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Abstract: Cystic fibrosis (CF) is a life-shortening genetic disorder that affects the cystic fibrosis
transmembrane conductance regulator (CFTR) protein. In the gastrointestinal (GI) tract, CFTR
dysfunction results in low intestinal pH, thick and inspissated mucus, a lack of endogenous pancreatic
enzymes, and reduced motility. These mechanisms, combined with antibiotic therapies, drive GI
inflammation and significant alteration of the GI microbiota (dysbiosis). Dysbiosis and inflammation
are key factors in systemic inflammation and GI complications including malignancy. The following
review examines the potential for probiotic and prebiotic therapies to provide clinical benefits through
modulation of the microbiome. Evidence from randomised control trials suggest probiotics are likely
to improve GI inflammation and reduce the incidence of CF pulmonary exacerbations. However,
the highly variable, low-quality data is a barrier to the implementation of probiotics into routine CF
care. Epidemiological studies and clinical trials support the potential of dietary fibre and prebiotic
supplements to beneficially modulate the microbiome in gastrointestinal conditions. To date, limited
evidence is available on their safety and efficacy in CF. Variable responses to probiotics and prebiotics
highlight the need for personalised approaches that consider an individual’s underlying microbiota,
diet, and existing medications against the backdrop of the complex nutritional needs in CF.
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1. Introduction

Cystic fibrosis (CF) is a genetic condition of autosomal recessive inheritance related to
mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator
(CFTR) protein [1]. The CFTR protein affects the fluid secretion and mucus hydration of
epithelial cells in the airway, pancreas, intestines, and hepatobiliary tracts [2]. Chronic
suppurative respiratory disease arising due to impaired clearance of dehydrated airway
secretions is typically the principal cause of morbidity and mortality. However, the majority
(>90%) of patients with CF also suffer from gastrointestinal (GI) symptoms and complica-
tions [3,4]. Dysfunction of the CFTR protein in the GI system results in low intestinal pH,
thick and inspissated mucus, a lack of endogenous pancreatic enzymes, reduced motility,
and possibly an impaired innate immunity [5–7] (Figure 1). These mechanisms are pro-
posed drivers of local GI inflammation and contribute to a range of intestinal morbidities,
including an increased risk of early-onset adult GI cancer [8–11]. GI dysfunction combined
with antibiotic therapies also drives significant alteration (dysbiosis) of the GI microbiota
(Figure 1). Altered CF microbiota is likely to compound the proinflammatory effects of the
underlying disease.
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Figure 1. Microbiome- and CFTR-related dysfunction and inflammation in cystic fibrosis. Black ar-
rows indicate direction of known homeostatic effects. Red arrows indicate direction of known in-
flammatory effects. Broken lines indicate proposed mechanisms of inhibition or dysfunction. Figure 
was created with Biorender.com. 

Evidence is accumulating that GI bacterial strains, which occur differentially between 
CF and healthy controls (HC), are linked to inflammatory [12–14] and malignancy pro-
cesses [7,14]. Supplementation with prebiotics and probiotics are thought to provide clin-
ical benefit by promoting commensal bacteria and biosynthesis of immunomodulatory 
metabolites. As public awareness and acceptance of probiotics and prebiotics continue to 
expand, there is a growing interest in the potential clinical benefits of dietary prebiotics 
and probiotics in CF. A total of 17 probiotic trials, including 12 RCTs, have thus far inves-
tigated the safety and efficacy of individual probiotic strains and strain combinations in 
children and adults with CF [15]. Promising improvements in inflammation [16–18], nu-
tritional status [19], and health outcomes [20,21] have been observed. However, due to 
selective reporting and incomplete outcome data, the certainty of evidence has been eval-
uated as low. Furthermore, large variations between protocols, probiotic formulas, dos-
age, and duration of treatments limit the potential for clinical application. Prebiotics are 
often included in probiotic preparations, but evidence surrounding safety and efficacy for 
the exclusive use of prebiotics is trailing. There is only one clinical trial investigating the 
prebiotic high-amylose maize starch (HAMS) in adults with CF [22]. The efficacy of prebi-
otic supplementation is based on the selective utilisationof substrates (usually indigestible 
carbohydrates) by beneficial bacteria. Critically, it is not yet known whether the altered 
CF intestinal microbiota retains the capacity to exploit prebiotic substrates. 

Figure 1. Microbiome- and CFTR-related dysfunction and inflammation in cystic fibrosis. Black
arrows indicate direction of known homeostatic effects. Red arrows indicate direction of known
inflammatory effects. Broken lines indicate proposed mechanisms of inhibition or dysfunction. Figure
was created with Biorender.com.

Evidence is accumulating that GI bacterial strains, which occur differentially between
CF and healthy controls (HC), are linked to inflammatory [12–14] and malignancy pro-
cesses [7,14]. Supplementation with prebiotics and probiotics are thought to provide
clinical benefit by promoting commensal bacteria and biosynthesis of immunomodulatory
metabolites. As public awareness and acceptance of probiotics and prebiotics continue to
expand, there is a growing interest in the potential clinical benefits of dietary prebiotics and
probiotics in CF. A total of 17 probiotic trials, including 12 RCTs, have thus far investigated
the safety and efficacy of individual probiotic strains and strain combinations in children
and adults with CF [15]. Promising improvements in inflammation [16–18], nutritional
status [19], and health outcomes [20,21] have been observed. However, due to selective
reporting and incomplete outcome data, the certainty of evidence has been evaluated as low.
Furthermore, large variations between protocols, probiotic formulas, dosage, and duration
of treatments limit the potential for clinical application. Prebiotics are often included in
probiotic preparations, but evidence surrounding safety and efficacy for the exclusive use of
prebiotics is trailing. There is only one clinical trial investigating the prebiotic high-amylose
maize starch (HAMS) in adults with CF [22]. The efficacy of prebiotic supplementation is
based on the selective utilisationof substrates (usually indigestible carbohydrates) by bene-
ficial bacteria. Critically, it is not yet known whether the altered CF intestinal microbiota
retains the capacity to exploit prebiotic substrates.
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This review describes the physiology of the GI tract in CF and the clinical relevance
of GI microbiome dysbiosis and inflammation. We discuss the current understanding
of probiotic and prebiotic mechanisms of action, provide important examples of clinical
studies examining probiotic and prebiotic applications in CF, and discuss considerations
for clinical translation.

2. Cystic Fibrosis in the Gastrointestinal Tract

CFTR is an important contributor to the normal physiology of the gastrointestinal
(GI) tract; as such, its dysfunction in CF disease has profound impacts on GI homeostasis.
CFTR is an epithelial cyclic adenosine monophosphate (cAMP)-dependent anion-selective
channel. It primarily secretes bicarbonate and chloride, and therefore exerts great influence
on the acidity and viscosity of secretions. In CF, the dysfunction of this ion channel is
clearly manifested in the systemic production of hyperacidic and viscid mucus [23,24].
CFTR also plays a role in the maintenance of epithelial tight junctions, modulation of fluid
flow, regulation of ion channels (such as sodium, potassium, calcium, and other chloride
channels [25,26]), and coordination of gut motility [27,28]. Altogether, disruptions to these
normal and vital functions of CFTR culminate in an abnormal GI tract (Figure 1).

