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Abstract 

Dynamics is a crucial link between sequence and function for intrinsically disordered 

proteins (IDPs). NMR spin relaxation is a powerful technique for characterizing the sequence-

dependent backbone dynamics of IDPs. Of particular interest is the 15N transverse relaxation 

rate (!!), which reports on slower dynamics (10s of ns up to 1 µs and beyond). NMR and 

molecular dynamics (MD) simulations have shown that local interactions and secondary 

structure formation slow down backbone dynamics and raise !!. Elevated !! has been 

suggested to be indicators of propensities of membrane association, liquid-liquid phase 

separation, and other functional processes. Here we present a sequence-based method, 

SeqDYN, for predicting !! of IDPs. The !! value of a residue is expressed as the product of 

contributing factors from all residues, which attenuate with increasing sequence distance from 

the central residue. The mathematical model has 21 parameters, representing the correlation 

length (where the attenuation is at 50%) and the amplitudes of the contributing factors of the 

20 types of amino acids. Training on a set of 45 IDPs reveals a correlation length of 5.6 

residues, aromatic and long branched aliphatic amino acids and Arg as !! promotors whereas 

Gly and short polar amino acids as !! suppressors. The prediction accuracy of SeqDYN is 

competitive against that of recent MD simulations using IDP-specific force fields. For a 

structured protein, SeqDYN prediction represents !! in the unfolded state. SeqDYN is 

available as a web server at https://zhougroup-uic.github.io/SeqDYNidp/ for rapid !! 

prediction. 

 

Keywords: intrinsically disordered proteins; NMR spin relaxation; transverse relaxation rate; 

backbone dynamics; !! prediction 
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Significance Statement 

How the sequences of intrinsically disordered proteins (IDPs) code for functions is still an 

enigma. Dynamics, in particular residue-specific dynamics, holds crucial clues. Enormous 

efforts have been spent to characterize residue-specific dynamics of IDPs, mainly through 

NMR spin relaxation experiments. Here we present a sequence-based method, SeqDYN, for 

predicting residue-specific backbone dynamics of IDPs. SeqDYN employs a mathematical 

model with 21 parameters and is trained on 45 IDPs. It provides not only rapid, accurate 

prediction but also insightful physical interpretation of sequence-dependent IDP dynamics. 
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Introduction 

Intrinsically disordered proteins (IDPs) or regions (IDRs) do not have the luxury of a three-

dimensional structure to help decipher the relationship between sequence and function. 

Instead, dynamics has emerged as a crucial link between sequence and function for IDPs (1). 

NMR spin relaxation is a uniquely powerful technique for characterizing IDP dynamics, 

capable of yielding residue-specific information (2). Backbone 15N relaxation experiments 

typically yield three parameters per residue: transverse relaxation rate (!!), longitudinal 

relaxation rate (!"), and steady-state heteronuclear Overhauser enhancement (NOE). While 

all the three parameters depend on ps-ns dynamics, !! is the one most affected by slower 

dynamics (10s of ns to 1 µs and beyond). An increase in either the timescale or the amplitude 

of slower dynamics results in higher !!. For IDPs, !! is also the parameter that exhibits the 

strongest dependence on sequence (1, 2). 

!! was noted early on as an important indicator of residual structure in the unfolded 

state of the structured protein lysozyme (3). This property has since been measured for many 

IDPs to provide insight into various biophysical processes. Just as the residual structure in the 

unfolded state biases the folding pathway of lysozyme (3), a nascent a-helix in the free state 

of Sendai virus nucleoprotein C-terminal domain (Sev-NT), as indicated by highly elevated 

!! (4), biases the coupled binding and folding pathway in the presence of its target 

phosphoprotein (5). Local secondary structure preformation also facilitates the binding of yes-

associated protein (YAP) with its target transcription factor (6). Likewise a correlation has 

been found between !! in the free state and the membrane binding propensity of 

synaptobrevin-2: residues with elevated !! have increased propensity for membrane binding 

(7). !! in the free state has also been used to uncover factors that promote liquid-liquid phase 

separation of IDPs. For example, a nascent a-helix (shown by elevated !!) is important for 

the phase separation of TDP-43 low-complexity domain, as both the deletion of the helical 

region and a helix-breaking mutation (Ala to Pro) abrogates phase separation (8). Similarly, 

nascent a-helices in the free state of cytosolic abundant heat-soluble 8 (CAHS-8), upon 
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raising concentration and lowering temperature stabilize to form the core of fibrous gels (9). 

For hnRNPA1 low-complexity domain (A1-LCD), aromatic residues giving rise to local 

peaks in !! also mediate phase separation (10). 

Both NMR relaxation data and molecular dynamics (MD) simulations have revealed 

determinants of !! for IDPs. It has been noted that the flexible Gly has a tendency to lower 

!! whereas secondary structure and contact formation tend to raise !! (11). This conclusion 

agrees well with recent MD simulations (1, 12-14). These MD studies, using IDP-specific 

force fields, are able to predict !! in quantitative agreement with NMR measurements, 

without ad hoc reweighting as done in earlier studies. According to MD, most contact clusters 

are formed by local sequences, within blocks of up to a dozen or so residues (1, 12, 13). 

