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A B S T R A C T   

Chimeric antigen receptor T (CAR T) cell therapy is a new treatment paradigm that has revolutionized the 
treatment of CD19-positive B cell malignancies and BCMA-positive plasma cell malignancies. The response rates 
are highly impressive in comparison to historical cohorts, but the responses are not durable. The most recent 
results from pivotal trials show that current CAR T cell products fail to demonstrate optimal long-term disease 
control. Resistance to CAR T cells is related to CAR structure, T cell factors, tumor factors and the immuno
suppressive microenvironment. Novel strategies are needed following failure with CAR T cell treatment. In this 
review, we discuss the resistance mechanisms to CAR T cell treatment according to disease and the emerging 
strategies to overcome resistance.   

Introduction 

Chimeric antigen receptor T (CAR T) cell therapy is an immuno
therapy method in which autologous T cells are reprogrammed by gene 
transfer to recognize tumor-associated antigens and destroy cancer cells. 
It was first applied by the Israeli immunologist Zelig Eshhar in 1993 and 
was further developed by many other researchers [1]. Producing a 
chimeric antigen receptor (CAR) is a complex process involving many 
genetic rearrangements to redirect the T cell to target cancer cells. The 
CAR structure contains target antigen recognition (scFv etc.), spacer 
(hinge), transmembrane, additional stimulator (co-stimulator) and 
signaling parts. T cells are activated when they bind to an antigen, in
dependent of HLA. The affinity of the target antigen-binding part is 
essential for determining CAR function; too much affinity can cause cell 
death by activation. In addition, the density and epitope localizations of 
the target antigen are also important for the efficiency of CAR T cells [2, 
3]. The spacer part (CD8, CD28, IgG1 or IgG4) is crucial for reaching the 
target antigen and creating a flexible structure [4]. Transmembrane 
structures are responsible for stability and function generally consist of 
type 1 protein (CD3, CD28, CD4, CD8) [5]. Activation and persistence of 
T cells are due to costimulatory molecules found in second and third 
generation structures (e.g. CD28, CD137 (4-1BB), ICOS, CD134 (OX40), 
CD27 or CD244) [6]. 

In CD19-positive relapsed refractory B-cell malignancies, CAR T-cell 

therapies have become an important alternative treatment because of 
their significant recovery rates in patients. CD19 is a B cell-specific 
surface molecule that is present in all developmental stages of B cells 
and is also expressed on the cell surface in malignant transformation. 
CD19 is found in 95% of B-cell malignancies [7]. There are currently 
four CD19 CAR T cell therapy products commercially available. 
Axicabtagene-ciloleucel (KTE-019, axi-cel) was approved by the FDA in 
2017 for use after two or more lines of treatment in relapsed refractory 
diffuse large B-cell lymphoma (primary mediastinal large B-cell lym
phoma, high-grade B-cell lymphoma, and diffuse large B-cell lymphoma 
secondary to follicular lymphoma) [8]. Tisagenleclucel (tisa-cel) was 
approved in 2017 for patients with B-ALL after two or more lines of 
systemic therapy for ALL before the age of 25 and relapsed refractory 
diffuse large B-cell non-Hodgkin lymphoma (DLBCL) high-grade B-cell 
lymphoma, and diffuse large B-cell lymphoma secondary to follicular 
lymphoma in 2018 [9]. Various studies have investigated the safety and 
efficacy of commercially available CAR T cell therapies. A real-world 
experience studies on axi-cel by the Center for International Blood and 
Marrow Transplant Research (CIBMTR) and the US CART Consortium 
showed an overall response rate (ORR) between 70 and 79% and com
plete response (CR) rates around 50%, similar to the ZUMA-1 trial [8]. 
The CIBMTR registry also reported the real-world outcomes of tisa-cel in 
relapsed/refractory DLBCL in 70 patients with rates of ORR and CR of 
59.6% and 38.3%, comparable with the JULIET trial [9]. Following the 
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intention-to-treat ORR and CR rates of 85% and 59%, respectively with 
the ZUMA-2 trial, in 2020, Brexucabtagene (KTE-X19) was approved for 
relapsed refractory mantle cell lymphoma [10]. In 2021, Lisocabtagene 
maraleucel (liso-cel; JCAR017), a CD19-directed CAR T cell product 
incorporating a 4-1BB costimulatory domain and administered in a 
defined CD4:CD8 of CAR T cells, was approved for relapsed refractory 
non-Hodgkin lymphoma [11]. The indication of axi-cel expanded to 
relapsed refractory follicular lymphoma after two or more lines of sys
temic therapy following the ZUMA-5 trial, in which 94% of patients 
responded to treatment [12]. Brexucabtagene was approved recently to 
treat relapsed or refractory B-cell precursor acute lymphoblastic leuke
mia. Beyond that, that the approval of axi-cel had been widen for adult 
patients with large B-cell lymphoma that is refractory to first-line or that 
relapsed within 12 months of first-line chemoimmunotherapy due to 
statistically significant 4 fold greater event free survival (EFS; 8.3 
months vs 2 months; hazard ratio 0.398; P<0.0001) over the current 
standard of care in ZUMA-7 trial [13]. 

