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Background: Laryngeal squamous cell carcinoma (LSCC) is one of the world’s most
common head and neck cancer. However, the immune infiltration phenotypes of LSCC
have not been well investigated.

Methods: The multi-omics data of LSCCwere obtained from the TCGA (n=111) and GEO
(n=57) datasets. The infiltrations of the 24 immune cell populations were calculated using
the GSVA method. Then LSCC samples with different immune cell infiltrating patterns
were clustered, and the multi-omics differences were investigated.

Results: Patients were clustered into the high-infiltration and low-infiltration groups. The
infiltration scores of most immune cells were higher in the high-infiltration group. Patients
with high-infiltration phenotype have high N and TNM stages but better survival, as well as
less mutated COL11A1 and MUC17. Common targets of immunotherapies such as PD1,
PDL1, LAG3, and CTLA4 were significantly up-regulated in the high-infiltration group. The
differentially expressed genes were mainly enriched in several immune-related GOs and
KEGG pathways. Based on the genes, miRNAs, and lncRNAs differentially expressed in
both the TCGA and GEO cohorts, we built a ceRNA network, in which BTN3A1, CCR1,
miR-149-5p, and so on, located at the center. A predictive model was also constructed to
calculate a patient’s immune infiltration phenotype using 16 genes’ expression values,
showing excellent accuracy and specificity in the TCGA and GEO cohorts.

Conclusions: In this study, the immune infiltration phenotypes of LSCC and the
corresponding multi-omics differences were explored. Our model might be valuable to
predicting immunotherapy’s outcome.

Keywords: head and neck cancer, laryngeal, immunology, TCGA, immune infiltration
INTRODUCTION

As one of the most common head and neck cancers worldwide, laryngeal carcinoma accounts for
184,615 new cases and 99,840 deaths in 2020, of which >95% are laryngeal squamous cell
carcinomas (LSCC) (1). The early-stage LSCC patients have favorable treatment effects through
radical surgery or radiation (2, 3). However, nearly half of the patients present with advanced
org February 2022 | Volume 13 | Article 8434671
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disease at first diagnosis, for whom surgery combined radiation
and chemotherapy is the current standard treatment, facing the
challenge of effective local disease control and preservation of
laryngeal function (4, 5). The 5-year overall survival (OS) for
LSCC patients is approximately 63%, which changed little over
past years, without outstanding advancement in both diagnosis
and treatment (4).

At present, immunotherapy is becoming one of the most
promising modes for various tumors, including LSCC (6).
Immunotherapy, such as blocking the interaction between PD-
1 and its ligands, boosts immunity and greatly affects both
radiotherapy and chemotherapy for LSCC (6). The immune-
infiltration landscape may act as immunotherapeutic biomarkers
and potential therapeutic targets for LSCC, but it’s still not well
explored (7).

In the present study, we comprehensively analyzed the
immune infiltration phenotypes of LSCC and the correlated
clinical parameters. The molecular characteristics of different
infiltration phenotypes were also investigated and validated
using multi-omics data, including mutation, and the expression
of genes, miRNAs, and lncRNAs. We hope that our research will
help improve the understanding of the immune status and
provide new prospects for the immunotherapy of LSCC.
MATERIALS AND METHODS

Data Source and Processing
Log2(FPKM+1) gene expression RNA-seq data, somatic
mutation (MuTect2) data, copy number (gene-level) data, and
log2(RPM+1) miRNA mature strand expression RNA-seq Data,
of Head and Neck Cancer samples of The Cancer Genome Atlas
(TCGA), were downloaded from the UCSC Xena browser
(https://gdc.xenahubs.net) as well as the corresponding clinical
and survival information (8–10). The inclusion criteria for LSCC
patients in the TCGA database were the patients whose sites of
rection were larynx. Normal samples, recurrent tumor samples,
or paraffin-embedded samples were excluded. We have added
the inclusion and exclusion criteria in the method section as
suggested. RNA-Seq data of GSE127165 and miRNA-Seq data of
GSE133632 in the GEO database (https://www.ncbi.nlm.nih.gov/
gds/) were used as the validation cohorts, and the data were also
log2 conversed before being analyzed (11).