Tertiary contacts can also form but are relatively rare; as such their accurate capture requires 

extremely extensive sampling and still poses a challenge for MD simulations. Opposite to 

Gly, aromatic residues have been noted as mediators of contact clusters (3, 10). 

Schwalbe et al. (15) introduced a mathematical model to describe the !! profile along 

the sequence for lysozyme in the unfolded state. The !! value of a given residue was 

expressed as the sum of contributions from this residues and its neighbors. This model yields 

a mostly flat profile across the sequence, except for falloff at the termini, resulting an overall 

bell shape. Klein-Seetharaman et al. (3) then fit peaks above this flat profile as a sum of 

Gaussians. Cho et al. (16) proposed bulkiness as a qualitative indicator of backbone 

dynamics. Recently Sekiyama et al. (17) calculated !! as the geometric mean of “indices of 

local dynamics”; the latter were parameterized by fitting to the measured !! for a single IDP. 

All these models merely describe the !! profile of a given IDP, and none of them is 

predictive. 

Here we present a method, SeqDYN, for predicting !! of IDPs. Using a mathematical 

model introduced by Li et al. (18) to predict propensities for binding nanoparticles and also 

adapted for predicting propensities for binding membranes (19), we express the !! value of a 

residue as the product of contributing factors from all residues. The contributing factor 
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attenuates as the neighboring residue becomes more distant from the central residue. The 

model, after training on a set of 45 IDPs, has prediction accuracy that is competitive against 

that of the recent MD simulations using IDP-specific force fields  (1, 12-14). For lysozyme, 

the SeqDYN prediction agrees remarkably well with !! measured in the unfolded state. 

 

Results 

The data set of IDPs with R2 rates 

We collected R2 data for a total of 54 nonhomologous IDPs or IDRs (Table S1; Fig. S1). 

According to indicators from NMR properties, including low or negative NOEs, narrow 

dispersion in backbone amide proton chemical shifts, and small secondary chemical shifts 

(SCSs), most of the proteins are disordered with at most transient a-helices. A few are 

partially folded, including Sev-NT with a well-populated (~80%) long helix (residues 478-

491) (20), CREB-binding protein fourth intrinsically disordered linker (CBP-ID4) with > 50% 

propensities for two long helices (residues 2-25 and 101-128) (21), HOX transcription factor 

DFD (HOX-DFD) with a well-folded domain comprising three helices (22), and Hahellin 

(apo form) as a molten globule (23). In Fig. 1, we display representative conformations of five 

IDPs, ranging from fully disordered MAPK kinase 4 (MKK4) (24) and a-synuclein (25) to 

Measles virus phosphoprotein N-terminal domain (Mev-PNTD) (26) with transient short helices 

to Sev-NT and CBP-ID4 with stable long helices. The sequences of all the IDPs are listed in 

Table S2. 

We used 45 of the 54 IDPs to train and validate SeqDYN and reserved the remaining 9 

for testing. The sequence lengths of the training set range from 39 to 406 residues, with an 

average of 125.3 residues. Altogether !! data are available for 3966 residues. A large 

majority (35 out of 45) of the 45 IDPs have mean !! values (!"!, calculated among all the 

residues in a protein) between 2.5 and 5.5 s–1 (Table S1 and Fig. 2A). This !"! range is much 

lower than that of structured proteins with similar sequence lengths. The low !"! values and 
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lack of dependence on sequence length (Fig. S2A) suggest that !! of the IDPs is mostly 

dictated by local sequence as opposed to tertiary interaction. 

The most often used temperature for acquiring the !! data was 298 K, but low 

temperatures (277 to 280 K) were used in a few cases (Table S1 and Fig. S2B). Of the seven 

IDPs with !"! > 6.4 s–1, four can be attributed to low temperatures (27-30), one is due to a 

relatively low temperature (283 K) as well as the presence of glycerol (20% v/v) (31), and two 

can be explained by tertiary structure formation [a folded domain (22) or molten globule 

(23)]. A simple reason for higher !! values at lower temperatures is the higher water 

viscosity, resulting in slowdown in molecular tumbling; a similar effect is achieved by adding 

glycerol. In some cases, !! was measured at both low and room temperatures (4, 10). To a 

good approximation, the effect of lowering temperature is a uniform scaling of !! across the 

IDP sequence. For Sev-NT, downscaling of the !! values at 278 K by a factor of 2.0 brings 

them into close agreement with those at 298 K (Fig. S2C), with a root-mean-square-deviation 

(RMSD) of 0.5 s–1 among all the residues. Likewise, for A1-LCD, downscaling by a factor of 

2.4 brings the !! values at 288 K into good match with those at 298 K (Fig. S2D), with an 

RMSD of 0.4 s–1. Because SeqDYN is concerned with the sequence dependence of !!, a 

uniform scaling has no effect on model parameter or prediction; therefore mixing the data 

from different temperatures is justified. The same can be said about the different magnetic 

fields in acquiring the !! data (Table S1 and Fig. S2E). Increasing the magnetic field raises 

!! values, and the effect is also approximated well by a uniform scaling (4, 8, 29). 

