
����������
�������

Citation: Bai, Q.; Wang, M.; Xia, C.;

See, D.R.; Chen, X. Identification of

Secreted Protein Gene-Based SNP

Markers Associated with Virulence

Phenotypes of Puccinia striiformis f.

sp. tritici, the Wheat Stripe Rust

Pathogen. Int. J. Mol. Sci. 2022, 23,

4114. https://doi.org/10.3390/

ijms23084114

Academic Editors: Akira Ishihama

and Franklin W. N. Chow

Received: 5 March 2022

Accepted: 7 April 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Identification of Secreted Protein Gene-Based SNP Markers
Associated with Virulence Phenotypes of Puccinia striiformis f.
sp. tritici, the Wheat Stripe Rust Pathogen
Qing Bai 1 , Meinan Wang 1, Chongjing Xia 1,2 , Deven R. See 1,3 and Xianming Chen 1,3,*

1 Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA;
qing.bai@wsu.edu (Q.B.); meinan_wang@wsu.edu (M.W.); chongjing.xia@wsu.edu (C.X.);
deven.see@usda.gov (D.R.S.)

2 Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and
Technology, Mianyang 621010, China

3 U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research
Unit, Pullman, WA 99164-6430, USA

* Correspondence: xianming.chen@usda.gov; Tel.: +1-509-335-8086

Abstract: Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a destructive disease that occurs
throughout the major wheat-growing regions of the world. This pathogen is highly variable due to
the capacity of virulent races to undergo rapid changes in order to circumvent resistance in wheat
cultivars and genotypes and to adapt to different environments. Intensive efforts have been made to
study the genetics of wheat resistance to this disease; however, no known avirulence genes have been
molecularly identified in Pst so far. To identify molecular markers for avirulence genes, a Pst panel
of 157 selected isolates representing 126 races with diverse virulence spectra was genotyped using
209 secreted protein gene-based single nucleotide polymorphism (SP-SNP) markers via association
analysis. Nineteen SP-SNP markers were identified for significant associations with 12 avirulence
genes: AvYr1, AvYr6, AvYr7, AvYr9, AvYr10, AvYr24, AvYr27, AvYr32, AvYr43, AvYr44, AvYrSP, and
AvYr76. Some SP-SNPs were associated with two or more avirulence genes. These results further
confirmed that association analysis in combination with SP-SNP markers is a powerful tool for
identifying markers for avirulence genes. This study provides genomic resources for further studies
on the cloning of avirulence genes, understanding the mechanisms of host–pathogen interactions,
and developing functional markers for tagging specific virulence genes and race groups.

Keywords: correlation coefficient; Puccinia striiformis f. sp. tritici; secreted protein gene; SNP markers;
wheat stripe rust; virulence

1. Introduction

Stripe rust (yellow rust), caused by Puccinia striiformis Westend. f. sp. tritici Erikss.
(Pst), is a destructive disease that occurs throughout the major wheat-growing regions of
the world [1–5]. This obligate biotrophic fungal pathogen is highly variable due to the
capacity of virulent races to undergo rapid changes in order to circumvent resistance in
wheat cultivars and genotypes and to adapt to different environments [1,3,6–12]. In our
group, more than 320 virulent races have been identified with Pst collections from the
U.S. since the 1960s and ten other countries from 2007 to 2020 [13–16]. Furthermore, some
new molecular groups specific to one or more countries have been identified through
the analysis of population structure and differentiation, and these currently small groups
have the potential to threaten wheat production in other countries [17]. Therefore, it is
important to study virulence and genotype changes and the molecular mechanisms behind
the rapid changes.

To investigate Pst race evolution, researchers have used a combination of the classical
theory and modern sequencing technology. Since the gene-for-gene recognition between

Int. J. Mol. Sci. 2022, 23, 4114. https://doi.org/10.3390/ijms23084114 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23084114
https://doi.org/10.3390/ijms23084114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3505-4426
https://orcid.org/0000-0002-4865-7920
https://doi.org/10.3390/ijms23084114
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23084114?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 4114 2 of 17

host resistance and pathogen avirulence genes was phenotypically demonstrated by Flor
in the middle 20th century [18], research on identification and function demonstration
of avirulence (Avr) genes has been conducted in rust pathogens [19–21]. In the flax rust
fungus Melampsora lini, the avirulence gene AvrL567 was first molecularly characterized
through genetic mapping along with a cosegregating cDNA probe [20,21]. In recent years, a
combination of different technologies, including genetic mapping and genomic approaches,
has become popular for studying Avr genes in rust fungi. Using this approach, high-density
genetic maps were constructed for poplar rust fungus (Melampsora larici-populina) [22]
and Pst [23,24]. In Xia et al. (2020), the QTL analysis of a sexual population mapped
six Avr genes in three linkage groups and identified a genomic cluster at a single contig
containing four Avr genes (AvYr7, AvYr43, AvYr44, and AvYrEpx2) [23].

Correlation analysis between genetic variations and virulence/avirulence phenotypes
has been used to study host–pathogen interactions [25,26]. In rust fungi, highly expressed
secreted protein (SP) genes have been demonstrated to include some proteins with impor-
tant pathogenicity functions [19]. The SP gene-derived SNP markers (SP-SNP) have been
used to study population structures and to tag specific virulence genes. In our group, Xia
et al. (2016) attempted to identify Avr candidate genes in Pst and indicated that association
analysis of genetic variations (SP-SNPs) and virulence/avirulence phenotypes can be used
to identify markers for Avr genes. Xia et al. (2017) further took advantage of comparative
genomics and correlation analysis and identified more than 900 Pst-specific SP genes and
73 Avr candidate genes. In a most recent study, 62 additional avirulence candidate genes
significantly associated with 16 avirulence genes were identified by means of a comparison
of the genomic variations in 30 mutant isolates derived from ethyl methanesulfonate (EMS)
mutagenesis with respect to their progenitor isolate [27,28]. In addition, some virulence
factors have also been reported in Pst, such as PstSCR1 activating immunity in non-host
plants [29], Pst_8713 involved in enhancing Pst virulence [30], and Pst18363 as an important
pathogenicity factor in Pst [31]. However, no known Avr genes have been identified in Pst
so far.