The altered GI environment in CF results in various clinical sequelae that can be collec-
tively referred to as “obstructive tubulopathies.” The most common of these is pancreatic
insufficiency, which affects as much as 90% of patients with CF [29]. From as early as in
utero, the presence of concentrated pancreatic ductal secretions leads to luminal protein
precipitation with resultant obstruction and dilation of the pancreatic ducts, culminating in
progressive, irreversible destruction and fibrosis of the acinar tissue. The resultant pancreas
is dysfunctional and severely impaired in its ability to secrete critical enzymes necessary
for the digestion of carbohydrates, fats, and proteins [30,31]. Obstructive tubulopathies
are also evident in the intestines in the form of meconium ileus (MI) and distal intestinal
obstruction syndrome (DIOS). There are numerous other GI manifestations of CF, including
gastroesophageal reflux disease, pancreatitis, and liver disease, which have been detailed
elsewhere [32–36]. There are also less clinically obvious, but equally significant, manifes-
tations that arise as a result of the altered GI milieu in CF; namely, alterations to the gut
microbiota and intestinal inflammation. These are discussed in detail below.

3. The Human Gut Microbiome

The gut microbiome is a sophisticated, functional environment comprising an abun-
dance of microbes along the GI tract. These microorganisms and their metabolites perform
homeostatic functions, including the regulation of the gastrointestinal epithelial barrier,
fermentation of dietary starches and fibres, synthesis of amino acids and essential vitamins,
and modulation of the immune system locally and distally [37,38]. While a small propor-
tion of the gut microbiota is heritable, it is largely influenced by nongenetic factors [39].
The early development of the gut microbiome in infancy is predominantly shaped by one’s
mode of birth and feeding, with the cessation of breastfeeding being the driver of func-
tional maturation into an adultlike microbiota [40,41]. Subsequently, diet plays a primary
role in shaping the gut microbiome, as organisms respond to selective pressures from
dietary patterns throughout life [42,43]. Numerous other environmental factors can also
affect the gut microbiota, but perhaps the most well-established are medications, including
antibiotics [41,44–46].

One important aspect to spotlight when characterising the gut microbiota is microbial
diversity. Microbial diversity refers to species richness (the number of species) and/or
evenness (the relative distribution of species). Reduced microbial diversity is broadly
associated with ill health, as it is hypothesised that species diversity confers the ability to
withstand environmental threats and maintain homeostasis. This is attributable to compen-
satory functional redundancies enabled by a more robust ecological environment [47,48].
Disruption to the normal composition, physiology, and diversity of the gut microbiota is
an increasingly recognised feature of numerous disease processes. Decreased microbial
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diversity has repeatedly been observed in patients with chronic conditions, including
obesity, inflammatory bowel disease (IBD), type 1 and type 2 diabetes mellitus, and asthma.
Dysbiosis, the collective term for alterations to the normal balance or composition of gut
microbes, is also evident in many of those disease processes [48–51]. These observations
point to the critical involvement of the gut microbiota in health and disease, and solidify
the rationale for utilising microbial modulation as a therapeutic target.

4. The CF Gut Microbiome

Given the significant alterations to the intestinal environment resulting from CFTR
dysfunction, it is unsurprising that the CF gut microbiome differs from that of the healthy
gut from early life onwards. One key features of the CF gut microbiome is decreased
species diversity [7,12,52–54] (Figure 1). In addition, paediatric studies have demonstrated
that the CF gut microbiome diversifies and matures at a significantly slower rate than that
of a healthy child [54–56]. Compositionally, the CF gut microbiome also differs from that
of the healthy gut. Reductions in Bacteroidetes, Ruminococcaceae, Bifidobacterium, and Rose-
buria have consistently been observed. In contrast, abundances of Enterococcus, Veillonella,
and Enterobacter have been shown to be relatively increased in the CF gut [7,12,52–55,57].
Use of the CFTR modulator ivacaftor is associated with arguably “healthier” microbiome
profiles, reinforcing the concept that dysbiosis is driven by CFTR dysfunction [58]. Recent
advancements in metagenomic methods have enhanced the ability to characterise the
functionality of the gut microbiota, thereby elucidating the physiological consequences
of dysbiosis. It has been demonstrated that the CF gut microbiome displays an increased
capacity to metabolise nutrients, antioxidants, and short-chain fatty acids (SCFAs), as well
as a relatively decreased propensity to synthesise fatty acids [7,56,59].

The key drivers of these changes to the gut microbiota involve the downstream ef-
fects of CFTR dysfunction. The production of dehydrated mucus, changes to intestinal
pH, nutrient malabsorption, and prolonged intestinal transit secondary to intestinal dys-
motility all have the potential to exert selective pressure on enteric microorganisms and
ultimately alter the microbiome [60–62]. Notably, fat malabsorption following exocrine
pancreatic insufficiency could also confer survival advantage to certain organisms that
adapt well to high-fat intestinal environments [63]. These CFTR-related factors are fur-
ther compounded by iatrogenic causes. Antibiotic exposure, which is prevalent in CF for
the prophylaxis and treatment of respiratory tract infections, may contribute to changes
in the gut microbiota. Studies in the CF population have consistently demonstrated an
association between antibiotic use and decreased alpha diversity (within-sample species
diversity) in the gut [12,53,64,65] (Figure 1). Multiple studies have also highlighted a
correlation between antibiotic exposure and relative depletions of the bacterial genus Bifi-
dobacterium [64–67]. The high-energy and high-fat diet prescribed in CF is another likely
contributor (discussed below).

5. Intestinal Inflammation

Disruption to the gut microbiota is associated with intestinal inflammation in CF.
Chronic inflammation is a well-recognised feature of the CF intestine, primarily evidenced
by elevated faecal inflammatory markers in patients with CF in many studies [68–73]
(Figure 1). The earliest evidence of GI inflammation was elevated concentrations of in-
flammatory markers such as interleukin-8, interleukin-1β, neutrophil elastase, and im-
munoglobulins on whole-gut lavage, reported by Smyth et al. [74]. Imaging techniques
including endoscopy and capsule endoscopy have subsequently revealed a high prevalence
of mucosal pathologies, including ulcerations and oedema in the CF GI tract [71,75,76].

Gut inflammation in CF is of a multifactorial aetiology. Mucus hyperviscosity and hy-
peracidity as a result of CFTR dysfunction likely promote gut inflammation [8,77,78]. CFTR
itself is also involved in downregulating proinflammatory pathways, and hence its dys-
function in CF may contribute to the altered intestinal milieu [79] (Figure 1). Additionally,
inflammation may be precipitated by intestinal dysmotility and the intraluminal pooling
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of inspissated contents [77,80]. The same iatrogenic factors that contribute to intestinal dys-
biosis, namely antibiotic exposure and the high-fat CF diet, have also been shown to be cor-
related with intestinal inflammation in CF and other contexts [81–83] (Figure 1). The mech-
anisms by which antibiotics may induce inflammation are not well-known. However,
it has been demonstrated in animal models that antibiotic administration promotes the
translocation of microorganisms through goblet-cell-mediated pathways, subsequently
increasing the release of inflammatory cytokines [84].

