibacterial activity.

3.2. MD simulation

MD simulations were performed in an attempt to elucidate bind-
ing interactions of particular analogs with Efa-CA that could
explain their observed inhibition constants. The data shown for
AZM and 20 was reported in previous work11. These MD simula-
tions were run using the GPU-accelerated Desmond (D. E. Shaw
Research) software package accessed through the Maestro inter-
face of the Schrodinger platform (software release 2021–2). The
MD simulation data further supported the experimental data that
the amide bond of the acetazolamide scaffold is crucial for ligand
binding to the Efa-CA active site. In Figure 1, the amide nitrogen
of AZM is shown to be forming a hydrogen bond with P181 dur-
ing 68% of simulation, whereas 26 lacks this hydrogen bond. This
could be due to the additional rotatable bond introduced in 26,
thereby increasing the flexibility of this analog. The primary inter-
action present in the simulation data for 26 was a hydrogen bond
formed between one sulphonamide oxygen and the T179 back-
bone present for 80% of the simulation time. Likewise, MD simula-
tion data suggested that the thiadiazole nitrogen nearest to the
sulphonamide moiety is necessary for ligand binding. When this
nitrogen is missing in 29, the thiadiazole core is flipped relative to
its position in AZM, and there is an overall lack of ligand interac-
tions with binding site residues which could explain the 7-fold
increase in Ki observed in the binding data for Efa-CA (Table 1).
The only interactions reported were water-mediated hydrogen
bonds which occurred less than 30% of the duration of
the simulation.

MD Simulations were also utilised to analyse the differences
in binding interactions between 20 and 21 to elaborate on the
10-fold difference in Ki observed in the binding assays (Table 1).

In Figure 2, the relative poses of 20 and 21 at convergence are
quite distinct despite only differing by the presence of aromaticity
in the end of the hydrophobic moiety. The MD simulation reports
revealed that the primary interaction observed for 20 was that of
a hydrogen bond formed between T180 and the amide oxygen
that occurred for 88% of the simulation. However, in the case of
21, this interaction was only present 20% of the time. Instead,
water molecules were present in the binding site, resulting in
water-mediated hydrogen bonds between the sulphonamide and
R216 as well as between the sulphonamide and E102 (not pic-
tured due to low prevalence at convergence), all of which were
observed for 24–47% of the duration of the simulation. A protein
RMSF analysis revealed that there was a much higher flexibility of
the T179 and T180 residues in the simulation of 21 (3.2 Å) com-
pared to the simulation of 20 (0.6 Å)11. As a result of this flexibility
and presence of water molecules, 21 was positioned nearer to
N125, forming a hydrogen bond between the residue and the
amide nitrogen of 21 for 44% of the MD simulation. Additionally,
the phenyl ring in 21 was angled towards W9 (not shown) form-
ing a hydrophobic interaction for 25% of the simulation duration,
an interaction not observed in 20. This could be due to increased
protein flexibility in the N-terminus for the 21 MD simulation
which was not observed in that of 20. Why the 21 MD simulation
suggested presence of water molecules in the binding site and
increased residue flexibility compared to 20 when the ligand
structures are highly similar remains unclear. The final observation
from the MD simulation is that the predicted pose for the hydro-
phobic tail containing 21 indicates that the thiadiazole hetero-
cycle is flipped in the active site by approximately 180� when
compared to AZM. This was consistent with our previous observa-
tion for the same alternative orientiation of the thiadiazole for
2013 indicating this may be a feature of this scaffold with the
hydrophobic tail extended.

4. Conclusion

This report documents pharmacological inhibition of both Efa-CA
and Efc-CA for the first time. The AZM-based thiadiazole CAIs pre-
viously reported as potent anti-VRE inhibitors were screened for
their ability to inhibit both Efa-CA and Efc-CA in the CO2 hydration
assay. It was observed that the scaffold was generally more potent

Figure 1. Ligand poses for AZM11, 26, and 29 were generated by MD simulation in the active site of the Efa-CA at convergences of 10 ns, 41 ns, and 63 ns, respect-
ively. Ligands, residues, and waters important for ligand interactions are shown as sticks. Polar hydrogens are shown for clarity of proposed hydrogen bond interactions
(yellow dashed lines). Homology model of Efa-CA (gray ribbons) was used as the model. Catalytic Zn2þ is shown as a dark blue sphere. (A) Generated pose for AZM
(green sticks) in the Efa-CA site11. (B) Generated pose for 26 (teal sticks) in the Efa-CA site. (C) Generated pose for 29 (olive sticks) in the Efa-CA site. Images were gen-
erated using PyMol.
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against the Efa-CA compared to the Efc-CA isoform. Increase of
alkyl branching up to a tertiary alkane was generally preferred for
inhibitors activity against Efa-CA. Linker length also played a role
in Efa-CA inhibition with the single-methylene linker being pre-
ferred over no-linker and the di-methylene linker when comparing
nearest neighbour analogs. Some SAR diverged for Efc-CA. For
example, the cycloalkane substituted analogs with no linker
between the carbonyl and ring were among the most potent of
the hydrophobic derivatives against this isoform. The polar pen-
dant groups displayed the best combination of potency and the
only analogs with consistent Ki values below 110 nM against both
EfCA isoforms. Finally, targeted modifications such as removal of
the carbonyl or alteration of the thiadiazole core had detrimental
effects on potency against both isoforms suggesting that these
moieties are beneficial for inhibition. Overall, there were no cor-
relative trends with regard to EfCA inhibition and improved anti-
bacterial potency towards VRE; however, molecules that exhibited
highly-reduced antimicrobial activity did display 2.5- to 6-fold
reduced EfCA inhibition compared to AZM. MD simulations further
supported the essentiality of particular scaffold elements such as
the amide oxygen and thiadiazole nitrogen adjacent to the sul-
phonamide by demonstrating an overall lack of direct binding
interactions of the Efa-CA homology model with analogs missing
these structural elememts. In summation, the data presented pro-
vides an initial assessment of SAR and the first reported inhibitory
activity against Efa-CA and Efc-CA.
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