In our group, we have utilized SNPs from sequence data to distinguish different
P. striiformis isolates [32], develop SNP markers for SP genes [33], and use them for charac-
terizing populations, constructing linkage maps, studying virulence, and determining mech-
anisms for variations [24,27,33–35]. Xia et al. (2017) identified more than 900 Pst-specific
SP genes and we designed hundreds of primers based on the SP genes. Therefore, the
objectives of the present study were to (1) develop more SNP markers using genomic
sequencies of Pst SP genes, (2) further characterize the U.S. and international Pst isolates
using the new SP-SNP markers, and (3) identify SP-SNPs associated with avirulence genes.

2. Results
2.1. Distribution of Avirulence/Virulence Phenotypes

The infection type (IT) data of the selected 157 Pst isolates are provided in Table S1
and the distribution of avirulence and virulence phenotypes determined for the 18 Yr
single-gene lines are shown in Figure 1. Of the 18 Yr gene lines, 2 (Yr5 and Yr15) had only
the avirulence phenotype, and thus the identification of markers for virulence in these
two resistance genes was not possible. Therefore, these genes were excluded from further
analyses. The remaining 16 Yr genes had the less frequent phenotype, all above the 0.05
frequency value, and therefore they were suitable for association analysis.

2.2. SP-SNP Markers

After eliminating SP-SNP markers with a minor allele frequency (MAF) <5% and a
missing rate >50%, 209 SP-SNPs were retained for subsequent analyses (Table S2). The MAF
of the 209 SP-SNPs based on the 157 isolates ranged from 0.05 to 0.50 with a mean of 0.33.
The results indicated that the 209 markers were suitable for genotyping Pst isolates.
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Figure 1. Violin plot showing distributions of infection type (IT) for 157 Puccinia striiformis f. sp. tritici
isolates scored on 18 wheat lines with single Yr genes. Solid dots show medians. The numbers of
isolates and the frequency values of the two phenotypic classes (avirulent and virulent) are given
below the Yr genes.

2.3. Population Structure

Principal component analysis (PCA) conducted using the GAPIT program indicated
that, using the 209 SP-SNP markers, the 157 Pst isolates were optimally separated into three
groups (Figure 2A), and PC1 and PC2 explained 19.23% and 7.65%, respectively (Figure 2B).
The first two PCs separated the isolates into three molecular groups (MGs). The detailed
relationships among the isolates with the country of origin for each of the three MGs are
shown in Figure 3. The first group (MG1) was the most diverse, containing the isolates
from all countries except Canada. The second group (MG2) was the smallest and was
closely related to MG1, containing isolates mainly from Ecuador (80%). Mostly distinct
from MG1 and MG2, the third group (MG3) contained isolates from China and countries in
North America (the U.S., Canada, and Mexico) and South America (Ecuador). The Efficient
Mixed Model Association (EMMA) algorithm was used to establish a kinship matrix and a
heat map of values in the kinship matrix showed three groups (Figure S1). These different
analyses consistently revealed three molecular groups, and the structures were considered
in the following association analysis.

To compare the clusters of the 157 Pst isolates in the present study with our previous
studies, in which more isolates were genotyped using 14 SSR markers [17,36], another
phylogenetic tree with the same 157 Pst isolates based on the 14 SSR markers was generated
(Figure S2). The clusters in the phylogenetic tree based on the SSR markers (Figure S2)
had both similarities and differences with the phylogenetic tree based on the 209 SP-SNP
markers (Figure 3). There were three main molecular groups based on both SSR and SP-SNP
markers, while the differences were the clustering of the isolates in each group. Most of the
isolates in the first group (MG1) based on the SSR markers were also clustered in the MG1
based on the 209 SP-SNP markers. The second group (MG2) based on the SSR markers
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contained two subgroups: one subgroup (indicated by the red arrow) contained the isolates
that were clustered in the largest group (MG1) based on the 209 SP-SNP markers; the second
subgroup (indicated by the black arrow) contained the isolates mainly from Ecuador (9
out of 13 isolates), which was similar to the second group (MG2) based on the 209 SP-SNP
markers. The third group (MG3) based on the SSR markers was most distinct from MG1
and MG2 and was similar to the MG3 in the phylogenetic tree based on the 209 SP-SNP
markers. Another similarity between the two phylogenetic trees with respect to MG3 was
that they both contained most of the Chinese isolates, including 11 of the 12 isolates based
on the SSR markers and 8 of the 12 isolates based on the SP-SNP markers. The correlation
coefficient of the distance similarity matrices constructed by the two sets of markers was
0.878 (p < 0.01). Overall, the high similarity of the clusters based on the SP-SNP and the SSR
markers confirmed the population structure and the effectiveness of the SP-SNP markers
used in the population genetic analysis.
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Figure 2. Principal component (PC) analysis of 157 Puccinia striiformis f. sp. tritici isolates using 209
SP-SNP markers. (A) The optimal K value (indicated by the black arrow) for determining the number
of clusters based on the curve of Bayesian information criterion (BIC) values versus the number
of clusters assessed with 209 SP-SNP markers. (B) Plot of the second principal component (PC2)
against the first principal component (PC1) showing the three molecular groups. Each dot represents
an isolate.