Notably, the aforementioned dysbiosis is a key contributor to intestinal inflammation in
CF. Reductions in the abundances of bacteria with anti-inflammatory properties, including
Faecalibacterium prausnitzii, has been widely observed in CF cohorts [7,52,53,66,70,85]. Many
of these bacteria are known producers of short-chain fatty acids (SCFAs), the primary
metabolites of anaerobic fermentation of dietary fibres and starches. SCFAs perform
homeostatic functions, including intestinal epithelial maintenance, colonocyte nourish-
ment, and immunomodulation (Figure 1). Accordingly, a relative depletion of SCFA-
producing bacteria and subsequent reductions in SCFA levels may contribute to inflam-
mation [60,86,87]. This is supported by numerous animal models in which SCFAs have
been shown to improve epithelial integrity and ameliorate intestinal inflammation [88–93].
However, the interactions between the microbiota and inflammation are also bidirectional.
Chronic inflammation results in the release of reactive oxygen and nitrogen species that
supply terminal electron acceptors required for anaerobic respiration. This exerts selective
pressure on gut microbes and may contribute to dysbiosis, as organisms with the ability
to efficiently perform anaerobic respiration have a growth advantage [94]. For example,
intestinal inflammation is associated with the proliferation of Enterobacteriaceae, a bacterial
family that has high nitrate reductase activity and can undergo efficient nitrate respira-
tion [95,96]. Indeed, organisms within the Enterobacteriaceae family (i.e., the Enterobacter
genus) are relatively more abundant in the CF gut [7,12,64,85]. Many of the mechanistic
aspects of the relationship between the gut microbiota and inflammation remain unknown,
highlighting the intricacy of these complex interactions.

6. Nutritional Management in CF

In 1988, Corey et al. [97] published a landmark study that led to pivotal paradigm
shifts in CF nutritional optimisation. It has since been established that energy requirements
are increased in CF due to increased energy expenditure from chronic lung inflammation
and increased work of breathing, as well as malabsorption secondary to exocrine pancreatic
insufficiency and gastrointestinal disease [29,98,99]. Patients with CF are also at risk of
deficiencies in fat-soluble vitamins due to fat and bile acid malabsorption, which often
necessitates supplementation [100,101]. Good nutritional status beginning in childhood
is now well-documented to be associated with better pulmonary function and survival
in CF [102–106]. Body mass index (BMI) is positively correlated with forced expiratory
volume in 1 second (FEV1) [107–110], and a low BMI at the age of 10 years is a risk factor
for lung transplantation in adulthood [111]. Greater weight-for-age percentile at the age of
4 years is also associated with better pulmonary function and survival through to 18 years,
as well as a reduced likelihood of subsequent pulmonary exacerbations, hospitalisations,
or CF-related diabetes [106].

Today, patients with CF are recommended a high-energy diet (110–200% of the age- and
sex-appropriate recommended daily energy intake) to maintain growth. While macronu-
trient targets are individual-specific, the current consensus generally advises that 15–20%
of total energy intake be derived from protein, 40–45% from carbohydrates, and up to
35–40% from fat [29,100,112]. Despite the clear benefits of nutritional optimisation, it has
become increasingly evident that patients with CF tend to overconsume “energy-dense,
nutrient-poor” foods high in salt, sugar, and saturated fat (i.e., junk foods) in order to
meet daily macronutrient requirements [113–117]. The proportion of patients with CF who
are overweight or obese is increasing. While patients who are overweight or obese are
reported to have better lung function than their normal weight or underweight counter-
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parts in some studies, this finding may be confounded by the fact that these patients are
also more likely to be pancreatic sufficient and have milder disease genotypes [118–122].
Additionally, weight gain and increased BMI, fat mass, and fat-free mass are reported
outcomes of CFTR modulator therapies that need to be taken into account as modulator
therapies gradually become the cornerstone of CF treatment [123–126]. Importantly, both
high-fat diets and obesity may exacerbate existing alterations in gut microbial composition
and chronic intestinal inflammation, with important clinical implications for individuals
with CF [81–83,127,128] (Figure 1).

7. Clinical Significance of the CF Gut Microbiome

Intestinal dysbiosis and inflammation have been demonstrated to be significantly
associated with clinical outcomes. In a recent study, Hayden et al. [55] observed a distinctly
more marked dysbiosis in infants with CF who had low length compared to infants with CF
who had normal length. Notably, the gut microbiome of infants with low length exhibited
a reduced abundance of Bacteroidetes and relatively delayed maturation compared to
that of infants with normal length [55]. Coffey et al. [7] had also previously reported
a positive correlation between Ruminococcaceae UCG 014 and BMI. Additionally, the CF
intestinal microbiota contains a comparatively lower prevalence of proteins that facilitate
carbohydrate transport, metabolism, and conversion, which may impact nutrient utilisation
and thus adversely affect growth [85]. It has also been demonstrated that faecal calprotectin
levels are inversely correlated with weight and height z-scores, and elevated calprotectin
levels are associated with underweight BMI (<18.5 kg/m2) [13,70,72].

Additionally, there is a growing body of evidence that suggests that the intestinal
microbiome is related to lung function. It has been reported that patients with lower
FEV1 have reduced intestinal microbial diversity compared to their counterparts with
better pulmonary function [12]. Positive correlations between intestinal bacterial genera
such as Ruminococcaceae NK4A214 and FEV1 have also previously been documented [7].
Furthermore, one study reported an association between microbial diversity in the gut
microbiota and pulmonary exacerbation events [57]. Some studies have also demonstrated
associations between gut inflammation and lower FEV1, although this has not yet been
widely validated [68,72]. It is postulated that these associations reflect a physiological
phenomenon termed the “gut–lung axis.” Along this axis, the intestinal and respiratory
microbiota engage in cross-talk to regulate immunity and homeostasis in both the en-
teric and pulmonary environments [129]. In the intestinal compartment, this is achieved
by gut-microbiota-derived metabolites, including SCFAs, which coordinate immune cell
signaling cascades that ultimately involve the lungs through G-protein coupled receptor
(GPCR)-mediated pathways and histone deacetylase inhibition [130–132]. In support of this,
Hoen et al. [133] observed in a paediatric CF cohort that pulmonary colonisation with the
pathogen Pseudomonas aeruginosa, a known contributor to declining lung function, was pre-
ceded by a reduction in the abundance of Parabacteroides in the gut. Notably, Parabacteroides
is associated with immunomodulation and anti-inflammatory properties [134]. While there
remain many unknowns with regard to the mechanistic aspects of the gut–lung axis, these
findings suggested that the intestinal microbiome is a site of therapeutic potential that
could be manipulated to optimise lung function.

Intestinal dysbiosis and inflammation have been linked to a number of serious mor-
bidities. Firstly, while patients with CF do not typically present with overt GI symptoms
similar to those of inflammatory bowel disease (IBD), elevated faecal calprotectin levels
are correlated with a worse quality of life [4,135,136]. Elevated calprotectin has also been
highlighted as a predictive factor of GI-related hospitalisations for infants with CF in their
first year of life [136,137]. Importantly, intestinal dysbiosis and inflammation may be con-
tributors to the increased risk of GI malignancies that is evident in the CF population [138].
While a clear causative mechanism has yet to be established in the context of CF, it is well
recognised from studies pertaining to IBD that chronic inflammation poses a significant risk
for the development of GI cancers [139,140]. This is largely due to oxidative stress and the
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resultant DNA damage, culminating in epigenetic disturbances to the expression of tumour-
suppressive regulatory proteins, transcription factors, and signalling molecules [141,142].
Furthermore, the inflamed gut may confer a growth advantage to genotoxic organisms,
especially E. coli [143]. Indeed, the relative abundance of E. coli is increased in CF, as well as
in IBD and colorectal cancer [144,145]. The depletion of SCFA-producing organisms in the
CF gut may also be a key factor, as SCFAs exhibit tumour-suppressive properties [146,147].
For example, in an animal model of colitis-associated colorectal cancer, SCFAs have been
shown to mediate reductions in proinflammatory cytokine release and tumour size and
incidence [148]. All in all, while intestinal dysbiosis and inflammation tend to be clinically
silent in CF, they may be associated with serious complications. This emphasises the
importance of optimising gut health in the management of CF.