Calculation and Clustering of Immune
Cell Infiltration
As previously reported (12–14), the expression profile of 585
immune cell infiltration related genes was used to calculate the
infiltrations of the 24 immune cell populations based on the
Gene Set Variation Analysis (GSVA) method using R software
(version 4.0.5). A matrix containing the infiltration enrichment
scores ranging from -1 to 1 for each immune cell type in every
tumor sample was obtained. Then tumor samples with different
immune cell infiltrating patterns were clustered and grouped by
an unsupervised clustering method.
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Clinical and Survival Analyses
The clinical characteristics of the immune infiltration groups
were compared using t-test, Wilcoxon, and chi-square tests.
Kaplan-Meier method, log-rank test, univariate and
multivariate cox analyses were used to investigate the survival.
All the statistical analyses here were performed using R.

Comparison of Somatic Mutations, Copy
Number Variation, the Expression of
Genes, MiRNAs, and LncRNAs
Somatic mutations and copy number variation were analyzed
using the maftools of R. The threshold of p-value < 0.01 was
considered significant. Differentially expressed genes (DEGs),
miRNAs, and lncRNAs were identified in different immune
infiltration phenotypes using the package limma of R, with a
threshold of Log (fold change) > 0.5, p-value < 0.05, and adjusted
p-value < 0.05.

Functional Analyses of DEGs and
Constructions of CeRNA Network
Functional enrichment analyses of Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) were
performed with the clusterProfiler package of R, with a cutoff
of adjusted P < 0.01 and false discovery rate (FDR) < 0.05.
ceRNA network was built and visualized by Cytoscape (version
3.7.1) to further explore the relationship among DEGs, the
differentially expressed miRNAs and lncRNAs. The regulations
in the ceRNA network were predicted by miRwalk and miRcode.
Only the targets which were down-regulated when the miRNAs
were up-regulated were included and vice versa.

Construction of the Prediction Model
The LASSO regression was used in this study to select the
optimal set of genes to calculate to which immune infiltration
phenotype a patient belongs. Ten-fold cross-validation was
adopted using the glmnet package in R to determine the
optimal parameter l and the corresponding set of genes. Then
binary logistic regression was applied to construct the model
using the expression of selected genes. At the same time, the
ROC curve was used to determine the best cutoff value of the
model and calculate its accuracy and specificity.
RESULTS

Classification of the Immune Infiltration
Phenotypes of LSCC Patients in the
TCGA Database
A total of 111 LSCC patients in the TCGA head and neck cancer
cohort were enrolled in this study. Using the GSVA enrichment
method, the infiltration of each immunity cells in each patient
was calculated and then clustered into two different groups
(high-infiltration group, n = 61, and low-infiltration group, n =
50) (Figure 1A). The infiltration scores of 21/24 immune cells
were higher in the high-infiltration group than those in the low-
infiltration group (Figure 1B).
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The clinical characteristics were compared between the two
immune infiltration phenotypes. As shown in Table 1 and
Figure 1A, the N stage of the patients in the high-infiltration
group was significantly lower (p = 0.048) as well as the TNM
stage (p = 0.025), while there was no significant difference
between the two infiltration groups regarding race, sex, age,
grade, T stage, M stage, smoking or alcohol status. The 1-year,
3-year, and 5-year survival of patients with high-infiltration
phenotype were 87.7 ± 4.4%, 68.0 ± 6.7%, and 61.5 ± 7.5%,
respectively, significantly better than those of patients with low-
infiltration (85.2 ± 5.2%, 46.1 ± 8.2%, 41.0 ± 8.7%, respectively)
(p = 0.042) (Figure 1C).

Gene Mutations Associated With Immune
Infiltration Phenotypes of LSCC Patients in
the TCGA Database
One hundred and nine LSCC patients with gene mutation data
were included in this analysis. As Figure 2 shows, the gene
mutation status was quite different between patients with
different immune infiltration phenotypes. There was a median
of 120 and 161.5 mutations in each patient with a high-
infi l tration phenotype and a low-infi ltration group,
respectively. The most common DNA base mutation type was
C>T in the high-infiltration group, but it was C>A in the low
infiltration group (Supplementary Figure 1).
Frontiers in Immunology | www.frontiersin.org 3
The most commonly mutated genes in the high-infiltration
group were TP53 (85%), TTN (46%), CSMD3 (36%), KMT2D
(27%), and PCLO (27%), while in the low-infiltration group they
were TP53 (84%), TTN (64%), CSMD3 (38%), and MUC16
(34%). In the top 20 mutated genes of either group, COL11A1
(7% vs. 28%, p = 0.004), MUC17 (8% vs. 26%, p = 0.019),
FAM135B (12% vs. 30%, p = 0.030), and XIRP2 (10% vs.26%,
p = 0.042) were significantly less mutated in the high-infiltration
group (Figure 2 and Supplementary Table 1). These
differentially mutated genes might contribute to the distinct
immune infiltration phenotypes.