2.4. SP-SNPs Significantly Associated with Avirulent Genes

The analysis of a mixed linear model with PCA and kinship identified 19 SP-SNP
markers significantly associated with 12 avirulence genes (corresponding to 12 Yr genes) as
having p-values < 0.01 (Table 1). One marker each was found for AvYr7, AvYr10, AvYr32,
AvYr76, and AvYrSP; two markers each for AvYr6, AvYr24, and AvYr43; three markers for
AvYr44; and four markers each for AvYr1, AvYr9, and AvYr27. The detailed information
on the supercontig and position, p-value for the association, MAF, percentage of variation
explained (PVE), and alleles of nucleotides for each of the markers is presented in Table 1.
Of the 19 SP genes, 8 were predicted to be effectors (Table S3). The QQ and Manhattan
plots for each of the marker–avirulence gene associations are shown in Figure 4. The QQ
plot shows the deviation of the observed p-values from the null hypothesis that the SP-SNP
is not associated with the avirulence gene. Markers along the diagonal line were not
associated, while those away from the diagonal line were associated with the avirulence
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gene. The Manhattan plot shows the significant p-values above the threshold (p < 0.01,
−log10(p) > 2) associated with the avirulence gene. Some of the SP-SNPs were significantly
associated with two or more avirulence genes; for example, marker SP.SNP.SC.120.10252
was associated with AvYr10, AvYr24, and AvYr32 (Table 1, Figure 4). The 19 markers
associated with 12 avirulence genes resulted in 27 significant marker–avirulence gene
associations. The association of a single marker with multiple avirulence genes was
likely due to the correlation of the phenotypic data of the avirulence genes. To test the
hypothesis, correlation coefficients of the virulence phenotypes for different avirulence
genes were estimated, and the results are presented in Figure 5. The correlation coefficients
between most pairs of the avirulence genes were relatively low or moderate. However, high
correlations were observed between AvYr10 and AvYr32 (r = 0.88, p < 0.001), between
AvYr24 and AvYr32 (r = 0.81, p < 0.001), and between AvYr10 and AvYr24 (r = 0.77, p < 0.001).
The PVE values of the 19 SP-SNP markers were low to moderate, ranging from 0.06 to 0.21,
but all were significant (p < 0.01) (Table 1).
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Figure 3. Dendrogram of Puccinia striiformis f. sp. tritici isolates from nine countries constructed
based on dissimilarities assessed with 209 secreted protein gene-based SNP (SP-SNP) markers using
hierarchical cluster analysis, showing three molecular groups (MGs) and the isolate numbers from
different countries within each MG.

Table 1. SP-SNPs associated with avirulence genes in Puccinia striiformis f. sp. tritici.

Avirulence
Gene a SNP ID Supercontig b Position in

Supercontig b p-Value MAF c PVE d Allele e Protein ID b

AvYr1 SP.SNP.SC.21.152447 21 152447 0.002144 0.38 0.15 C/G PSTG_04155
SP.SNP.SC.252.30471 252 30471 0.005105 0.11 0.14 G/T PSTG_16039
SP.SNP.SC.23.155650 23 15565 0.008536 0.42 0.13 T/G PSTG_04466
SP.SNP.SC.220.72190 220 7219 0.008644 0.45 0.13 A/G PSTG_15512

AvYr6 SP.SNP.SC.21.152447 21 152447 0.000586 0.38 0.12 C/G PSTG_04155
SP.SNP.SC.126.136707 126 136707 0.001405 0.05 0.11 T/C PSTG_12716
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Table 1. Cont.

Avirulence
Gene a SNP ID Supercontig b Position in

Supercontig b p-Value MAF c PVE d Allele e Protein ID b

AvYr7 SP.SNP.SC.240.28476 240 28476 0.003675 0.49 0.06 G/A PSTG_15854
SP.SNP.SC.126.136707 126 136707 0.001405 0.05 0.11 T/C PSTG_12716

AvYr9 SP.SNP.SC.21.152447 21 152447 0.000865 0.38 0.14 C/G PSTG_04155
SP.SNP.SC.241.57435 241 57435 0.006845 0.49 0.12 T/G PSTG_15874
SP.SNP.SC.17.271382 17 271382 0.009011 0.40 0.11 A/T PSTG_03500
SP.SNP.SC.233.95127 233 95127 0.009733 0.48 0.11 A/G PSTG_15751

AvYr10 SP.SNP.SC.120.10252 120 10252 0.004658 0.25 0.07 C/T PSTG_12413
AvYr24 SP.SNP.SC.120.10252 120 10252 0.000932 0.25 0.11 C/T PSTG_12413

SP.SNP.SC.214.8618 214 8618 0.003183 0.24 0.09 T/C PSTG_15361
AvYr27 SP.SNP.SC.187.104441 187 104441 0.002582 0.10 0.10 A/C PSTG_14812

SP.SNP.SC.221.30654 221 30654 0.00544 0.37 0.09 A/T PSTG_15517
SP.SNP.SC.12.929747 12 929747 0.007666 0.33 0.09 G/A PSTG_02640
SP.SNP.SC.21.152447 21 152447 0.008759 0.38 0.09 C/G PSTG_04155