8. Microbiome Modulation with Probiotics

Improving gut health through microbiome modulation is gaining traction in GI and
respiratory diseases [149,150]. The microbiome can be modulated through administration
of a single or combination of commensal strains (probiotics), indigestible carbohydrates
to promote the expansion of commensal strains (prebiotics), or a combination of both
(synbionts). Probiotics were first described in 1907, and have been utilised as a beneficial
dietary supplement since. In 2002, a consensus was reached by a joint FAO/WHO working
group on the definition of probiotics: “Live microorganisms that, when administered in
adequate amounts, confer a health benefit on the host” [151]. Existing probiotic prepara-
tions are based primarily on strains from the genus lactobacilli, bifidobacterial, and other
lactic acid-producing bacteria (LAB) isolated from fermented dairy products and faecal
microbiome samples [152]. However, rapidly expanding research into host–microbe inter-
actions is increasing the impetus for the development of next-generation probiotics from
beneficial microbes including Akkermansia, Eubacterium, Propionibacterium, Faecalibacterium,
and Roseburia species [153–155].

Probiotics have reported beneficial effects in diseases with links to a GI dysbiosis,
inflammation, and respiratory function [15,152,156]. However, knowledge gaps exist re-
lated to robust evidence-based probiotic use as a result of the significant heterogeneity
between studies and variability in the probiotic strains studied. Specific probiotic strains
have been indicated in the reduction in necrotizing enterocolitis (NEC) incidence [157]
and the management of Clostridium difficile [158,159], though the quality of evidence re-
mains low [160]. The rise of in vitro, animal, and cell culture research has expanded our
understanding of prosed mechanisms of action, and include direct interaction with com-
mensal gut microbiota, modulation of the immune system, production of organic acids,
colonization resistance, improved barrier function, production of hormones and other
small molecules with systemic effects, and probiotic–host interactions mediated by cell
surface structures [149].

8.1. Mechanisms of Action

Interaction with microbiome. The direct interaction with the microbiome is mediated
through the increasing microbial stability [161–163], cross-feeding [164], substrate forma-
tion, and antagonistic action through competition and production of antimicrobials and
bacteriocins [165–167]. Competitive exclusion and inhibition of pathogenic species is a
primary function of probiotics. In 2007, Collado et al. [168] tested 12 probiotic strains
against 8 pathogenic strains in a pig intestinal mucosa model, and found that all probiotic
strains tested were able to inhibit and displace pathogenic species of Bacterioides, Clostrid-
ium, Staphylococcus and Enterobacter. Another in vitro assay demonstrated that B. animalis
subsp. lactis BB-12 and Lactobacillus reuteri DSM 17938 inhibited the growth of pathogenic
bacteria E. coli [169]. Likewise, Lactobacillus paracasei FJ861111.1 has demonstrated signifi-
cant inhibition against several common intestinal pathogens including Shigella dysenteriae,
Escherichia coli, and Candida albicans [159].
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Modulate immune system. The interaction between microbiota and the immune system,
reviewed in [170], has impacts systemwide. Probiotics have been shown to modulate im-
mune function through an increase in anti-inflammatory cytokines [171,172], a reduction in
proinflammatory cytokines [149,152,173,174], and augmentation of vaccines and antibody
response [175–177]. The most common species to demonstrate immune modulation include
Lactobacillus, Bacillus, and Bifidobacterium, and the genus Saccharomyces [178]. The modula-
tion of the immune system through probiotics is not consistent across species or strains,
and exhibits variability between hosts [149,172]. Yet recently, Sanders et al. [179] identified
that some immune modulatory mechanisms related to cell surface infrastructure were
conserved across species and even genera.

Production of organic acids. Probiotic species belonging to the Lactobacillus and Bifidobac-
terium genera produce lactic and acetic acids as end products of carbohydrate metabolism.
These organic acids can reduce colonic pH, discouraging the growth of pathogens. Fredua-
Agyeman et al. demonstrated that commercial cocultures of Bifidobacterium and Lacto-
bacillus strains inhibited Clostridioides difficile growth in a pH-dependent manner [180].
Through the process of cross-feeding commensal bacterial species such as Faecalibacterium,
Lactobacillus, and Bifodobacterium, probiotics can also increase levels of beneficial short-chain
fatty acids (SCFA), including butyrate. SCFA have demonstrated anti-inflammatory and
antitumour properties [86,181,182].

Improve barrier function. Tight junctions are critical to epithelial cell function, prevent-
ing translocation of microbial species and proinflammatory metabolites [183]. Probiotic
Lactobacillus and Bifidobacterium strains have been shown to increase the expression of
tight junction proteins [184,185] and reduce the severity of acute gastroenteritis in chil-
dren through fortification of tight junctions [186]. Several Lactobacillus probiotic strains
have also demonstrated regulatory effects on the epithelial mucus layer [153,187–189].
The demonstrated upregulation of mucin production genes and enhanced mucin secretion
improves barrier function, inhibiting pathogen binding to epithelial cells [185].

Production of small molecules with systemic effects. Probiotic strains have been implicated
in the production of a range of small molecules and hormones that influence systemic func-
tion. Interestingly, these include neurotransmitters such as cortisol, serotonin, tryptamine,
noradrenaline gamma-aminobutyric acid (GABA), and dopamine, highlighting the poten-
tial of probiotics to modulate the gut–brain axis [190,191]. A range of satiety hormones and
enzymes that can aid digestion are also produced by some probiotic strains. For example,
Streptococcus thermophilus can facilitate lactose digestion through the production of microbial
β-galactosidase [192].

Probiotic–host interactions mediated by cell surface structures. The cell surface archi-
tecture of probiotic strains is critical to probiotic–host cell interactions. Many Gram-
positive probiotic strains share cell surface macromolecules that mediate these interac-
tions, including surface layer associated proteins (SLAPS), mucin-binding proteins (MUBs),
fibronectin binding proteins, and pili that interact directly with the intestinal epithelium,
mucus, and gastrointestinal mucosa receptors. These demonstrated interactions reviewed
in [179] can improve host barrier integrity, intestinal motility, and binding to intestinal and
vaginal cells.

8.2. Probiotics in CF

The use of probiotics in CF has been investigated in 17 clinical trials. Of those 17 trials,
12 were RCTs, with 8 trials including children and 4 trials including both children and
adults [15]. The number of subjects within the RCTs ranged from 22 to 81, and the trial
duration ranged from 1 month to 12 months. The probiotic formulations varied in dosage
from 108 CFU/day to 1011 CFU/day. Strain formulations with six of the trials utilised a
single Lactobacillus strain L rhamnosus GG [16,19,193,194] or L. reuteri [18,20,195], two trials
utilised multistrain formulations with fructooligosaccharides (FOS) [17,66], and three trials
utilised a multistrain without FOS [18,21,196]. Results from individual trials have cited
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a reduction in in inflammation [16–18], nutritional status [19], and pulmonary health
outcomes [20,21] (Table 1).

Table 1. Evidence for the use of probiotics in CF from RCTs.

Year Probiotic Preparation
(Dose) Study Design Duration Probiotic

Participants Primary Results Ref

1998 L. rhamnosus strain GG
(6 × 109 CFU/day) RCT (Cross-over) 6 months 28

Increased weight gain (placebo 2.7 ± 2.5%, probiotic
8.7 ± 8.1%, p < 0.05). Reduced risk of infections

(infections requiring antibiotic treatment per child in
6 months, placebo 39 and 1.7 ± 0.3, probiotic 19 or
0.9 ± 0.6, (p < 0.05)). Reduction in abdominal pain

(placebo = 6 patients with abdominal pain,
probiotic = 1, p < 0.05).