In addition to the success of CD19 targeted CAR T cells in leukemia 
and lymphoma, many ongoing studies are targeting various antigens for 
broad application. B cell maturation antigen (BCMA) is an antigen found 
especially in malignant plasma cells, detected in very few B cells and 
playing a role in the survival of plasma cells. In the first phase I trial of 
idecabtagene vicleucel (ide-cel) (bb2121), at least partial response (PR) 
was achieved by 76% of the patients, including CR in 39%, with a me
dian progression free survival (PFS) of 9 months [14]. In a phase II trial 
(KarMMa), 84% of the patients had triple refractory disease (refractory 
to one protease inhibitor, one IMiD and a CD38 antibody) and PR was 
achieved by 73%, including CR in 33%, and the median PFS was 8.8 
months [15]. The first BCMA-targeted CAR T, ide-cel, was approved by 
the FDA on March 26, 2021 in patients with relapsed refractory MM who 
received at least four lines of treatment with immunomodulatory drugs, 
proteasome inhibitors and anti-CD38 monoclonal antibodies [16]. Cil
tacabtagene autoleucel, a bi-epitope BCMA antigen directed CAR T cell 
therapy showed a promising ORR reaching 97.9% with median duration 
of response (DOR) of 21.8 months in CARTITUTE-1 trial receiving the 
FDA approval on February 28, 2022 [17]. The total number of patients 
treated with CAR T cell therapy is rapidly increasing with the avail
ability of commercial products and the growing number of ongoing 
clinical trials. 

Mechanisms of CD19 CAR T cell resistance 

A recent meta-analysis including 38 studies found that the response 
rate of CD19 CAR T cells was 81% in acute lymphoblastic leukemia 
(ALL) and 68% in lymphoma [18]. Despite these impressive results, 
some of patients experience primary resistance to CD19 CAR T cell 
treatments or relapse after infusion. Primary resistance to CAR T cells 
occurs in 10-20% of pediatric patients with B-ALL and around 30% in 
lymphoma. Relapse rates after CAR T cell therapy in B cell malignancies 
range from 21% to 60% as some of the major clinical trials are shown in 
Table 1. High tumor burden at the time of lymphodepletion has been 
linked with CAR T cell therapy failure in ALL and lymphoma [19,20]. 
Although these results are favorable in comparison to historical cohorts 
of heavily pretreated patients, the long-term disease-free survival was 
between 30% and 40% [21,22]. The prognosis is worse in patients with 
chronic lymphocytic lymphoma (CLL): the 18-month PFS was 29% with 
tisa-cel [23]. Mechanisms of resistance to CD19 CAR T cell therapies 
may be classified under two main categories: Target antigen positive and 
target negative. 