AvYr32 SP.SNP.SC.120.10252 120 10252 0.001166 0.25 0.09 C/T PSTG_12413
AvYr43 SP.SNP.SC.14.299197 14 299197 0.002819 0.08 0.10 C/T PSTG_02897

SP.SNP.SC.203.51320 203 5132 0.007604 0.31 0.08 T/G PSTG_15141
AvYr44 SP.SNP.SC.117.206340 117 20634 0.001316 0.44 0.08 A/G PSTG_12281

SP.SNP.SC.221.30654 221 30654 0.00191 0.37 0.07 A/T PSTG_15517
SP.SNP.SC.14.299197 14 299197 0.003847 0.08 0.06 C/T PSTG_02897

AvYr76 SP.SNP.SC.220.75744 220 75744 0.004842 0.46 0.17 A/T PSTG_15513
AvYrSP SP.SNP.SC.121.147828 121 147828 0.00136 0.44 0.21 C/A PSTG_12496

a Avirulence genes (AvYr) correspond to wheat Yr resistance genes. b Supercontig, position, and protein ID of
the SP-SNP markers according to the reference genome PST-78 in the BROAD Institute Puccinia database (http:
//www.broadinstitute.org/, accessed on 24 November 2021). c MAF = minor allele frequency. d PVE = phenotypic
variance explained by the significantly associated markers. e For each SP-SNP marker, the first allele was the
major allele and the second allele was the minor allele.

2.5. Accuracy and Sensitivity for Detecting Avirulence/Virulence Genes

The accuracies for the detections of avirulence/virulence ranged from 50.39% in the
test of the marker SP.SNP.SC.187.104441 with the avirulence gene AvYr27 to 94.90% in
the test of the marker SP.SNP.SC.120.10252 with the avirulence gene AvYr32 (Table S4).
The higher accuracy indicated that the SP-SNP markers could be used to differentiate more
accurately between virulent alleles and avirulent alleles. The sensitivities of all the tests
were all higher than 90% except for that for the marker SP.SNP.SC.241.57435 (78%) with the
avirulence gene AvYr9. A marker with a higher sensitivity should provide a higher rate of
correct predictions of virulent or avirulent phenotypes.

http://www.broadinstitute.org/
http://www.broadinstitute.org/
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Figure 4. QQ plots and Manhattan plots of SP-SNP markers significantly associated with 12 avirulence
(Av) genes. In the QQ plots, the X-axis represents the genomic position of SP-SNPs in the supercontigs
of the PST-78 reference genome, and along the Y-axis are the−log10 transformed significance p-values.
The red dashed lines represent the Bonferroni-corrected threshold −log10 (p) of 2.0. In the Manhattan
plots, each dot represents a SP-SNP locus, and its genomic position is referred to the supercontig of
the PST-78 reference genome. The SP-SNPs of same color are in the same supercontig.
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  SP.SNP.SC.23.155650  23  15565  0.008536  0.42  0.13  T/G  PSTG_04466 
  SP.SNP.SC.220.72190  220  7219  0.008644  0.45  0.13  A/G  PSTG_15512 

AvYr6  SP.SNP.SC.21.152447  21  152447  0.000586  0.38  0.12  C/G  PSTG_04155 
  SP.SNP.SC.126.136707  126  136707  0.001405  0.05  0.11  T/C  PSTG_12716 

AvYr7  SP.SNP.SC.240.28476  240  28476  0.003675  0.49  0.06  G/A  PSTG_15854 

  SP.SNP.SC.126.136707  126  136707  0.001405  0.05  0.11  T/C  PSTG_12716 

AvYr9  SP.SNP.SC.21.152447  21  152447  0.000865  0.38  0.14  C/G  PSTG_04155 
  SP.SNP.SC.241.57435  241  57435  0.006845  0.49  0.12  T/G  PSTG_15874 
  SP.SNP.SC.17.271382  17  271382  0.009011  0.40  0.11  A/T  PSTG_03500 
  SP.SNP.SC.233.95127  233  95127  0.009733  0.48  0.11  A/G  PSTG_15751 

AvYr10  SP.SNP.SC.120.10252  120  10252  0.004658  0.25  0.07  C/T  PSTG_12413 

AvYr24  SP.SNP.SC.120.10252  120  10252  0.000932  0.25  0.11  C/T  PSTG_12413 
  SP.SNP.SC.214.8618  214  8618  0.003183  0.24  0.09  T/C  PSTG_15361 

AvYr27  SP.SNP.SC.187.104441  187  104441  0.002582  0.10  0.10  A/C  PSTG_14812 
  SP.SNP.SC.221.30654  221  30654  0.00544  0.37  0.09  A/T  PSTG_15517 
  SP.SNP.SC.12.929747  12  929747  0.007666  0.33  0.09  G/A  PSTG_02640 
  SP.SNP.SC.21.152447  21  152447  0.008759  0.38  0.09  C/G  PSTG_04155 

AvYr32  SP.SNP.SC.120.10252  120  10252  0.001166  0.25  0.09  C/T  PSTG_12413 

Figure 5. Correlation coefficients between 18 avirulence/virulence loci of Puccinia striiformis f. sp.
tritici (A). The avirulence genes were symbolized as AvYr1, AvYr5, and so on, corresponding to their
resistance Yr genes Yr1, Yr5, and so on. The correlations with coefficient values > 0.60 (p < 0.001) are
listed in (B).