[194]

2007 Lactobacillus GG
(6 × 109 CFU/day) RCT (Cross-over) 6 months 38

Reduction in pulmonary exacerbations (median 1 vs. 2,
range 4 vs. 4, median difference 1, CI 95% 0.5–1.5; p = 0.003).

Reduction in hospital admissions (median 0 vs. 1, range
3 vs. 2, median difference 1, CI 95% 1.0–1.5; p = 0.001).

Increase in FEV1 (3.6% ± 5.2 vs. 0.9% ± 5; p = 0.02) and
body weight (1.5 kg ± 1.8 vs. 0.7 kg ± 1.8; p = 0.02).

[19]

2009
CasenBiotic a

(1 × 108 CFU/day)
VLS3 b (9 × 1011/day)

RCT (Cross-over) 6 months 40

Increased Quality of Life score from the PedsQLTM survey.
(Probiotics group—parent-reported, 0.87 higher (SD 0.19
higher to 1.55 higher)), (Probiotics group—child-reported,

0.59 higher (SD 0.07 lower to 1.26 higher)).

[18]

2013 Protexin capsule c

(2 × 109 CFU/day) RCT (Parallel) 1 month 20

Rate of pulmonary exacerbation significantly reduced
among probiotic group (p < 0.01). Parent-reported quality

of life improved in probiotic group compared with
placebo group at 3rd month (p = 0.01), not significant at

6th month of probiotic treatment.

[21]

2013 Protexin Restor sachet d

(1 × 109 CFU/day) RCT (Parallel) 1 month 24 Mean faecal calprotectin levels decreased with probiotics
56.2 µg/g, compared to placebo 182.1 µg/g (p = 0.031). [17]

2014 L. reuteri DSM 17938
(1 × 108 CFU/day) RCT (Cross-over) 6 months 30

Significant improvement in gastrointestinal health
(GIQLY score placebo 11.2 ± 0.3, probiotic 11.4 ± 0.3,

(p = 0.0036)). Decreased calprotectin (µg/ml) (placebo
33.8 ± 23.5, probiotic 20.3 ± 19.3, (p =0.003)).

[195]

2014 L. reuteri ATCC55730
(1010 CFU/day) RCT (Parallel) 6 months 30

Reduced pulmonary exacerbations (odds ratio 0.06 ([95%
confidence interval (CI) 0–0.40); number needed to treat 3

(95% CI 2–7), p < 0.01). Reduced number of upper
respiratory tract infections (odds ratio 0.14 ([95% CI 0–0.96);

number needed to treat 6 (95% CI 3–102), p < 0.05).

[20]

2014 Lactobacillus GG
(6 × 109 CFU/day) RCT (Parallel) 1 month 10

Reduced calprotectin concentrations from baseline,
compared to placebo (164 ± 70 vs. 78 ± 54 µg/g, p < 0.05;

251 ± 174 vs. 176 ± 125 µg/g, p = 0.3).
[16]

2018 Lactobacillus GG
(6 × 109 CFU/day) RCT (Parallel) 12 months 41

No significant difference in odds of pulmonary
exacerbations (OR 0.83; 95% CI 0.38 to 1.82, p = 0.643). No
significant difference in odds of hospitalisations (OR 1.67;
95% CI 0.75 to 3.72, p = 0.211). No significant difference

was for body mass index and FEV1.

[193]

2018
FOS + multi strain
powder e (108–109

CFU/day each strain)
RCT (Parallel) 90 days 22

No significance difference in FEV1 and nutritional status
markers. Patients with Staphylococcus aureus +

supplementation had reduced NOx (p = 0.030),
IL-6 (p = 0.033), and IL-8 (p = 0.009).

[66]

2018

L. rhamnosus SP1
(DSM 21690) and

B. animalis lactis spp.
BLC1 (LMG 23512)

(1010 CFU/day)

RCT (Cross-over) 4 months 31

No significant changes in the clinical parameters (BMI,
FEV1%, abdominal pain, exacerbations). Normalization

of gut permeability was observed in 13% of patients
during probiotic treatment.

[196]

a CasenBiotic (CasenFleet) 100 million (108 CFU/day), L. reuteri Protectis (DSM 17938), sweeteners (isomaltose (E-
953), xylitol (E-967)), calcium stearate, palmitic acid, citric acid, strawberry aroma as a capsule. b VLS3 (Faes Farma)
450 million, B. breve, B. longum, B. infantis, L. acidophilus, L. plantarum, L. paracasei, L. delbrueckii subsp. bulgaricus,
S. thermophilus as a powder sachet. c Protexin capsule containing L. casei, L. rhamnosus, S. thermophilus, B. breve,
L. acidophilus, B. infantis, and L. bulgaricus. d Protexin Restor sachet, FOS and a mixture of 1 × 109 CFU/sachet
bacteria (L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. infantis, L. bulgaricus). e FOS + multistrain
powder (5.5 g), L. paracasei, L. rhamnosus, L. acidophilus, and B. lactis.

From 2016 to 2021, six systematic reviews have attempted to synthesise the expand-
ing evidence for probiotics in CF [15,197–201]. The first review in 2016 [201] examined
a total of nine trials with a total of 275 subjects, and found that probiotics were likely to
decrease gut dysbiosis and improve gut maturity and function. In 2017, three more reviews
were published that were broadened to include evidence on pulmonary exacerbations
and quality-of-life indicators [197,199,200]. The latest and most comprehensive systematic
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review was based on data from the 12 RCTs only [15]. Combined data from four trials
(225 participants) found that probiotics may reduce pulmonary exacerbations when ad-
ministered over a four-to-12-month period mean difference (MD) of −0.32 episodes per
participant (95% confidence interval (CI) −0.68 to 0.03; p = 0.07)). The 95% confidence inter-
vals included the possibility of both an increased and deceased number of exacerbations.
The combined data from four trials (177 participants) also indicated that probiotics may
reduce faecal calprotectin, MD −47.4 µg/g (95% CI −93.28 to −1.54; p = 0.04). Due to (i) a
high risk of bias due to selective reporting; (ii) a high risk of bias due to incomplete outcome
data; and (iii) a lack of generalisability, the evidence for these results was evaluated as
low certainty [15].

The results from other biomarkers and health outcomes including lung function
(forced expiratory volume at one second (FEV1)% predicted) (five trials, 284 partici-
pants); duration of antibiotic therapy (two trials, 127 participants); hospitalisation rates
(two trials, 115 participants); height, weight, or body mass index (two trials, 91 partici-
pants); and reported health-related quality of life scores (1 trial, 37 participants) did not
demonstrate any difference between placebo and treatment groups, (all low-certainty evi-
dence). Only two studies included a microbial analysis, and insufficient data was available
to analyse in the systematic review. Likewise, there was insufficient evidence to evaluate
gastrointestinal symptoms. The probiotics evaluated in the RCTs were associated with four
adverse events, including vomiting, diarrhoea, and allergic reactions [15].

Results from individual trials and systematic reviews have consistently indicated
that probiotics are likely to have beneficial effects in CF, especially for inflammation and
pulmonary exacerbations. However, all systematic reviews cited a limited amount of
low-quality data as a barrier to justifying the inclusion of probiotics in current CF treatment
protocols [15,197–201]. Furthermore, a high variation between trial protocols, probiotic
formulation, dose, duration of therapy, and clinical outcomes measured make predictions
about effective strains and dosages and clinical translation difficult. To address data quality,
Coffey et al. [15] recommended multicentre RCTs of at least 12 months duration to best
assess the efficacy and safety of probiotics for children and adults with CF.