One measure on the level of sequence dependence of !! is the standard deviation, ##!, 

calculated among the residues of an IDP. Among the training set, the !! values of 30 IDPs 

have moderate sequence variations, with ##! ranging from 0.5 to 1.5 s–1 (Table S1); the 

histogram of ##! calculated for the entire training set peaks around 0.75 s–1 (Fig. 2A). There is 

a moderate correlation between ##! and !"! (Fig. 2A, inset), reflecting in part the fact that ##! 

can be raised simply by a uniform upscaling, e.g., as a result of lowering temperature. Still, 

only two of the five IDPs with high !"! attributable to lower temperature or presence of 
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glycerol are among the seven IDPs with high sequence variations (##! > 2 s–1). Therefore the 

sequence variation of !! as captured by ##! manifests mostly the intrinsic effect of the IDP 

sequence, not the influence of external factors such as temperature or magnetic field strength. 

The mean ##! value among the training set is 1.24 s–1. 

One way to eliminate the influence of external factors is to scale the !! values of each 

IDP by its !"!; we refer to the results as scaled !!, or s!!. We then pooled the s!! values for 

all residues in the training set, and separated them according to amino-acid types. The amino 

acid type-specific mean s!! values, or ms!!, are displayed in Fig. 2B. The seven amino acids 

with the highest ms!! are, in descending order, Trp, Arg, Tyr, Phe, Ile, His, and Leu. The 

presence of all the four aromatic amino acids in this “high-end” group immediately suggests 

p-p stacking as important for raising !!; the presence of Arg further implicates cation-p 

interactions. In the other extreme, the seven amino acids with the lowest ms!! are, in 

ascending order, are Gly, Cys, Val, Asp, Ser, Thr, and Asn. Gly is well-known as a flexible 

residue; it is also interesting that all the four amino acids with short polar sidechains are found 

in this “low-end” group. Pro has an excessively low ms!! [with data from only two IDPs (32, 

33)], but that is due to the absence of an amide proton. 

 

The SeqDYN model and parameters 

The null model is to assume a uniform !! for all the residues in an IDP. The root-mean-

square-error (RMSE) of the null model is equal to the standard deviation, ##!, of the 

measured !! values. The mean RMSE, RMSE"""""""", of the null model, equal to 1.24 s–1 for the 

training set, serves as the upper bound for evaluating the errors of !! predictors. The next 

improvement is a one-residue predictor, where first each residue (with index n) assumes its 

amino acid-specific mean s!! (ms!!) and then a uniform scaling factor Υ is applied: 
 

!!(,) = Υ ∙ ms!!(,) 
(1) 
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This one-residue model does only minutely better than the null model, with a RMSE"""""""" of 1.22 s–

1. 

In SeqDYN, we account for the influence of neighboring residues. Specifically, each 

residue i contributes a factor 0(1; ,) to the !! value of residue n. Therefore 

 !!(,) = Υ30(1; ,)
$

%&"
 (2a) 

where N is the total number of residues in the IDP. The contributing factor depends on the 

sequence distance 4 = |1 − ,| and the amino-acid type of residue 1: 
 0(1; ,) = 1 +

9(1) − 1
1 + :4!  (2b) 

There are 21 global parameters. The first 20 are the 9 values, one for each of the 20 types of 

amino acids; the last parameter is :, appearing in the Lorentzian form of the sequence-

distance dependence. We define the correlation length, ;'()), as the sequence distance at 

which the contributing factor is midway between the values at 4 = 0 and ∞. It is easy to 

verify that ;'()) = :*"/!. Note that the single-residue model can be seen as a special case of 

SeqDYN, with ;'()) set to 0 and 9 set to ms!!. 

The functional forms of Eqs (2a,b) were adapted from Li et al. (18); we also used them 

for predicting residue-specific membrane association propensities of IDPs (19). In these 

previous applications, a linear term was also present in the denominator of Eq (2b). In our 

initial training of SeqDYN, the coefficient of the linear term always converged to near zero. 

We thus eliminated the linear term. In addition to the Lorentzian form, we also tested a 

Gaussian form for the sequence-distance dependence and found somewhat worse 

performance. The more gradual attenuation of the Lorentzian form with increasing sequence 

distance evidently provides an overall better model for the !! data in the entire training set. 

Others (16, 17, 24) have modeled !! as the average of some parameters over a window; a 

window has an extremely abrupt sequence-distance dependence (1 for 4 < ;'()) and 0 for 4 >

;'())). 
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We parametrized the SeqDYN model represented by Eqs (2a,b) on the training set of 

45 IDPs. In addition to the 21 global parameters noted above, there are also 45 local 

parameters, namely one uniform scaling factor (Υ) per IDP. The parameter values were 

selected to minimize the sum of the mean-square-errors for the IDPs in the training set, 

calculated on !! data for a total of 3924 residues. We excluded the 42 Pro residues in the 

training set because, as already noted, their !! values are lower for chemical reasons. We will 

present validation and test results below, but first let us look at the parameter values. 