3. Discussion

The results of the present study confirmed that association analysis can be a powerful
tool for identifying molecular markers associated with Pst avirulence genes, especially
when the markers are developed from polymorphic SP-SNPs, as first reported by Xia et al.
(2016). Different from the previous study that utilized non-selected isolates from two years
and only from the U.S., the present study used 157 isolates selected from nine countries over
an eight-year period. These isolates were identified as 126 races using 18 Yr single-gene
lines, thus representing diverse avirulence/virulence profiles. The 157 isolates were also
previously identified as 157 multi-locus genotypes (MLGs) using 14 simple sequence repeat
(SSR) markers, representing major molecular groups [17,36]. The highly diverse isolates
should be more suitable for association analysis for identifying markers associated with
avirulence genes. From the 209 SP-SNP markers used to genotype the 157 isolates, we found
27 significant (p < 0.01) marker–trait associations involving 12 AvYr genes and 19 SP-SNP
loci (Table 1). The number of avirulence genes with associated markers is relatively high
compared with previous association analysis studies [23,35,37] and this can be attributed
to the large number of SP-SNPs and the selected isolates that have relatively balanced
virulence/avirulence ratios. Similar to previous studies, we also found that some markers
were associated with different avirulence genes, suggesting that these avirulence genes are
located in a gene cluster [23,24,35]. For example, the SP-SNP marker SP.SNP.SC.120.10252
was significantly associated with AvYr10, AvYr24, and AvYr32, which is supported by the
phenotypic correlations between these avirulence genes [38,39].

In the present study, we identified SP-SNP markers for 12 of the 18 avirulence genes
corresponding to the 18 Yr single genes in the differentials but did not find markers for
the remaining 6 genes. As none of the Pst isolates were virulent to either Yr5 or Yr15, it
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was not possible to identify markers for their corresponding avirulence genes. However, it
was possible to find markers for AvYr8, AvYr17, AvYrTr1, and AvYrExp2, as the 157 isolates
showed relatively balanced virulence/avirulence ratios (Figure 1). Failing to identify
markers for these genes may be due to the limitation of the 209 SP-SNPs used in the
present study, which do not cover the entire genome. Secondly, only SP-SNPs showing
co-dominant polymorphisms among the 14 whole-genome sequenced isolates used in the
previous study [37] were used to design primers for SP-SNP markers. Avirulence/virulence
alleles that have presence/absence or indel polymorphisms likely escaped from the test
with these markers.

Among the 12 avirulence genes with associated SP-SNP markers, 7 had two or more
markers in different supercontigs. The supercontigs were assigned based on the PST-78
reference genome, the best available at that time [37]. Some of the supercontigs may be
linked but some of them may be far away. Further annotation of these SP-SNPs is needed
to determine their genomic and molecular relationships. The genomic relationships of the
markers associated with the same avirulence gene could be improved by annotation using
the high-quality genomes recently established [40–42]. Nevertheless, different supercontig
markers for a single avirulence gene may indicate that the avirulence phenotype is con-
trolled by different genes in different genomic regions. Two-gene controlled virulence was
demonstrated by genetic analysis of sexually produced Pst populations [23,24].

In an association study, individuals should be distinct [43]. However, as a predom-
inantly asexually reproduced fungal pathogen, population structures of Pst have been
reported in previous studies [17,36,44,45]. In a structured population, individuals with
differences in allele frequencies between sub-populations due to ancestries which are unre-
lated to the trait of interest can cause false-positive associations in association studies [43].
To address this problem, PC analysis, which can effectively determine population structure,
was used in the present study prior to the association analysis. However, PC analysis
only accounts for fixed effects of genetic ancestry and does not account for relatedness
between individuals. Therefore, the mixed-model approach, which utilizes both fixed
effects (candidate SNPs and fixed covariates) and random effects (the genotypic covariance
matrix) involving kinship and cryptic relatedness, was used in the further association
analysis. In addition, false-positive associations might also be caused by statistical fluc-
tuations governed by chance in multiple-hypothesis testing [46]. To control statistical
fluctuations, various statistical approaches have been proposed, including Bonferroni cor-
rection and estimation of the false detection rate (FDR), which are two common correction
methods [47,48]. In the present study, Bonferroni correction was applied for the suggestive
threshold p-value (p = 1/Ne), where Ne represents the effective number of SNP markers [49];
therefore, p = 1/Ne = 1/209 = 0.0047≈0.01 was chosen (-log10 (0.01) = 2) as the threshold
for significance in the association analysis. Besides these two approaches, replicating
genotype–phenotype associations in larger and independent populations is another way of
establishing the credibility of genome-wide association studies (GWAS) [50]. Therefore, in
future studies, we will genotype a large number of Pst isolates with the SP-SNPs identi-
fied in the present study to confirm the associations and also genotype the isolates using
additional SP-SNPs to identify more markers.

By using the SP-SNP markers, the Pst isolates in the present study were clustered
into molecular groups similar to those in our previous studies, in which more isolates
were genotyped using the set of 14 SSR markers [17,36]. For example, isolates EC15-
039, EC15-019, EC15-022, EC15-26, EC15-27, EC15-30, and EC16-019, which were from
Ecuador, were separated into a molecular group different from the groups of other isolates
in the present study, consistent with the results of our previous study. However, the
SP-SNP markers significantly associated with avirulence genes can provide information
for virulence evolution and may be used to tag virulence genes [33,35,37]. Every year,
we establish more than 300 isolates from stripe rust collections throughout the U.S. and
phenotype them for virulence/avirulence profiles [14,15,39]. Genotyping the isolates with
the SP-SNPs may confirm the avirulence-associated SP-SNPs identified in the present study
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and previous studies [33,35,37], which may lead to the identification and cloning of the
avirulence genes.