9. Microbiome Modulation with Prebiotics

Modulation of the microbiome can also be targeted through the administration of gen-
erally non-digestible compounds known as prebiotics. Prebiotics provide health benefits
by promoting the proliferation of commensal gut species and subsequent production of
beneficial metabolites [202]. Prebiotics were first defined in 1995, with an updated defini-
tion published in 2017 as “a substrate that is selectively utilized by host microorganisms
conferring a health benefit” [203]. Prebiotics occur naturally in foods such as breads, cereals,
onions, garlics, and artichokes [204] but are also available as dietary supplements. The most
established and well documented prebiotics include inulin, fructo-oligosaccharides (FOS),
oligofructose, galacto-oligosaccharides (GOS), and lactulose [205,206]. Other potential
prebiotics with expanding evidence of effect include resistant starch, high amylose maize
starch (HMAS), glucans, arabinoxylan oligosaccharides, xylooligosaccharides, soybean
oligosaccharides, isomalto-oligosaccharides, and pectin [206,207].

9.1. Mechanisms of Action

The underlying hypothesis of prebiotics is that the additional fermentable substrates
drive the proliferation of keystone commensal bacteria, and subsequently the production
of beneficial metabolites such as SCFA [152]. Commensal bacteria and SCFA metabolites
then directly and indirectly improve host health through colonisation inhibition, increased
barrier integrity, and immune modulation [183]. Currently, the mechanisms of action
postulated for prebiotics are primarily based on in vitro models. Validation of proposed
mechanisms and demonstrated effects in human models is limited.

Interaction and modulation of microbiome. Prebiotics in the form of undigestible carbo-
hydrates promote proliferation of beneficial bacteria. As mentioned above, subsequent
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health benefits are a direct result of increased beneficial bacteria such as colonisation inhibi-
tion, or an indirect result of increased beneficial metabolite production such as improved
barrier function and immune modulation [183]. In a randomised, double-blind, placebo-
controlled clinical trial, a prebiotic intervention with GOS reduced intestinal permeability
in obese adults. The probiotic intervention of Bifidobacterium adolescentis also reduced
intestinal permeability, but interestingly, no synergistic effect was observed when the two
were combined [208].

Defence against pathogens. As with probiotics, the modulation of the microbiome
through prebiotics results in the generation of organic acids, reducing luminal pH, which
inhibits growth of pathogens. The increase in commensal species also reduces nutrient
availability for invasive species as described above. There is also evidence to suggest that
GOS prebiotics can directly interfere with E. coli adhesion to tissue culture cells [209].

Metabolic effects. The metabolic effects of prebiotics have been the subject of several
meta-analyses [210–212]. The evidence suggests that GOS and inulin can reduce high
sensitivity C-reactive protein, plasma cholesterol, triglycerides, and fasting plasma insulin
associated with obesity and diabetes. The exact mechanisms of action, duration of effects,
or results from long-term consumption has not yet been established [211].

Immune modulation. Prebiotic immune modulation is primarily activated through
microbial fermentation and subsequent production of SCFA metabolites. However, some
prebiotics have been demonstrated to bind directly to some immune cell receptors [183,213].
Immune modulation is not consistent between probiotic categories or conditions, or even
within conditions. A RCT with 259 infants concluded that GOS and long-chain FOS
administered in formula may regulate immune function in infants, with a 50% reduction in
atopic dermatitis, wheezing, and urticaria to when compared to non-prebiotic formula-fed
infants [214]. Yet, a subsequent multicentre RCT with 365 infants found that while GOS
supplementation altered faecal frequency and consistency, there was no effect on incidence
of infection or allergic manifestation during the first year of life [215]. Likewise, conflicting
studies in elderly individuals have proposed prebiotic GOS supplementation may have
either no effect on immune function [216], or may increase immune function through
enhanced phagocytic activity and activity of natural killer cells [217,218].

9.2. Prebiotics in CF

Prebiotics have been combined with probiotics in synbiotic preparations for use in
CF probiotic trials [17,66,219]. However, only one study has investigated the exclusive use
of prebiotics in CF for GI microbiome modulation [22]. Effective clinical use of prebiotics
assumes a selective utilisation of the supplemented substrate by the recipient’s microbiota.
It is not yet known if the disrupted microbiota in CF that is depleted in key SCFA-producing
organisms, has the functional capacity to utilise prebiotic substrates. In a pilot study, Wang
et al. [22] used a combination of metagenomic sequencing, invitro fermentation, amplicon
sequencing, and metabolomics to investigate the HAMS fermentation capacity of 19 adults
with CF and 16 non-CF controls. They demonstrated that despite low abundances of com-
mon taxa attributed to fermentation of HMAS (Faecalibacterium, Roseburia and Coprococcus),
the production of butyrate and propionate was consistent with healthy control slurries,
while the production of acetate was reduced. In the absence of Faecalibacterium, the CF
SCFA biosynthesis was attributed to Clostridium ss1. Importantly, in a subset of CF patients,
the presence of HAMS led to enterococcal overgrowth and the accumulation of lactate [22].
Likewise, a murine study found that supplementation with purified prebiotics inulin,
fructooligosaccharides, or pectin may result in hepatocellular carcinoma in mice with pre-
existing perturbed microbial communities [220]. These results demonstrated the potential
for variable responses to prebiotics, dependent on the underlying microbiome [220].

In the absence of further CF-specific research, we examined evidence of prebiotics in
GI disorders with an inflammatory link, including ulcerative colitis (UC), Crohn’s disease,
colorectal cancer (CRC), and chronic respiratory disease including Psuedomonas aeruginosa
infections, asthma, and emphysema (Table 2). In colitis animal models, a range of prebi-
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otics including 2-fructosyl lactose [221], barley leaf insoluble dietary fibre (BLIDF) [222],
psyllium [223], wheat bran [224], and butyrate [225] have been shown to reduce colitis
symptoms and inflammatory markers, while increasing bacterial diversity and SCFA levels.
Specific inflammatory markers, bacterial species, and SCFA vary between studies and
prebiotic type (Table 2). The effects of inulin-type fructins (ITF) at 7.5 g/day (n = 12)
or 15 g/day (n = 13) were tested in a human trial with 25 patients with mild/moderate
UC [226]. The high-ITF-dose group showed significantly reduced colitis and calprotectin
concentrations, and increased butyrate levels. The bacterial species Bifidobacteriaceae and
Lachnospiraceae also increased in the high-dose group, but their abundance was not cor-
related to improved disease scores. The lack of taxonomic correlation suggested that
functional shifts may be more relevant than compositional shifts in UC (Table 2). A RCT
involving 140 preoperative patients with CRC investigated the role of prebiotics (fruc-
tooligosaccharides, xylooligosaccharides, polydextrose, and resistant dextrin) on immune
function and intestinal microbiota. They reported that probiotics led to improved serum im-
munological markers and abundances of commensal bacterial species before surgeries [227].
Prebiotics did not protect from surgery-related microbial stress observed in both postopera-
tive groups (Table 2).

Table 2. Evidence of prebiotics and dietary effects on microbiome in chronic inflammatory and
respiratory disease.