Differently Expressed Genes, MiRNAs, and
LncRNAs Analyses Between Different
Immune Infiltration Phenotypes of LSCC
Patients in the TCGA Database
DEGs between the high-infiltration and low-infiltration groups
were firstly investigated using the TCGA data and further
analyzed to identify the potential biological functions. As
Figure 3A shows, a total of 558 up-regulated and 82 down-
regulated DEGs were identified in the high-infiltration group
compared with the low-infiltration group. The top-3 up-
regulated genes with the lowest p-values were TNFRSF1B
(logFC = 1.33), ABI3 (logFC = 1.04), and SELPLG (logFC = 1.36)
(all p < 0.001), while the top-3 down-regulated genes were SNRPG
A

B C

FIGURE 1 | Immune infiltration status of the LSCC patients in the TCGA cohort. (A) Unsupervised clustering of 24 types of immune cells for 111 LSCC patients.
(B) Fraction of immune cells in LSCC patients with high-infiltration and low-infiltration phenotypes. *p < 0.05; **p < 0.01; ****p < 0.0001. (C) Survival analysis of
LSCC patients with high-infiltration and low-infiltration phenotypes.
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(logFC = -0.55), FKBP1B (logFC = -0.56), and STK26 (logFC =
-0.76) (all p < 0.001) (Figure 3A). Meanwhile, four targets of
immunotherapies, PDCD1 (PD1), CD274 (PD-L1), LAG3, and
CTLA4, were all significantly ug-regulated in patients with high
immune infiltration phenotype, indiciting those patients might be
more suitable for immunotherapy (Figure 3B).

The results of GO and KEGG analyses showed that the DEGs
were significantly enriched in immune-related gene ontologies
and pathways (Figure 3C), indicating the huge divergence
between the two immune phenotypes.

Meanwhile, seven ug-regulated and nine down-regulated
miRNAs were identified, including miR-150-5p (logFC = 1.21),
miR-146a-5p (logFC = 0.80), miR-18a-5p (logFC = -0.77) and
miR-96-5p (logFC = -0.83) (all p < 0.001) (Figure 3D). One
hundred and eighty-three up-regulated and nine down-regulated
lncRNAs were also identified, including TRBC2 (logFC = 1.57),
Frontiers in Immunology | www.frontiersin.org 4
TRAC (logFC = 1.56), RP11-174G6.1 (logFC = -0.50), and
DANCR (logFC = -0.69) (all p < 0.001) (Figure 3E).

Validation of Differently Expressed Genes,
MiRNAs, and LncRNAs Using GEO Data
We searched the GEO database and chose GSE127165 and
GSE133632, RNA-Seq and miRNA-Seq data of the same 57
LSCC patients, the largest cohort in the GEO database, as the
validation cohort. There is a lack of clinical, survival, or gene
mutation information in the GEO dataset. Therefore,
unfortunately, we couldn’t validate the results of clinical,
survival, and gene mutation analyses in the GEO data.

The57patientswere also clustered intohigh-infiltration (n=35)
and low-infiltration (n = 22) groups (Figure 4A). The infiltration
scores of most immune cells were higher in the high-infiltration
group than those in the low-infiltration group, consistent with the
TABLE 1 | Clinical characteristics of patients with different immune infiltration phenotypes.