All SP-SNP markers used in the present study were developed based on the SP genes
characterized by Xia et al. (2017) through analyzing the whole-genome sequences of 14 Pst
isolates [37]. All SP genes were annotated for identification of polymorphic SNPs and pre-
dicted for effectors using the EffectorP program. In the present study, among the 19 SP-SNP
markers significantly associated with Avr genes, 8 were predicted as Pst effectors with
high confidence (Table 1), indicating their possible involvement in interactions with host
plants [37]. However, most of the SP genes were predicted to encode hypothetical proteins
(Table S3), while only a few were annotated as being involved in different biological pro-
cesses. None of them is known to be involved in pathogenicity. One SP gene, PSTG_15874,
which was significantly correlated with avirulence to Yr9, has a high homology with a
phosphatidylinositol/phosphatidylglycerol transfer protein (PG/PI-TP) gene. The PG/PI-
TP proteins belong to the ML (MD-2-related lipid-recognition) domain family and have
been shown to bind phosphatidylglycerol and phosphatidylinositol, but the biological
significance of these proteins is still not clear [51].

For association analysis, high resolution mapping depends on the number of markers
as well as on linkage disequilibrium (LD) decay [46,48,52]. LD is the nonrandom association
of alleles at different loci that plays a central role in association analysis [48]. Therefore, for
establishing the credibility of the association analysis, the LD decay of the Pst genome
also should be estimated [35]. Xia et al. (2020) has developed a high-quality map for Pst
comprising 41 lineage groups, which will enable us to identify Avr candidates in narrow
genome regions and study their functions [31]. In the present study, even though we
identified more SP-SNP markers than the previous study [35], we were still unable to
estimate LD decay because of unknown physical distances between them. Moreover, due to
budgetary and time limitations, we only tried the primers of the first 390 of the more than
900 SP genes and used 209 successful markers in the present study. For future studies, we
will use the remaining SP genes. Alternately, we can genome-sequence and RNA-sequence
the isolates used in the present study to identify avirulence genes involved in interactions
with the Yr genes.

The accuracy and sensitivity of these SP-SNP markers for detecting the associated
avirulence/virulence genes should provide more information for the subsequent use of
these markers in monitoring individual virulence factors and race changes in the pathogen
population. The higher the accuracy and sensitivity of the markers, the more useful the
markers are for predicting the virulence phenotype. For example, high accuracies were
found in the tests of the same marker SP.SNP.SC.120.10252 associated with the avirulence
genes AvYr10 (92.86%), AvYr24 (92.86%), and AvYr32 (94.90%), as the majority of isolates are
avirulent to the corresponding Yr genes. However, caution should be taken when using the
markers. Further testing of the markers for the opposite alleles for the virulence phenotypes
needs more isolates virulent to these Yr genes, which may take years to accumulate as
virulence frequencies for these genes have been low in the past several decades [13–16,39].

The present study aimed to identify additional SP-SNP markers associated with
avirulence genes from the sequences of SP genes. Virulence-associated markers can be
used to monitor virulence and race changes in the pathogen population. However, the
Ion Protein sequencing approach used in the present study for identifying SNPs is not
efficient for routine tests for monitoring virulence changes. To overcome this drawback,
SNP markers can be converted to Kompetitive Allele Specific PCR (KASP) markers, which
should be used for efficiently monitoring Pst populations. The SP-SNP markers identified
in the present study, together with the other nearly 100 SP-SNP markers associated with
Pst virulence in previous studies [27,31,35,37,44], will be converted to KASP markers for
further confirmation of the association of the SP-SNP markers with their avirulence genes
and also for establishing a set of virulence-related markers for monitoring changes in both
virulence and molecular genotypes in the Pst population. Compared to SNP genotyping,
KASP markers are relatively cheap and easy to use, as demonstrated in our program for
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stripe rust resistance genes in wheat [53–57]. The present study provides genomic resources
for further marker development and research on host–pathogen interactions, as well as
pathogen population dynamics.

4. Materials and Methods
4.1. Isolate Selection

A total of 157 Pst isolates used in the present study were selected based on races and
MLGs from Pst collections from the U.S. and eight other countries assembled in the period
2010-2020 [13,17,36]. These isolates had different MLGs and represented 126 races (Table 2).

Table 2. Numbers of the Puccinia striiformis f. sp. tritici isolates and races from nine countries in
2010–2018 used in this study.

Country No. of Isolates Year Races a

Canada 2 2017 PSTv-37, PSTv-14

China 12 2016 PSTv-225, PSTv-229, PSTv-230, PSTv-231, PSTv-250, PSTv-259,
PSTv-267, PSTv-270, PSTv-274, PSTv-277, PSTv-278, PSTv-280

Ecuador 13 2015/2016
PSTv-20, PSTv-106, PSTv-221, PSTv-285, PSTv-286, PSTv-287,
PSTv-289, PSTv-294, PSTv-298, PSTv-303, PSTv-305,
PSTv-306, PSTv-327

Egypt 2 2018 PSTv-120, PSTv-15

Ethiopia 11 2014 PSTv-41, PSTv-47, PSTv-76, PSTv-105, PSTv-106, PSTv-107,
PSTv-110, PSTv-116

Italy 18 2014/2016/2017
PSTv-121, PSTv-125, PSTv-127, PSTv-129, PSTv-130, PSTv-131,
PSTv-132, PSTv-133, PSTv-134, PSTv-135, PSTv-136, PSTv-137,
PSTv-192, PSTv-232, PSTv-295, PSTv-317, PSTv-320

Mexico 8 2015/2016 PSTv-53, PSTv-78, PSTv-109, PSTv-198, PSTv-252, PSTv-292,
PSTv-296, PSTv-307