The 9 values are displayed in Fig. 2B alongside ms!!. The seven amino acids with 

the highest	9 values, in descending order, are Trp, Ile, Tyr, Arg, His, Phe, and Leu. These are 

exactly the same amino acids in the high-end group for ms!!, though their order there is 

somewhat different. The seven amino acids (excluding Pro) with the lowest 9 values, in 

ascending order, are Gly, Asn, Ser, Asp, Val, Thr, and Cys. The composition of the low-end 

group is also identical to that for ms!!. The 9 values thus also suggest that p-p and cation-p 

interactions in local sequences may raise !!, whereas Gly and short-polar residues may lower 

!!. 

Given the common amino acids at both the high and low ends for ms!! and 9, it is not 

surprising that these two properties exhibit a strong correlation, with a coefficient of 

determination (R2; excluding Pro) at 0.92 (Fig. 3A). Also, because the high-end group 

contains the largest amino acids (e.g., Trp and Tyr) whereas the low-end group contains the 

smallest amino acids (e.g., Gly and Ser), we anticipated some correlation of ms!! and 9 with 

amino-acid size. We measure the latter property by the molecular mass (m). As shown in Fig. 

3B, both ms!! and 9 indeed show medium correlation with m, with R2 = 0.67 (excluding Pro) 

and 0.61, respectively. A bulkiness parameter was proposed as an indicator of sequence-

dependent backbone dynamics of IDPs (16, 24). Bulkiness was defined as the sidechain 

volume to length ratio, and identifies amino acids with aromatic or branched aliphatic 

sidechains as bulky (34). We found only modest correlations between either ms!! or 9 and 

bulkiness, with R2 just below 0.4 (Fig. 3C). 
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The optimized value of : is 3.164 ´ 10–2, corresponding to an ;'()) of 5.6 residues. 

The resulting optimized RMSE"""""""" is 0.95 s–1, a clear improvement over the value 1.24 s–1 of the 

null model. To check the sensitivity of prediction accuracy to :, we set : to values 

corresponding to ;'()) = 0, 1, 2, .., and retrained SeqDYN for : fixed at each value. Note that 

the null-model RMSE"""""""", 1.24 s–1, sets an upper bound. This upper bound is gradually reached 

when ;'()) is increased from the optimal value. In the opposite direction, when ;'()) is 

decreased from the optimal value, RMSE"""""""" rises quickly, reaching 1.22 s–1 at ;'()) = 0. The 

latter RMSE"""""""" is the same as that of the single-residue model. Lastly we note that there is strong 

correlation between the uniform scaling factors and !"! values among the 45 IDPs (R2 = 0.77), 

as to be expected. For 39 of the 45 IDPs, Υ values fall in the range of 0.8 to 2.0 s–1. 

As presented next, we evaluate the performance of SeqDYN by leave-one-out cross 

validation, where each IDP in turn was left out of the training set and the model was trained 

on the remaining 44 IDPs to predict !! for the IDP that was left out. The parameters from the 

leave-one-out (also known as jackknife) training sessions allow us to assess potential bias of 

the training set. For this purpose, we compare the values of the 21 global parameters, either 

from the full training set or from taking the averages of the jackknife training sessions. For 

each of the 9 parameters, the values from these two methods differ only in the fourth digit; 

e.g., for Leu, they are both 1.1447 from full training and from jackknife training. The values 

for : are 3.164 ´ 10–2 from full training as stated above and 3.163 ´ 10–2 from jackknife 

training. The close agreement in parameter values between full training and jackknife training 

suggests no significant bias in the training set. 

Another question of interest is whether the difference between the 9 parameters of two 

amino acids is statistically significant. To answer this question, we carried out five-fold cross-

validation training, resulting in five independent estimates for each parameter. For example, 

the mean ± standard deviation of the 9 parameter is 1.1405 ± 0.0066 for Leu and 1.2174 ± 

0.0211 for Ile. A t-test shows that their difference is statistically significant (P < 0.0001). In 

contrast, the difference between Leu and Phe (9 = 1.1552 ± 0.0304) is not significant. 
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Validation of SeqDYN predictions 

We now present leave-one-out cross-validation results. We denote the RMSE of the !! 

prediction for the left-out IDP as RMSE(-1). As expected, RMSE(-1) is higher than the 

RMSE obtained with the IDP kept in the training set, but the increases are generally slight. 

Specifically, all but eight of the IDPs have increases < 0.1 s–1; the largest increase is 0.35 s–1, 

for CBP-ID4. The mean RMSE(-1), or RMSE""""""""(−1), for the 45 IDPs is increased by 0.05 s–1 

over RMSE"""""""", to 1.00 s–1. The latter value is still a distinct improvement over the mean RMSE 

1.24 s–1 of the null model. The histogram of RMSE(-1) for the 45 IDPs is shown in Fig. 4A. It 

peaks at 0.5 s–1, which is a substantial downshift from the corresponding peak at 0.75 s–1 for 

##! (Fig. 2A). Thirty-four of the 45 IDPs have RMSE(-1) values lower than the corresponding 

##!. 