Target antigen positive resistance 

CD19 positive relapses generally occur early after initial disease re
missions following CAR T cell infusion. There are three major conse
quences related with this: CAR structure, T cell factors and tumor 
factors. 

Mechanisms of resistance associated with CAR structure 
For effective CAR T cell treatment, CAR T cells must synapse to 

tumor cells, effectively kill the tumor cells, expand in patients and 
persist to eliminate tumor cells and prevent relapse. Antibodies to mu
rine CAR scFV used in clinical studies may play a role in CAR T cell 
resistance. In the study of Turtle et al., murine scFV FMC63 was detected 
as an immunogenic epitope in five patients resistant to CAR T cell 
therapy [24]. Antigen-independent tonic signaling of CAR structures can 
limit the power of CAR T cells [25]. Selecting the appropriate spacer 
domain of the optimal length is critical for efficient ligand binding. The 
different costimulatory domains demonstrate various kinetics of 
anti-tumor activity. CD28-containing CAR T cells are easily activated by 
low antigen levels and mediate rapid initial tumor cell killing [26]. 
Faster activation kinetics of CD28 containing CAR T cells were associ
ated with increased phosphorylation of CAR CD3z, Lck, ZAP-70 and LAT 
following in vitro activation [27]. This early activation leads to 
exhaustion and poor persistence. In the study of Zhao et al., the persis
tence of CD19 CAR T cells containing the 4-1BB costimulatory region 
was found to be longer than those containing a CD28 costimulatory 
region because the 4-1BB signaling domain reduced exhaustion [28]. 

For optimal clinical response, in vivo CAR T cell expansion and 
persistence are essential. Expansion of CAR T cells was reported to 
correlate with IL-6-STAT3 signaling; inhibiting these pathways de
creases proliferation [29]. Additionally, the site of insertion for the CAR 
vector affects the CAR T cell expansion [30]. Patients with less differ
entiated (naïve or early memory) T cells have strong proliferative po
tential and resistance to exhaustion. Sustained activation of Akt in CD8 T 
cells promotes terminal differentiation [31]. Transcriptomic analysis 
showed that increased expression of genes regulating especially late 
memory/effector T cell differentiation and aerobic glycolysis cause poor 
prognosis in CAR T cell therapy [29]. At the same time, it is hypothe
sized that undifferentiated T cells in the T cell pool turn into more 
differentiated effector/memory T cells with age and decrease the 

Table 1 
CD19 CAR T cell clinical trials.  

Reference CAR 
costimulatory 
domain 

Patient 
Population/ 
Disease 

Complete 
Remission 
(%) 

Relapse 
post CAR 
T cell 
infusion 
(%) 

[25] 4-1BB Adult/ALL 90 33 
[45] 4-1BB Pediatric and 

Young Adults/ 
ALL 

93 45 

[135] CD28 Adults/ALL 83 57 
[46] 4-1BB Pediatric and 

Young Adults/ 
ALL 

81 36 

[136] 4-1BB Adult/B Cell NHL 78 28 
[137] CD28 Adult/Diffuse 

large B cell 
lymphoma, 
primary 
mediastinal B cell 
lymphoma, 
transformed 
follicular 
lmyphoma 

54 40 

[23] 4-1BB Adult/Diffuse 
large B cell 
lymphoma, 

52 54 

[133] CD28 Adult/B-ALL, 
DLBL, follicular 
lymphoma, 
nodular HL 

54 38 

[62] 41BB Pediatric/ALL 77 43 
[134] CD28-41BB Adult/ALL and 

Lymphoma 
50-ALL 
36- 
Lymphoma 

47  
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efficacy of CAR T cell therapy [32]. 