Characteristics Total High-Infiltration Low-Infiltration p value

No. 111 (100%) 61 (55.0%) 50 (45.0%)
Race 0.645
White 86 (77.5%) 46 (75.4%) 40 (80.0%)
Black 19 (17.1%) 12 (19.7%) 7 (14.0%)
Others 6 (5.4%) 3 (4.9%) 3 (6.0%)
Sex
Male 92 (82.9%) 51 (83.6%) 41 (82.0%) 0.823
Female 19 (17.1%) 10 (16.4%) 9 (18.0%)
Age (years old) 61.8 ± 9.3 61.6 ± 8.4 62.1 ± 10.2 0.750
Grade 0.840
G1 8 (7.2%) 5 (8.2%) 3 (6.0%)
G2 70 (63.1%) 37 (60.7%) 33 (66.0%)
G3 29 (26.1%) 17 (27.9%) 12 (24.0%)
Gx 4 (3.6%) 2 (3.3%) 2 (4.0%)
Stage 0.025
I 3 (2.7%) 1 (1.6%) 2 (4.0%)
II 11 (9.9%) 3 (4.9%) 8 (16.0%)
III 26 (23.4%) 13 (21.3%) 13 (26.0%)
IV 67 (60.4%) 42 (68.9%) 25 (50.0%)
Unknown 4 (3.6%) 2 (3.3%) 2 (4.0%)
T stage 0.204
T1 3 (2.7%) 1 (1.6%) 2 (4.0%)
T2 17 (15.3%) 7 (11.5%) 10 (20.0%)
T3 35 (31.5%) 20 (32.8%) 15 (30.0%)
T4 52 (46.8%) 31 (50.8%) 21 (42.0%)
Tx 4 (3.6%) 2 (3.3%) 2 (4.0%)
N stage 0.048
N0 55 (49.5%) 25 (41%) 30 (60.0%)
N1 18 (16.2%) 12 (19.7%) 6 (12.0%)
N2 29 (26.1%) 19 (31.1%) 10 (20.0%)
N3 3 (2.7%) 2 (3.3%) 1 (2.0%)
Nx 6 (5.4%) 3 (4.9%) 3 (6.0%)
M stage 1.000
M0 104 (93.7%) 58 (95.1%) 46 (92.0%)
M1 2 (1.8%) 1 (1.6%) 1 (2.0%)
Mx 5 (4.5%) 2 (3.3%) 3 (6.0%)
Smoking Status 0.855
No 17 (15.3%) 10 (16.4%) 7 (14.0%)
Yes 91 (82.0%) 49 (80.3%) 42 (84.0%)
Unknown 3 (2.7%) 2 (3.3%) 1 (2.0%)
Alcohol Status 0.851
No 39 (35.1%) 21 (34.4%) 18 (36.0%)
Yes 70 (63.1%) 39 (63.9%) 31 (62.0%)
Unknown 2 (1.8%) 1 (1.6%) 1 (2.0%)
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A B

FIGURE 2 | Mutation status of LSCC patients with different immune-infiltration phenotypes in the TCGA cohort. (A) Patients with high-infiltration phenotype.
(B) Patients with low-infiltration phenotype. NA, Not Available.
A

C

D E

B

FIGURE 3 | Immune infiltration status, differentially expressed genes, miRNAs, and lncRNAs of LSCC patients with different immune-infiltration phenotypes in the
TCGA cohort. (A) Volcano plot and heatmap of DEGs. (B) Expression of common targets of immune therapies. ****p < 0.0001. (C) GO and KEGG analyses of DEGs.
(D) Volcano plot and heatmap of differentially expressed miRNAs. (E) Volcano plot and heatmap of differentially expressed lncRNAs.
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results of the TCGAanalyses (Figure 4B). AsFigure 4B shows, 309
up-regulated DEGs and 43 down-regulated DEGs were indetified,
including IL10RA (logFC = 1.06), NCKAP1L (logFC = 0.57),
STAB1 (logFC = 1.00), NUSAP1 (logFC = -0.52), DEPDC1
(logFC = -0.55), and CENPF (logFC = -0.76) (all p < 0.001)
(Figure 4C). The expression of PDCD1, LAG3, and CTLA4 were
significantly raised in high-infiltration group, too (Figure 4D). The
DEGswere also siginicantly enriched in lots of immue-related gene
ontologies and pathways (Supplementary Figure 2), quite similar
as the GO and KEGG results of the TCGA data.

Six up-regulated miRNAs, including miR-150-5p (logFC =
1.68), miR-146a-5p (logFC = 0.94), and miR-148a-3p (logFC =
0.92), as well as 108 down-regulated miRNAs, including miR-
2277-5p (logFC = -1.33), miR-301a-5p (logFC= -1.36), and miR-
454-5p (logFC = -0.88) (all p < 0.001) were identified
(Figure 4E). Meanwhile, 21 up-regulated lncRNAs and 12
down-regulated lncRNAs, including RN7SL116P (logFC =
1.11), RP11-284N8.3 (logFC = 1.00), GABPB1-AS1
(logFC = -0.65), and RP11-443B20.1 (logFC = -0.52) (all p <
0.001) were significantly differentially expressed between the two
immune infiltration phenotypes (Figure 4F).
Frontiers in Immunology | www.frontiersin.org 6
The intersections of differentially expressed genes, miRNAs,
and lncRNAs obtained from the TCGA and GEO data were
analyzed. As Supplementary Figures 3A, B shows, 202 genes
(197 up-regulated and five down-regulated) and eight miRNAs
(two up-regulated and six down-regulated) were differentially
expressed both in the TCGA and GEO data, accounting for a
large part of obtained DEGs and differentially expressed
miRNAs, which demonstrates that the classification of immune
infiltration phenotypes in our study is reasonable and universal.
However, there was only one lncRNA, AL928768.3, differentially
expressed in both two data cohorts (Supplementary Figure 3C),
possibly due to the low and unstable expression of lncRNAs.