Dietary
Component Study Model Disease Type Effect on Disease Effect on Gut Microbiome Effect on Host Biomarkers Ref

Specific diet

Low fat, high fibre Human Ulcerative colitis
(IBD)

↑ QoL IBD
questionnaire scores

↑ Bacteroidetes,
Faecalibacterium prausnitzii

↓ Actinobacteria

↑ Acetate, tryptophan
↓ Lauric acid [228]

Monosaccharides

High-sugar diet Mouse DSS-induced colitis
(IBD) ↑ Colitis

↑ Verruncomicrobiaceae,
Porphyromonadaceae
↓ α-Diversity,
Prevotellaceae,

Lachnospiraceae,
Anaeroplasmataceae

↑ Intestinal permeability,
proinflammatory cytokines,

BMDM reactivity to LPS.
[229]

Artificial sweetener Mouse SAMP1/YitFc ileitis
(Crohn’s disease) No change ↑ Proteobacteria ↑ Ileal myeloperoxidase

reactivity [230]

Milk oligosaccharides

GOS Human
crossover NA NA

↑ Bifidobacterium
↓ Ruminococcus, Synergistes,

Dehalobacterium,
Holdemania

↓ Butyrate (NS), Bacteroides
predicts OGTT [231]

pAOS Mouse P. aeruginosa
infection ↑ Bacterial clearance

↑ Bifidobacterium, Sutturella
wadsworthia,

Clostridiumcluster XI

↑ Butyrate, propionate ↑ IFN-γ,
t-bet gene, M1 macrophage, IL10
↓ TNF a, IL-4, gata 3 gene

[232]

2′-Fucosyl lactose Mouse IBD ↓ Colitis
↑ Ruminococcus gnavus
↓ Bacteroides acidifaciens,

Bacteroides vulgatus

↑ Acetate, propionate, valerate,
TGFβ↓ iNOS, IL-1β, IL-6 [221]

Plant polysaccharides

Dietary fibre Mouse T-cell-transfer
colitis (IBD) ↓ Colitis

No change in microbial
load or Clostridiales

abundance, metabolic
changes between

high-fibre and low-fibre
diets presumed based on

butyrate output

↑ Treg cells, caecal and luminal
butyrate, Foxp3 histone

H3 acetylation
[233]

Dietary fibre Human, RCT
meta-analysis NA NA

↑ Bifidobacterium,
Lactobacillus No change in

α-diversity

↑ Faecal butyrate FOS and GOS
drove microbial shifts [234]
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Table 2. Cont.

Dietary
Component Study Model Disease Type Effect on Disease Effect on Gut Microbiome Effect on Host Biomarkers Ref

Dietary fibre Mouse Emphysema

↓ Alveolar
destruction and
inflammation

in BALF

↑ Bacteroidetes
↓ Lactobacillaceae,
Defluviitaleaceae

↑ SCFA, bile acids,
sphingolipids

↓Macrophages and neutrophils
in BALF

↓mRNA expression of IFN-γ,
IL-1β, IL-6, IL-8, IL-18, IRF-5,

MMP-12, TNF-α, TGF-β,
and cathepsin S

[235]

BLIDF Mouse DSS-induced acute
colitis (IBD)

Reduced colitis
symptoms

↓ Akkermansia
↑ Parasutterella, Alistipes,

Erysipelatoclostridium

↑ SCFA, secondary bile acids,
claudin-1

↑ Occludin and mucin 2
expression

[222]

FOS Human,
crossover NA NA

↑ Bifidobacterium
↓ Phascolarctobacterium,
Enterobacter, Turicibacter,
Coprococcus, Salmonella

↓ Butyrate, Bacteroides
predicts OGTT [231]

FOS, XOS,
polydextrose,

resistant dextrin
Human, RCT CRC ↓ Inflammation

(Preoperative) ↓ Bacteroides
↑ Bifodobacterium,

Enterococcus
(Postoperative) ↓

Bacteroides ↑ Enterococcus,
Lactococcus, Streptococcus

(Preoperative) ↑ IgG, IgM,
transferrin

(Postoperative) ↑ IgG, IgA,
suppressor/cytotoxic T cells

CD3+CD8+, total B
lymphocytes

[227]

ITF Human, RCT Ulcerative colitis ↑ Remission
↓ Colitis

↑ Bifidobacteriaceae,
Lachnospiraceae (not

correlated with
colitis reduction)

↑ Total SCFA, butyrate ↓ Faecal
calprotectin [226]

Psyllium Mouse
DSS-induced,

T-cell-transfer colitis
(IBD)

↓ Colitis ↑ α-Diversity
↓Microbial density

↑ Butyrate, Treg cells
↓ IL-6, faecal LCN-2, intestinal

permeability
[223]

Wheat bran Pig NA ↓ Inflammation
pathways

↑ Bifidobacterium,
Lactobacillis
↓ Escherichia coli

↓ TNF-α, IL-1β, IL-6 and
TLRs/MyD88/NF-κB

pathways
[224]

SCFA

Butyrate Mouse IBD ↓ Colitis

↑ α-Diversity (NS),
Lactobacillaceae,

Erysipelotrichaceae
↓ IgA-coated bacteria,

Prevotellaceae

↓ TNF, IL-6, infiltration of
inflammatory cells in colonic

mucosa, acetate
[225]

Dietary fats

Saturated fats Mouse
Il10−/−,

DSS-induced colitis
(IBD)

↑ Colitis
↑ Bacteroidetes, Bilophila

wadsworthia
↓ α-Diversity, Firmicutes

↑ TH1 mucosal response due to
change in bile acid production [236]

↑, increased; ↓, decreased; BALF, bronchoalveolar lavage fluid; BMDM, bone-marrow-derived macrophages;
Bregs, regulatory B cells; CRP, C-reactive protein; DSS, dextran–sulfate–sodium; FOS, fructooligosaccharides;
GOS, galactooligosaccharides; IBD, inflammatory bowel disease; ILA, indole-3-lactic acid; iNOS, inducible
nitric oxide synthase; ITF, inulin-type fructans; LCN-2, lipocalin-2; LPS, lipopolysaccharide; NA, not applicable;
NS, not significant; RCT, randomized controlled trial; SCFA, short-chain fatty acids; TGFβ, transforming growth
factor-β; TH, T helper; TLR, Toll-like receptor; TNF, tumour necrosis factor; QoL, Quality of life; OGTT, oral glucose
tolerance test; Treg, regulatory.

In 2015, a mouse model study investigated the effects of dietary-pectin-derived acidic
oligosaccharides (pAOS) on Pseudomonas (P) aeruginosa, and found that pAOS may limit
the number and severity of pulmonary exacerbations chronically infected with P. aerug-
inosa [232] (Table 2). These results are highly relevant to individuals with CF, but have
not been validated in human trials. In another small RCT study, either a placebo or a
galactooligosaccharides (GOS) preparation highly selective to Bifidobacterium (B-GOS)
was given to 10 adults with asthma-associated, hyperpnoea-induced bronchoconstriction
(HIB) and 8 adult controls. Pulmonary function remained unchanged in the control group,
but in the HIB group, FEV1 was attenuated by 40%, and the baseline chemokine CC ligand
and TNF-a was reduced after B-GOS supplementation [237] (Table 2). As with probiotics,
the large number and source of prebiotics limits the ability to effectively compare treatments
across studies and conditions.