To further illustrate the performance of SeqDYN, we present comparison of predicted 

and measured !! values for five IDPs: MKK4, a-synuclein, Mev-PNTD, Sev-NT, and CBP-

ID4 (Fig. 4B-F). A simple common feature is the falloff of !! at the N- and C-termini, 

resulting from missing upstream or downstream residues that otherwise would be coupled to 

the terminal residues, as first recognized by Schwalbe et al. (15). Representative 

conformations of the five IDPs are displayed in Fig. 1, with residues colored according to the 

predicted !! values. For four of these IDPs, the RMSE(-1) values range from 0.44 to 0.76 s–1 

and are scattered around the peak of the histogram, while the RMSE(-1) for the fifth IDP, 

namely CBP-ID4, the RMSE(-1) value is 2.01 s–1 and falls on the tail of the histogram (Fig. 

4A). Figure 4B displays the measured and predicted !! for MKK4. SeqDYN correctly 

predicts higher !! values in the second half of the sequence than in the first half. It even 

correctly predicts the peak around residue Arg75. The sequence in this region is 

H72IERLRTH79; six of these eight residues belong to the high-end group. In contrast, the 

lowest !! values occur in the sequence S7GGGGSGGGSGSG19, comprising entirely of two 

amino acids in the low-end group. 
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!! values for a-synuclein are shown in Fig. 4C. Here SeqDYN correctly predicts 

higher !! near the C-terminus and a dip around Gly68. However, it misses the !! peaks 

around Tyr39 and Asp121. MD simulations (1) have found that these !! peaks can be 

explained by a combination of secondary structure formation (b-sheet around Tyr39 and 

polyproline II helix around Asp121) and local (between Tyr39 and Ser42) or long-range 

(between Asp121 and Lys96) interactions. SeqDYN cannot account for long-range 

interactions (e.g., between b-strands and between Asp121 and Lys96). Figure 4D shows that 

SeqDYN gives excellent !! predictions for Mev-PNTD. It correctly predicts the high peaks 

around Arg17, Glu31, Leu193, and lower peaks around Arg235 and Trp285, but does 

underpredict the narrow peak around Tyr113. 

The overall !! profile of Sev-NT is predicted well by SeqDYN, but the peak in the 

long helical region (residues 478-491) is severely underestimated (green curve in Fig. 4E). A 

similar situation occurs for CBP-ID4, where the peak in the second long helical region 

(around Glu113) is underpredicted (green curve in Fig. 4F). While the measured !! exhibits a 

higher peak in the second helical region than in the first helical region (around Arg16), the 

opposite is predicted by SeqDYN. When the !! data were included in the training set (i.e., 

full training), the second peak is higher than the first one, but that is not a real prediction 

because the !! data themselves were used for training the model. It merely means that the 

SeqDYN functions can be parameterized to produce any prescribed !! profile along the 

sequence. Indeed, when the !! data of CBP-ID4 alone were used to parameterize SeqDYN, 

the measured !! profile is closely reproduced (Fig. S3). The reversal in !! peak heights 

between the two helical regions is the reason for the aforementioned unusual increase in 

RMSE when CBP-ID4 was left out of the training set. 

 

R2 boost in long helical regions 

It is apparent that SeqDYN underestimates the !! of stable long helices. Transient short 

helices does not seem to be a problem, since these are present, e.g., in Mev-PNTD, where 
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transient helix formation in the first 37 residues and between residues 189-198 (26) coincides 

with !! peaks that are correctly predicted by SeqDYN. SeqDYN can treat coupling between 

residues within the correlation length of 5.6 residues, but a much longer helix would tumble 

more slowly than implied by an ;'()) of 5.6, and thus it makes sense that SeqDYN would 

underestimate !! in that case. 

Our solution then is to apply a boost factor to the long helical region. To do so, we 

have to know whether an IDP does form long helices and if so what the constituent residues 

are. Secondary structure predictors tend to overpredict a-helices and b-strands for IDPs, as 

they are trained on structured proteins. One way to counter that tendency is to make the 

criteria for a-helices and b-strands stricter. We found that, by filtering PsiPred 

(http://bioinf.cs.ucl.ac.uk/psipred) (35) helix propensity scores (A,-.) with a very high cutoff 

of 0.99, the surviving helix predictions usually correspond well with residues identified by 

NMR as having high helix propensities. For example, for Mev-PNTD, PsiPred plus filtering 

predicts residues 14-17, 28-33, and 191-193 as helical; all of them are in regions that form 

transient helices according to chemical shifts (26). Likewise long helices are also correctly 

predicted for Sev-NT (residues 477-489) and CBP-ID4 (residues 6-17 and 105-116). 

We apply a boost factor, B,-., to helices with a threshold length of 12: 
 

B,-. = 1 + αA,-.Θ(A,-. ≥ 0.99; ;,-. ≥ 12) 
(3) 

The Θ function is 1 if the helix propensity score is above the filtering cutoff and the helix 

length (;,-.) is above the threshold, and 0 otherwise. With a boost amplitude α at 0.5, the 

boosted SeqDYN prediction for Sev-NT reaches excellent agreement with the measured !! 