Construction of CeRNA Network
To investigate the regulatory network associated with immune
infiltration phenotypes in LSCC patients, we constructed a
ceRNA network using the genes, miRNAs, and lncRNAs those
differentially expressed both in the TCGA and the GEO data
(Figure 5 and Supplementary Table 2). In this net, miR-149-5p
regulated 28 DEGs while miR-17-5p, miR-18a-5p regulated 17
and 16 DEGs, respectively. Seven DEGs (BTN3A1, CCR1,
A B

C

E F

D

FIGURE 4 | Differentially expressed genes, miRNAs, and lncRNAs of LSCC patients with different immune-infiltration phenotypes in the GEO cohort. (A) Unsupervised
clustering of 24 types of immune cells for 57 LSCC patients. (B) Fraction of immune cells in LSCC patients with high-infiltration and low-infiltration phenotypes. *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001. (C) Volcano plot and heatmap of DEGs. (D) Expression of common targets of immune therapies. **p < 0.01; ****p < 0.0001.
(E) Volcano plot and heatmap of differentially expressed miRNAs. (F) Volcano plot and heatmap of differentially expressed lncRNAs.
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CYBA, IRF1, LAIR1, MPEG1, and MS4A6A) were regulated by
three miRNAs together.

Construction of a Gene Expression
Model to Predict the Immune
Infiltration Phenotypes
In the above, we used GSVA and cluster analysis to determine
the immune infiltration subtypes of the patients. However, this
method is not suitable for analyzing the expression data of only
one patient or quite a few patients because cluster analysis cannot
be properly done at that time. To solve this problem, we
constructed a predictive model using LASSO and binary
logistic regression based on the expression of a set of genes to
calculate which immune infiltration phenotype a patient
belongs to.

Genes differentially expressed both in the TCGA and GEO
cohorts were included in the LASSO analysis. The TCGA data
were used as the training cohort while the GEO data were the
validation cohort. Sixteen DEGs were selected in the logistic
regression when lambda.min was chosen as the optimal
parameter l in the LASSO analysis (Figures 6A, B). Finally, a
model was constructed as follows.

Score = −9:11 + (1 ∗ IRF4) + ( − 0:49 ∗ SPN) + (5:4 ∗GIMAP1) + (0:03 ∗MZB1)

+(0:4 ∗ `HLA − DQA2 ` ) + ( − 0:41 ∗CIITA) + (0:32 ∗ SAA1) + (0:64 ∗NKG7)
+(0:54 ∗ LTB) + (0:46 ∗ LYZ) + (1:26 ∗ `HLA − DMB ` ) + (0:84 ∗AIF1)+

( − 1:23 ∗GSTA4) + ( − 0:19 ∗OTOP3) + ( − 1:27 ∗OTX1) + ( − 0:63 ∗ SLC35G1)
Frontiers in Immunology | www.frontiersin.org 7
Here the expression value of each gene in this score is log2
(FPKM+1). Most of these genes were significantly correlated
with survival (Supplementary Figure 4). Based on the ROC
curve, the best cutoff value of the score was 0.541, with a 96.3%
accuracy, 93.3% specificity, and 0.983 AUC (Figure 6C). When
the gene expression data of an LSCC sample is substituted into
the above formula, and the calculation result is less than 0.541, it
indicates that the patient belongs to the high-infiltration
phenotype. Otherwise, he belongs to the low-infiltration group.

We calculated the score’s performance in the GEO cohort,
and found it also had an excellent performance with a 91.0%
accuracy and 97.1% specificity, which demonstrated the
universal usability of this score.
DISCUSSION

The immune infiltration phenotypes of LSCC have not been well
analyzed before. In this study, we calculated the infiltration of
each immunity cells in each LSCC patient of the TCGA database,
and clustered the patients into high-infiltration and low-
infiltration groups. Then we analyzed the differentially mutated
genes, investigated and validated the differentially expressed
genes, miRNAs, and lncRNAs between two immune
infiltration groups. We also constructed a ceRNA network to
explore the different molecular regulations and a predictive
expression signature to determine a patient’s immune
FIGURE 5 | ceRNA network of genes, miRNAs, and lncRNAs differentially expressed both in the TCGA and GEO cohorts.
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infiltration phenotype. The immune infiltration phenotype
revealed in our study may act as immunotherapeutic
biomarkers and potential therapeutic targets for LSCC.