Nutrients 2022, 14, 480 14 of 27

9.3. Microbiome Modulation with Diet

There is an increasingly apparent link between diet, microbiome modulation, and host
health [238,239]. In the first few years of life, the interactions between diet and the micro-
biome are especially relevant. The oligosaccharides present in breast milk encourage the
colonization of Bifidobacterium spp. The subsequent metabolites produced by Bifidobacterium
spp. support the expansion of the microbiome through cross-feeding, and promote im-
mune tolerance to other commensal bacteria [240,241]. The progression of the microbiome
develops alongside increases in diet diversity, with the introduction of solid food triggering
a rapid expansion in the bacterial community and the subsequent quantity and variety of
metabolites. Metabolites associated with solid food ingestion, primarily butyrate, have been
demonstrated to drive the maturation of the mucosal barrier in Caco-2 cells [242], which is
critical to colonization inhibition of pathogens [243]. As mentioned earlier, iatrogenic
factors such as antibiotic use can disrupt microbiome progression [41]. More broadly, early
life microbiome disruption has been implicated in the development of autoimmune disease
in mouse models [244], and has been associated with lasting metabolic and autoimmune
disease consequences in observational studies [245–248].

The progression of the microbiome continues until it establishes near-adult levels
of diversity at 3–5 years of age. Once established, the microbiome is more resistant to
disruption [249]. However, diet remains a key modulator, with accumulating evidence of
the role of dietary components in local inflammation, intestinal barrier function, and host
immune dysregulation [220]. High-fat diets promote the translocation of certain bacteria by
enhancing intestinal permeability and preferentially increasing the relative abundances of
lipopolysaccharide-bearing bacteria [82,83,250–253]. Dietary fibres microbially fermented
in the gut lead to the production of short-chain fatty acid metabolites, which have demon-
strated roles in immune regulation [254–256], maintenance of epithelial barrier [223,257],
and microbiome modification [258]. Low-fibre diets also have long-term implications for
cancer [259] and metabolic and autoimmune diseases [260,261].

9.4. Diet in CF

Consistent with the general population, early-life microbiome development in CF is
correlated to infant breastfeeding [262] and the initiation of solid foods [133]. Infant breast-
feeding and solid food intake are further linked to the respiratory microbiome [262] and
health outcome indicators, supporting the concept of a gut–lung axis in CF [133]. The pro-
gression of the CF microbiome is disrupted in early life [53,54,59], characterized by reduced
taxonomic and functional profiles (dysbiosis) [7] that persist into adulthood [12]. No dietary
fibre interventions have been trialled in CF, but epidemiological studies and preclinical and
clinical trials support the potential of fibre to modulate the microbiome structure [234] and
improve function in chronic gastrointestinal [263] and respiratory conditions [235,264].

A low-fat, high-fibre diet in individuals with ulcerative colitis improved the quality
of life (QoL) as quantified through the QoL IBD survey. The intervention led to increased
acetate and tryptophan levels and modulated the microbiome, increasing the abundance of
Bacteroidetes and Faecalibacterium [228] (Table 2). A high-fibre diet also reduced inflamma-
tion and attenuated pathological changes associated with emphysema in an emphysema
mouse model exposed to cigarette smoke. Alveolar destruction and inflammatory cytokines
in bronchoalveolar lavage fluid (BALF) were reduced, while SCFA were increased [235]
(Table 2). In contrast, saturated fat decreased microbial diversity and increased colitis sever-
ity and the TH1 mucosal response in a DSS-induced colitis mouse model [236] (Table 2).
In 37 adults with asthma, high-fat intake was also demonstrated to increase inflammation
and attenuate both the duration and magnitude of recovery from an aerosol-administered
bronchodilator. However, the potential role of the microbiome was not investigated [265].
A range of micronutrients and antioxidant supplements have been trialled in CF to amelio-
rate fat-soluble vitamin deficiencies, altered fatty-acid synthesis, and increased oxidative
stress [266]. In 2020, a meta-analysis concluded that the benefits sometimes observed across
8 antioxidant and 15 essential-fatty-acid supplementation studies was not consistent enough
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to recommend their routine use in CF [266]. With the exception of an exploratory study
correlating vitamin D insufficiency with increases in potential pathogenic species [267],
the effect of these supplementations on the microbiome have not been widely explored.

10. Considerations for Clinical Application and Future Studies

A survey from a CF clinic in the USA found that 60% of CF patients currently use some
type of probiotic [268], despite the majority of probiotics available for sale having little to
no evidence to support effectiveness, dose, or disease specificity [269]. Conditional use
of specific probiotic strains in (non-CF) gastrointestinal disorders has been recommended
for prevention of antibiotic-associated C. difficile infections, pouchitis, and prevention of
necrotizing enterocolitis [160]. While these conditions may impact on individuals with CF,
recommendations have not been validated specifically in CF. Evidence from CF-specific
RCTs suggest probiotics are likely to improve GI inflammation and reduce the incidence of
pulmonary exacerbations. Yet, the highly variable, low-quality data has been insufficient to
determine ideal strains, dosage, and treatment duration, constraining the implementation
of probiotics into routine CF care.

The evidence for prebiotics lags behind that for probiotics. There was only one
clinical trial for the use of prebiotics in CF, and the results were mixed. Some individuals
demonstrated successful microbial modulation and an increased production of butyrate and
propionate. However, a subset of CF reactions exhibited enterococcal overgrowth, resulting
in lactate accumulation and reduced SCFA biosynthesis [22]. The altered microbiome
and predisposition to pathogenic overgrowth in CF highlights the need for standardised
preparations of well-characterised prebiotics to be investigated specifically within the CF
population to adequately evaluate safety and efficacy.

The increased energy needs of individuals with CF are currently being meet through
“energy-dense, nutrient-poor” diets with excess saturated fats and inadequate fibre in-
takes [113]. As previously discussed, high-fibre, low-fat diets are associated with improved
inflammation, immune modulation, and gut barrier function outcomes. While simply
adding more dietary fibre to existing CF diets is tantalizing, interventional dietary trials
have demonstrated that increasing dietary fibre intake does not necessarily translate to
increased SCFA production or improvements in disease outcomes [220,270]. This is per-
tinent to members of the CF population, who are likely to have altered SCFA-generating
pathways [7,56,60]. High-quality randomized trials with well-defined dietary components
are essential to provide justification for modulating microbiome–host effects through diet.
Considering the uptake of highly effective modulator therapies, a re-evaluation of dietary
recommendations with a focus on diet quality and individual energy requirements is
also recommended.

As outlined in previous reviews, there is a need for large, well-designed, longitudinal
and multicentred clinical trials to effectively evaluate the safety and efficacy of probiotics
in CF. While this is also true for prebiotics, there is a paucity of prebiotics research in
CF and a plethora of substrates with prebiotic potential. The use of organoids, cell lines,
and or animal models may be an economic option to demonstrate beneficial effects and
mechanisms of action across a variety of compounds before proceeding to clinical trials.
Likewise, there are a variety of dietary interventions and supplements that may have
beneficial host–microbiome effects. High-quality, randomized studies with well-defined
compounds are needed to evaluate safety and efficacy in CF before dietary interventions or
supplements can be utilised to modulate the CF microbiome.

11. Conclusions

Although the exact mechanisms are not yet fully elucidated, the host–microbiome
interactions in CF are critical to the incidence of GI inflammation and disease.

Targeted diet-based therapies provide an opportunity to modulate the altered CF
microbiome to counter the early disruption to microbiome progression, and could trans-
form GI and respiratory disease outcomes. The expansion of metagenomic, proteomic,
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and transcriptomic analyses continues to illuminate CF specific taxonomic and functional
alterations. This knowledge will be critical to the development of next-generation precision
probiotics and prebiotics. For now, there is insufficient evidence to support the safe and
effective use of prebiotics in CF, but probiotics and a re-evaluation of the CF diet may be
beneficial. Critically, there is a need for personalised approaches that understand an indi-
vidual’s baseline microbiota and can manage potential microbiome-modulating therapies
alongside existing medications and complex nutritional needs.
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