(Fig. 4E, red curve). The RMSE(-1) is reduced from 0.76 s–1 to 0.38 s–1 upon boosting. 

Applying the same helix boost to CBP-ID4 also results in a modest reduction in RMSE(-1), 

from 2.01 to 1.90 s–1 (Fig. 4F, red curve). The only other IDP for which PsiPred plus filtering 

predicts a long helix is the N-terminal region of lysyl-tRNA synthetase (KRS-NT). The 

authors who studied this protein did not report on secondary structure (36), but feeding their 
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reported chemical shifts to the TALOS+ server 

(https://spin.niddk.nih.gov/bax/nmrserver/talos/) (37) found only short stretches of residues 

that fall into the helical region of the Ramachandran map. The SeqDYN prediction for KRS-

NT is already good [RMSE(-1) = 0.83 s–1]; applying a helix boost would deteriorate the 

RMSE(-1) to 1.16 s–1. 

 

Further test on a set of nine IDPs 

We have reserved nine IDPs for testing SeqDYN (parameterized on the training set of 45 

IDPs). The level of disorder in these test proteins also spans the full range, from absence of 

secondary structures [ChiZ N-terminal region (12), Pdx1 C-terminal region (11), and TIA-1 

prion-like domain (17)] to presence of transient short helices [synaptobrevin-2 (7), a-

endosulfine (38), YAP (6), angiomotin-like 1 (AMOTL1) (39)] to formation of stable long 

helices [FtsQ (13) and CAHS-8 (9)]. For eight of the nine test IDPs, the RMSEs of SeqDYN 

predictions are lower than the experimental ##! values, by an average of 0.62 s–1. For the 

nineth IDP (Pdx1), the SeqDYN RMSE is slightly higher, by 0.06 s–1, than the experimental 

##!. 

The comparison of predicted and measured !! profiles along the sequence is presented 

in Fig. 5A-I. For ChiZ, SeqDYN correctly predicts the major peak around Arg25 and the 

minor peak around Arg46 (Fig. 5A). The !! profile of Pdx1 is largely featureless, except for a 

dip around Gly216, which is correctly predicted by SeqDYN (Fig. 5B). Correct prediction is 

also obtained for the higher !! in the first half of TIA-1 prion-like domain than in the second 

half (Fig. 5C). SeqDYN gives an excellent prediction for synaptobrevin-2, including a linear 

increase up to Arg56 and the major peak around Trp89 (Fig. 5D). 

The prediction is also very good for a-endosulfine, including elevated !! around 

Glu34, which coincides with the presence of a transient helix, and depressed !! in the last 40 

residues (Fig. 5E). The only miss is an underprediction for the peak around Lys74. SeqDYN 

also predicts well the overall shape of the !! profile for YAP, including peaks around Asn70, 
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Leu91, Arg124, and Arg161, but severely underestimates the peak height around Asn70 (Fig. 

5F).NOE signals indicate contacts between Met86, Leu91, Fhe95, and Fhe96 (6); evidently 

this type of local contacts is captured well by SeqDYN. The !! elevation around Asn70 is 

mostly due to helix formation: residues 61-74 have helix propensities up to 40% (6). PsiPred 

predicts helix for residues 62-73, but only residues 65-68 survive the filtering that we impose, 

resulting a helix that is too short to apply a helix boost. The prediction for AMOTL1 is mostly 

satisfactory, including peaks around Phe200 and Arg264 and a significant dip around Gly292 

(Fig. 5G). However, whereas the two peaks have approximately equal heights in the measured 

!! profile, the predicted peak height around Phe200 is too low. SCSs indicate helix 

propensity around both !! peaks (39). PsiPred also predicts helix in both regions, but only 

five and two residues, respectively, survive after filtering, which are too short for applying a 

helix boost. 

For FtsQ, SeqDYN correctly predicts elevated !! for the long helix [residues 46-74 

(13)] but underestimates the magnitude (RMSE = 2.32 s–1; green curve in Fig. 5H). PsiPred 

plus filtering predicts a long helix formed by residues 47-73. Applying the helix boost 

substantially improves the agreement with the measured !!, with RMSE reducing to 1.71 s–1 

(red curve in Fig. 5H). SeqDYN also gives a qualitatively correct !! profile for CAHS-8, with 

higher !! for the middle section (residues 95-190) (RMSE = 2.36 s–1; green curve in Fig. 5I). 

However, it misses the extra elevation in !! for the first half of the middle section (residues 

95-145). According to SCS, the first and second halves have helix propensities of 60% and 

30%, respectively (9). PsiPred plus filtering predicts helices for residues 96-121, 124-141, 

169-173, and 179-189. Only the first two helices, both in the first half of the middle section, 

are considered long according to our threshold. Once again, applying the helix boost leads to 

marked improvement in the predicted in !!, with RMSE reducing to 1.92 s–1 (red curve in 

Fig. 5I). 