Several studies have reported that the infiltration of specific
immune cells correlated with the prognosis of LSCC. Both
Chatzopoulos et al. (15) and Spector et al. (16) found the
favorable prognostic impact of higher tumor-infiltrating
lymphocytes in patients with LSCC. Spector et al. (16) also
reported that low CD4 levels were associated with worse
survival in the patients with chemoradiation more than those
with surgery. Mann et al. (17) reported that high tumor CD103+

TIL content was associated with significantly improved survival
in recurrent/persistent LSCC. Our study found significantly
different enrichment statuses among immune cells such as
CD8+ T cells and NK cells, which have been shown to
enhance anti-tumor immunity and resulted in better survival
in cancer patients (18).

We analyzed the differences in the mutation status between
patients with high and low immune infiltration phenotypes, and
found that COL11A1 and MUC17 were much more frequently
mutated in the high-infiltration group. COL11A1 encodes a
chain of type XI collagen, which locates in the extracellular
matrix, and is up-regulated in various cancers (19). Song et al.
(20) reported that COL11A1 more frequently mutated in head
and neck cancer patients with high immunity, consistent with
our results. Wu et al. (21) found that COL11A1 activated cancer-
associated fibroblasts by modulating TGF-b3 through the NF-
kB/IGFBP2 axis. As a membrane-bound mucin, MUC17 is
instrumental in the trafficking and anchoring of receptor
proteins and organizing signaling complexes at cellular
membranes (22). However, the mutations of these genes have
not been well investigated in LSCC, their roles in immune-
infiltration still need to be further explored.

Immunotherapy is now developing rapidly and widely used in
treating LSCC in combination with surgery, radiotherapy, and
chemotherapy (23–26). Our results found that common targets
of immunotherapies, such as PD1, PDL1, and CTAL-4, were all
significantly up-regulated in patients with high-infiltration
phenotype, suggesting that those patients might be more
Frontiers in Immunology | www.frontiersin.org 8
suitable to be immunotherapy. miR-149-5p, miR-17-5p, and
miR-18a-5p were significantly down-regulated in the high-
infiltration group, and acted as the hubs in the ceRNA network
in our study. They are rarely studied in LSCC. Only Wang et al.
(27) reported that miR-17-5p promoted proliferation and
attenuated apoptosis via targeting PIK3R1 in LSCC, perhaps
accounting for the poorer survival of the low-infiltration group
in our study. The lncRNA, AL928768.3, up-regulated in the
high-infiltration group both in the TCGA and GEO cohorts, its
function in tumors is still not reported until now.

Finally, using LASSO regression, we constructed a model to
calculate the immune infiltration phenotype of a patient based on
the expression values of 16 genes. The LASSO regression method
uses a penalty function to get a more refined regression model
and reduce the overfitting, which is now widely used in genetic
prediction (28, 29). Our model showed excellent accuracy and
specificity in both the TCGA and GEO cohorts, suggesting it can
be effectively used to classify the immune infiltration phenotypes
of patients with LSCC and possibly predict the outcome
of immunotherapy.

There are several limitations in our study. First, there are no
public expression data of LSCC patients who received
immunotherapy, so we can not validate our findings in
patients who received immunotherapy. Meanwhile, it is worth
noting that our model was only validated in 57 patients, with a
relatively small number of samples and a lack of clinical
validation. If the sample size in the validation cohort were
larger, the results would be more convinced. We hope our
results can be validated in larger cohorts in the future.
CONCLUSIONS

In this study, we depicted the immune infiltration phenotypes of
LSCC, and systemically analyzed the multi-omics differences
between high-infiltration and low-infiltration groups. We also
constructed an expression-based model to calculate a patient’s
immune infiltration phenotype, which might be valuable to
predicting immunotherapy’s outcome.
A B C

FIGURE 6 | Construction of gene expression model to predict the immune infiltration phenotypes. (A) Coefficient profiles of variables in the LASSO regression
model. (B) Tenfold cross-validation for turning parameter (l) selection in the LASSO Cox regression model. (C) ROC curve of the model in the TCGA cohort.
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