Mechanisms of resistance associated with T cell factors 
One of the most important factors in the response to tumor immu

notherapy is the state of the patient’s immune functions. The most 
important problem underlying the lower efficacy of CAR T cells, espe
cially in CLL patients, is T cell defects in patients [23]. These T cell 
defects pose a problem in the manufacturing of autologous CAR T cells, 
especially in phase 1 studies (NCT01044069, NCT02445248) [33]. 
Exhaustion has been suggested as a major reason for T cell dysfunction. 
Exhausted human T cells that are related with defective c-Jun func
tionality have a higher number of inhibitor receptors, less proliferative 
potential and cytotoxity [34]. Basic leucine zipper ATF-like transcrip
tion factor (BATF) and interferon regulatory factor 4 (IRF4) counteract 
CAR T cell exhaustion [35]. 

In another study, patients who responded to CAR T cell therapy had 
higher polyfunctionality scores, characterized by production of multiple 
types of cytokines and chemokines [36]. The transduction success of 
CAR T cells obtained from geriatric donors is low [37]. Additionally, the 
number of functional T cells can be decreased related to number of prior 
therapies. Delays in manufacturing could be challenging in highly pro
liferative malignancies [38]. 

Mechanisms of resistance associated with tumor factors 
Tumor cell survival and apoptosis are important in antigen-positive 

resistance. Tumor necrosis factor (TNF)-related apoptosis-enhancing 
ligand (TRAIL), Fas ligand (FasL) and cytokines such as IFN- are 
involved in tumor cell apoptosis [39]. Although type I cytokine secretion 
is normal, cytotoxic effects of CAR T cells seem to decrease when TRAIL 
inhibitor is administered [40]. Singh et al. demonstrated that ALL cell 
lines lacking the pro-apoptotic molecules FADD, BID, CASP8 or 
TNFRSG10 were resistant to CAR T cell killing [41]. Recently, the loss of 
NOXA, a B-cell lymphoma 2 (BCL2) family protein in B cell malignancies 
was found to be the major regulator of resistance to CAR T cell therapy 
by impairing the apoptosis of tumor cells [42]. Furthermore, pro
grammed death-1 ligand-1 (PD-L1) is expressed by the tumor cells or the 
tumor microenvironment and inhibits the CAR T cell cytotoxicity in B 
cell malignancies [43]. 

Target antigen negative resistance 

Target antigen negative resistance (CD19 loss or downregulation) 
has been widely studied. Various studies have shown that CD19 negative 
relapses are between 9 and 25% of B-ALL cases treated with CAR T cell 
therapy [7,44,45]. CD19 negative recurrences have also been reported 
in DLBHNL (33%) [21]. Unlike TCR pathway in T cells, robust CAR T cell 
activation is dependent to high levels of target antigen [46–48]. A het
erogeneous distribution of tumor antigens is important in CAR T cell 
therapy resistance. Mechanisms of antigen-negative relapses include the 
presence of target antigen-negative tumor cells before treatment, mu
tations, splicing variations, epitope masking or lineage switching 
[49–53]. Sometimes, CD19-28ζ or CD19-41BBζ CAR T cells were able to 
bind to target antigen however failed to activate or kill tumor cells 
related with the lack of presentation of target antigens [54,55]. The 
CD19 negative relapses were higher in patients who received CD19 
directed bispecific T cell engager (BITE), blinatumomab [56]. 

In the CD19 gene, exons 1-4 encode extracellular structures, and 
exons 5-13 encode transmembrane structures [51]. One study examined 
12 cases with CD19 negative relapse after CAR T cell therapy; it showed 
that especially exon 2-5 mutations - exon 2, 3 or 4 frame mutation, 
insertion in exon 3, or mutations in exon 4 may impair CD19 expression 
in the cell membrane [57]. Alternative splicing resulted the loss of the 
extracellular epitope of CD19 that is recognized by the CAR T cells [49]. 
CD19 epitope masking was reported in a relapsed B-ALL patient due to 
the insertion of the CAR transgene into a single leukemic B cell [58]. 
Gardner et al. showed that after infusion of CD19 CAR T cells in 7 B-ALL 