Pakistan 4 2012 PSTv-11, New, PSTv-37, New

USA 87
2010/2011/2012/
2013/2014/2015/
2016/2017

PSTv-1, PSTv-2, PSTv-3, PSTv-4, PSTv-6, PSTv-7, PSTv-8, PSTv-11,
PSTv-14, PSTv-15, PSTv-16, PSTv-17, PSTv-18, PSTv-19, PSTv-20,
PSTv-22, PSTv-23, PSTv-24, PSTv-25, PSTv-27, PSTv-28, PSTv-29,
PSTv-31, PSTv-32, PSTv-33, PSTv-34, PSTv-35, PSTv-37, PSTv-39,
PSTv-40, PSTv-41, PSTv-42, PSTv-43, PSTv-44, PSTv-45, PSTv-46,
PSTv-47, PSTv-48, PSTv-52, PSTv-53, PSTv-64, PSTv-65, PSTv-67,
PSTv-71, PSTv-72, PSTv-73, PSTv-74, PSTv-75, PSTv-76, PSTv-77,
PSTv-78, PSTv-79, PSTv-101, PSTv-109, PSTv-120, PSTv-121,
PSTv-122, PSTv-123, PSTv-144, PSTv-175, PSTv-198, PSTv-201,
PSTv-214, PSTv-221, PSTv-239, PSTv-284, PSTv-293,
PSTv-321, PSTv-322

a The races were identified using the 18 Yr single-gene lines as differentials [13–15,39].

4.2. Virulence Data

The Pst isolates were tested for their avirulence/virulence patterns using the 18 Yr
single-gene lines, and the virulence data have been reported previously [13–15,39]. The avir-
ulence or virulence of isolates on a particular Yr resistance gene line was represented by an
infection type (IT), which was scored using a 0-to-9 scale, with 0 as the most avirulent and
9 as the most virulent [58]. For the association analysis in the present study, the phenotype
of an isolate for a particular Yr gene was defined as avirulent when IT was 0–6 and virulent
when IT was 7–9 [14]. To reduce phenotypic variation within avirulent and virulent classes,
isolates with ITs 0–2 for avirulent reactions and with ITs 7–9 for virulent reactions were
selected, and thus intermediate ITs (3–6) were mostly avoided (Figure 1, Table S1). The 18
resistance genes were Yr1, Yr5, Yr6, Yr7, Yr8, Yr9, Yr10, Yr15, Yr17, Yr24, Yr27, Yr32,
Yr43, Yr44, YrExp2, YrSP, YrTr1, and Yr76. Their corresponding avirulence genes were
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symbolized as AvYr1, AvYr5, and so on. Generally, the selected 157 isolates represented a
relatively balanced virulent–avirulent profile for the majority of the Yr genes.

4.3. DNA Extraction

DNA extraction from urediniospores of the Pst isolates was described in our previous
study [36]. The concentration of the DNA stock solution was determined using a ND-1000
spectrophotometer (Bio-Rad, Hercules, CA, USA), and the quality was checked in a 0.8%
agarose gel. A work solution of 0.5 ng µL−1 was made from the stock solution by adding
sterile deionized water for use as a DNA template in polymerase chain reaction (PCR).

4.4. Development of SP-SNP Markers

The genomic sequences of Pst-specific SP genes containing SNPs among 14 whole-
genome sequenced Pst isolates [37] identified using the IGV software (https://igv.org/app,
accessed on 27 September 2020) were used to develop SP-SNP markers. The SP-SNP
primers were designed using the Sequenom MassArray Assay Design 4.0 software (Se-
quenom, San Diego, CA, USA). The primers were modified by adding barcodes and specific
sequences compatible with the Ion Torrent Proton System (LifeTechnologies, Carlsbad,
CA, USA). The locus-specific forward primers for the first round of PCR were tailed with
an M13-derived sequence (GATGTAAAACGACGGCCAGTG) at the 5′-end to enable the
addition of barcoded adapters during the second round of PCR. The Ion truncated P1
adapter sequence (CCTCTCTATGGGCAGTCGGTGAT) was concatenated to the 5′-end of
the locus-specific reverse primers (Table S5). For the second round of PCR, the forward
fusion primer consisted of, from 5′ to 3′, the standard Ion A adapter sequence (CCATCT-
CATCCCTGCGTGTCTCCGACTCAG), a unique barcode with 10–12 nucleotides, followed
by the M13 tail sequence (Table S5). A combination of different barcodes with the M13 tail
proved the flexibility required to multiplex the same set of markers in different samples.
The reverse primer for the second round of PCR was the Ion truncated P1 adapter sequence.

4.5. Isolate Genotyping

Prior to sequencing, library construction, sample purification, size selection, and quan-
tification were conducted using the standard procedures [59–61]. The library construction
included two steps of PCR. In the first step of PCR, each reaction (10 µL) contained 1.0 µL
of McLab 10× Taq PCR buffer (McLab, San Francisco, CA, USA), 0.45 µL of 25 mM MgCl2,
1 µL 5 mM dNTP, 1 µL of 125 nM primer pool, 0.2 µL 5 U/µL McLab HoTaq polymerase
(McLab), 2 µL of 0.5 ng/µL DNA (total 1 ng), and 4.35 µL sterile ddH2O. The amplification
cycles and conditions were 94 ◦C for 1 min for initial denaturation; 35 cycles of 94 ◦C for
20 s, 56 ◦C for 2 min, and 68 ◦C for 30 s; and 3 min of final extension at 72 ◦C. The first-step
PCR products were diluted at 1:1 with ddH2O into a 96-well plate for the second step of
PCR. In the second step of PCR, each reaction (6 µL) contained 0.5 µL of McLab 10× Taq
PCR buffer, 0.2 µL of 25 mM MgCl2, 0.025 µL 100 mM dNTP, 0.2 µL P1 reverse primer,
0.2 µL 5 U/µL McLab HoTaq polymerase, 2 µL of diluted PCR products from the first-step
PCR, 0.875 µL sterile ddH2O, and 2 µL of 2 µM barcoded adapters 289–384 and 385–480.
The amplification cycles and conditions were 94 ◦C for 1 min for initial denaturation; 15 cy-
cles of 94 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 1 min; and 3 min of final extension at
72 ◦C.