 

Inputting the sequence of a structured protein predicts I/ in the unfolded state 
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SeqDYN is trained on IDPs, what if we feed it with the sequence of a structured protein? The 

prediction using the sequence of hen egg white lysozyme, a well-studied single-domain 

protein, is displayed in Fig. 6A. It shows remarkable agreement with the !! profile measured 

by Klein-Seetharaman et al. (3) in the unfolded state (denatured by 8 M urea and reduced to 

break disulfide bridges), including a major peak around Trp62, a second peak around Trp111, 

and a third peak around Trp123. Klein-Seetharaman et al. mutated Trp62 to Gly and the major 

peak all but disappeared. This result is also precisely predicted by SeqDYN with the mutant 

sequence (Fig. 6B). 

 

Discussion 

We have developed a powerful method, SeqDYN, that predicts the backbone amide 

transverse relaxation rates (!!) of IDPs. The method is based on IDP sequences, is extremely 

fast, and available as a web server at https://zhougroup-uic.github.io/SeqDYNidp/. The 

excellent performance supports the notion that the ns-dynamics reported by !! is coded by the 

local sequence, comprising up to 6 residues on either side of a given residue. The amino-acid 

types that contribute the most to coupling within a local sequence are aromatic (Trp, Tyr, Phe, 

and His), Arg, and long branched aliphatic (Ile and Leu), suggesting the importance of p-p, 

cation-p, and hydrophobic interactions in raising !!. These interactions are interrupted by Gly 

and amino acids with short polar sidechains (Ser, Thr, Asn, and Asp), leading to reduced !!. 

Transient short helices produce moderate elevation in !!, whereas stable long helices result in 

a big boost in !!. Tertiary contacts can also raise !!, but appears to be infrequent in most 

IDPs (1). 

Our method incorporates ideas from a number of previous efforts at describing !!. 

The first serious effort was by Schwalbe et al. (15), who accounted for contributions from 

neighboring residues as additive terms, instead of multiplicative factors as in SeqDYN. Cho et 

al. (16) and Delaforge et al. (24) used the running average of the bulkiness parameter over a 

window of five to nine residues as a qualitative indicator of !!. Here again the calculation 
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was based on an additive model. Sekiyama et al. (17) employed a multiplicative model, with 

!! calculated as a geometric mean of “indices of local dynamics” over a five-residue window. 

These indices, akin to our 9 parameters, were trained on a single IDR (TIA-1 prion-like 

domain) and used to reproduce the measured !! for the same IDR. As we have illustrated on 

CBP-ID4 (Fig. S3), training on a single protein merely biases the parameters to that model 

and has little value in predicting !! for other proteins. In comparison, SeqDYN is trained on 

45 IDPs and its predictions are robust and achieve quantitative agreement with measured !!. 

Ten of the IDPs tested here have been studied recently by MD simulations using IDP-

specific force fields (1, 12-14). In Table 1 we compare the RMSEs of SeqDYN predictions 

with those for !! calculations from MD simulations. For five of these IDPs: A1-LCD, Ab40, 

a-synuclein, tau K18, and FtsQ, RMSEs of SeqDYN and MD are remarkably similar. Four of 

these IDPs lack significant population of a-helices or b-sheets, but FtsQ forms a stable long 

helix. For one other IDP, namely HOX-DFD, MD, by explicitly modeling its folded domain, 

does a much better job in predicting !! than SeqDYN (RMSEs of 1.40 s–1 vs 1.99 s–1). 

However, for the four remaining IDPs: p53TAD, Pup, Sev-NT, and ChiZ, SeqDYN 

significantly outperforms MD, with RMSEs averaging only 0.47 s–1, compared to the MD 

counterpart of 1.14 s–1. Overall, SeqDYN is very competitive against MD in predicting !!, 

but without the significant computational cost. While MD simulations can reveal details of 

local interactions, as noted for a-synuclein, and capture tertiary interactions if they occur, 

they still suffer from perennial problems of force-field imperfection and inadequate sampling. 

SeqDYN provides an accurate description of IDP dynamics at a “mean-field” level, but could 

miss idiosyncratic behaviors of specific local sequences. 

Deep-learning models have become very powerful, but they usually have millions of 

parameters and require millions of protein sequences for training (40). In contrast, SeqDYN 

employs a mathematical model with dozens of parameters and requires only dozens of 

proteins for training. Reduced models (by collapsing amino acids into a small number of 

distinct types) have even been trained on < 10 IDPs to predict propensities for binding 
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nanoparticles (18) or membranes (19). The mathematical model-based approach may be 

useful in other applications where data, similar to !!, are limited, including predictions of 

IDP secondary chemical shifts or residues that bind drug molecules (41) or protein targets, or 

even in protein design, e.g., for recognizing an antigenic site or a specific DNA site. 

 

Methods 

Collection of IDPs with measured I/ 

Starting from six nonhomologous IDPs in our previous MD study (1), we obtained !! data for 

eight IDPs from the Bimolecular Magnetic Resonance Data Bank (BMRB; https://bmrb.io); 

data for two other IDPs were from our collaborators (12, 13). Most of the 54 IDPs studied 

here were from searching the literature. Disorder was judged by dispersion in backbone amide 

proton chemical shifts, NOE, and SCS. !! data that were not available from the authors or 

BMRB were obtained by digitizing !! plots presented in figures of published papers, using 

WebPlotDigitizer (https://automeris.io/WebPlotDigitizer) (42) and further inspected visually. 