The second-step PCR products were cleaned using a QIAquick PCR Purification
kit (Qiagen, Hilden, Germany). The size selection of the libraries was first performed
on a 4% E-Gel SizeSelect Gel (Life Technologies, Carlsbad, CA, USA) and then on a
2% E-Gel1 SizeSelect™ Gel (LifeTechnologies) to select PCR fragments from 140 bp to
250 bp. Purified libraries were quantified using a Qubit1 dsDNA HS assay kit (LifeTech-
nologies), diluted to the appropriate concentration as recommended by LifeTechnologies
(minimum 80 pmol/L) and a size distribution between 185 bp to 260 bp. The diluted
sample libraries were prepared for sequencing using an Ion Torrent Proton NGS platform
(Life Technologies).

https://igv.org/app
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4.6. Data Analyses

The IT distribution and density of isolates on the 18 Yr single-gene differentials were
determined using the vioplot package in the R program 4.1.1. The genotypic data from
an initial set of 390 SP-SNP markers were subjected for quality control by excluding
the markers with >50% missing data and a minor allele frequency (MAF) less than 0.05.
The filtered set of 209 SP-SNP markers was finally retained, and the remaining missing
data were imputed using the Genome Association and Prediction Integrated Tool (GAPIT)
in the R program 4.1.1.

Prior to the association analysis, principal component analysis (PCA) was performed to
determine the optimal genetic clusters within GAPIT [62,63] to reduce false positives caused
by population structures. However, PCA only accounts for fixed effects of genetic ancestry
and does not account for relatedness between individuals. Therefore, a mixed-model
approach [62], which used both fixed effects (candidate SNPs and fixed covariates) and
random effects (the genotypic covariance matrix) involving kinship and cryptic relatedness,
was used in the association analysis. The VanRaden method [64] was used to estimate the
relationships among isolates by computing a kinship matrix.

To further confirm the clusters of genetically related isolates based on both the 209
SP-SNP markers used in the present study and also to compare the clusters with the
154 isolates using the 14 SSR markers in the previous study [17,36], a hierarchical cluster
analysis was conducted using the dissimilarity values and the “ward.D2” method with the
“hclust” function in the R stats 4.1.1 program [65].

Associations between SP-SNPs and the 18 virulence/avirulence traits of the Pst isolates were
analyzed in the program GAPIT, using the commands “myGAPIT <- GAPIT (Y = myY, G = myG,
PCA.total = “ ”, kinship.cluster = c(“ward.D2”), kinship.group = c(“Mean”), model = “MLM”,
multiple_analysis = TRUE, NJtree.group = “ ”, and Geno.View.output = FALSE, file.output = T)”.
The markers were identified as significant if the p-value was equal to or less than 0.01 and
−log10 (p) equal to or greater than 2 after Bonferroni correction [66]. The Manhattan
plots were drawn using the ‘CMplot’ package in the R program 4.1.1. The correlation
relationships among the 18 virulence phenotypic traits were estimated using the ‘heatmap2’
package in the R program 4.1.1.

To determine how reliable the SP-SNP markers identified from the association analysis
for detecting the avirulence/virulence phenotypes were, accuracies and sensitivities cou-
pled with their 95% confidence intervals were calculated [67]. For this analysis, accuracy
was measured as the proportion of correct predictions among all the predictions and sensi-
tivity was measured as the proportion of predictions correctly identified by the test, these
values showing how good the test was for detecting the avirulence or virulence phenotypes.
If isolates had the avirulence genotype and the marker allele for avirulence or vice versa,
the predictions of the phenotypes of the isolates by the marker were considered correct
predictions (CPs). If the isolates had unmatched marker alleles and phenotypes, the marker
predictions of phenotypes were considered incorrect predictions (ICPs). Accuracy = (Num-
ber of correct predictions)/(Number of all predictions). Sensitivity = (Number of correct
predictions that are correctly identified by the test)/(Number of all correct predictions).

5. Conclusions

In this study, we identified 19 SP-SNP markers significantly associated with 12 avir-
ulence genes: AvYr1, AvYr6, AvYr7, AvYr9, AvYr10, AvYr24, AvYr27, AvYr32, AvYr43,
AvYr44, AvYrSP, and AvYr76. Some SP-SNP markers were significantly associated with two
or more avirulence genes, suggesting that these avirulence loci are located in an avirulence
gene cluster, consistent with our previous studies. The present study further confirmed
that association analysis in combination with SP-SNP markers is powerful when it comes
to identifying markers for avirulence genes. The virulence-related SP-SNP markers in the
present study, as well as other SP-SNP markers identified in our previous study, should
be useful in developing a set of virulence-related markers for monitoring changes in viru-
lence and genotypes in Pst populations. The genomic resources developed in the present
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study can be used for further research on host–pathogen interactions as well as pathogen
population dynamics.
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