 

Homology of IDPs was checked by sequence alignment using Clustal W 

(http://www.clustal.org/clustal2) (43), and presented as a clock-like tree using the “ape” 

package (http://ape-package.ird.fr) (44). IDPs that had discernible homology with the selected 

training set were removed. Removed IDPs included HOX-SCR and b-synuclein from our 

previous MD study (1), due to homology with HOX-DFD and a-synuclein, respectively. 

 

Coding for SeqDYN 

The training of SeqDYN was coded in python, similar to our previous work for predicting 

residue-specific membrane association propensities (ReSMAP; https://zhougroup-

uic.github.io/ReSMAPidp/) (19). The cost function was the sum of mean-squared-errors for 

the IDPs in the training set. We used the least_squares function in scipy.optimize, with Trust 

Region Reflective as the minimization algorithm and all parameters restricted to the positive 
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range. For the web server (https://zhougroup-uic.github.io/SeqDYNidp/), we rewrote the 

prediction code javascript. 
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Table 1. RMSEs (s–1) of !! predictions by SeqDYN and MD for 10 IDPs 

IDP name SeqDYN MD 

A1-LCD 0.60a 0.59d, e 

Ab40 0.38a 0.38d 

HOX-DFD 1.99a 1.40d 

a-synuclein 0.44a 0.50d 

p53TAD 0.33a 1.04f 

Pup 0.43a 1.00f 

Sev-NT 0.38a, b 1.10d, g 

tau K18 0.83a 0.80d 

ChiZ 0.74c 1.40h 

FtsQ 1.71c, b 1.70i 

aBased on leave-one-out training (using 44 IDPs). 

bHelix boost applied. 

cBased on training by the full training set (45 IDPs). 

dFrom ref (1). 

eRMSE is scaled down by a factor of 2.39, to correct for the effect of temperature (MD at 288 

K; see Fig. S2C). 

fFrom ref (14). 

gRMSE is scaled down by a factor of 2.99, to correct for the effects of temperature and 

magnetic field (MD at 274 K and 850 MHz; see Fig. S2B). 

hOriginally calculated in ref (12) with correction in ref (45). 

iFrom ref (13). 
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FIGURE CAPTIONS 

Figure 1. Representative conformations of five IDPs. (A-E) MKK4, a-synuclein, Mev-PNTD, 

Sev-NT, and CBP-ID4. Conformations were initially generated using TraDES 

(http://trades.blueprint.org) (46), selected to have radius of gyration close to predicted by a 

scaling function !0 = 2.54L1.3!! (Å) (47). Conformations for residues predicted as helical by 

PsiPred plus filtering were replaced by ideal helix. Finally residues are colored according to  

a scheme ranging from green for  low predicted !! to red for high predicted !!. 

Figure 2. Properties of the 45 IDPs in the training set. (A) Histograms of means and standard 

deviations, calculated for individual proteins. Curves are drawn to guide the eye. Inset: 

correlation between !"! and ##!. (B) Experimental mean scaled !! (ms!!) and SeqDYN 9 

parameters, for the 20 types of amino acids. Note that Pro residues have low ms!! for the 

lack of backbone amide proton. Amino acids are in descending order of 9. 

Figure 3. SeqDYN model parameters. (A) Correlation between ms!! and 9. The values are 

also displayed as bars in Fig. 2B. (B) Correlation of ms!! and 9 with amino-acid molecular 

mass. (C) Correlation of ms!! and 9 with bulkiness. (D) The optimal correlation length and 

deterioration of SeqDYN prediction as the correlation length is moved away from the optimal 

value. 

Figure 4. Quality of SeqDYN predictions. (A) Histogram of RMSE(-1). Letters indicate 

RMSE(-1) values of the IDPs to be presented in panels (B-F). (B-F) Measured (bars) and 

predicted (curves) !! profiles for MKK4, a-synuclein, Mev-PNTD, Sev-NT, and CBP-ID4. In 

(E) and (F), green curves are SeqDYN predictions and red curves are obtained after a helix 

boost. 

Figure 5. Measured (bars) and predicted (curves) !! profiles for ChiZ N-terminal region, 

TIA1 prion-like domain, Pdx1 C-terminal region, synaptobrevin-2, a-endosulfine, YAP, 

AMOTL1, FtsQ, and CAHS-8. In (C), !! does not fall off at the N-terminus because the 

sequence is preceded by an expression tag MGSSHHHHHHHHHHHHS. In (H) and (I), green 

curves are SeqDYN predictions and red curves are obtained after a helix boost. 
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Figure 6. Predicted !! profiles (curves) for the lysozyme sequence and a mutant show close 

agreement with those measured (bars) on the proteins in the unfolded state. (A) Wild type. (B) 

With Trp62 to Gly mutation. 
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