patients with MLL gene reorganization, recurrences occurred in two 
patients with myeloid phenotype after lineage switching [59]. In recent 
years, the concept of trogocytosis has become prominent in the mech
anisms of complete and incomplete antigen escape. In vitro and in vivo 
experiments with CD19 positive leukemia cells demonstrated that CAR 
structures reversibly cause loss of antigen by trogocytosis; they transfer 
the target antigen to T cells. CD19 positive T cells are killed by CAR T 
cells (fratricide), which is effective in resistance to CD19 CAR T cell 
therapy [55]. The mechanisms of CD19 CAR T cell resistance are sum
marized in Fig. 1. 

Mechanisms to cope with CD19 CAR T cell resistance 

Optimization of CAR structure 

Extensive preclinical and clinical studies have been conducted to 
improve the efficacy of CAR T cells due to these resistance mechanisms. 
There are reports that CAR T cells with human-derived scFvs have better 
persistence and killing power than murine scFv. A CR rate of 92.9% was 
achieved when CD19 CAR T cells with human scFVs were administered 
to refractory B ALL patients who did not receive CAR T cell therapy 
before. CR was obtained in only one of 3 patients who had previously 
received murine CAR T cells [31]. In a study by Mueller et al., although 
anti-murine CAR antibodies developed after tisagenlecleucel treatment 
were detected in 84.8% of patients, these antibodies did not change the 
effectiveness of the treatment [33]. Ghorashian and colleagues designed 
a lower affinity CD19 scFV termed ‘CAT’ to CD19 than the FMC63 sFC 
which improved the efficacy and prolonged the persistence [60]. 

CD19 CARs containing CD28 spacer and transmembrane domain 
were shown to secrete lower cytokine levels and reduced activation- 
induced cell death (AICD) compared to those containing CD8a [61]. 
No significant difference was observed in response rates when CD28 or 
4-1BB co-stimulators were used in second-generation CAR constructs 
developed against CD19 in ALL [62]. In CD19 positive lymphomas, the 
efficacy of CAR T cells containing 4-1BB co-stimulators is slightly better 
than those containing CD28 co-stimulator [63]. In order to optimize 
CD28-CAR T activation, prevent exhaustion and create memory phe
notypes, one of the ITAM motifs in CD3z can be mutated, the tran
scription factor c-Jun can be overexpressed, or a single residue in CD28 
co-stimulation can be changed [34,64]. Additionally, the structure of 
CD28 can be modified for superior persistence and reduced exhaustion, 
as shown in a B-ALL mouse model in which both CD28 YMNM and PRRP 
motifs were mutated while the PYAP motif remained intact [65]. To 
reduce rapid CAR phosphorylation upon activation, FK 506 binding 
protein (FKBP) rapamycin binding (FRB) was introduced in an in vivo 
lymphoma xenograft model [18]. 4-1BB CAR T cells can be optimized to 
improve their initial activation kinetics by overexpression of Lck or a 
CD28 hinge/transmembrane domain that improves antigen recognition 
[27,66]. The 4-1BB containing CARs continue to signal in endosomes by 
mutation of intracellular lysine residues within the CAR [67]. Placing 
both CD28 and 41BB costimulatory domains upstream of CD3ζ in 
third-generation CAR T cells demonstrated variable results: some 
showed improved expansion, cytokine production and anti-tumor 
function, while others had inferior activity in comparison to second 
generation CARs [68,69]. The constitutively active myD88 and CD40 
co-stimulation resulted in enhanced expansion and efficacy in CD19 
CAR T cells [70]. 

Armored CAR T cells 

CAR T cell activity can be increased with the help of various cyto
kines (e.g.,IL-7, IL-12, IL-15, IL-18, IL-21, IL-24) or express cos
timulatory ligands (e.g., CD40L, 4-1BBL) that increase T cell 
proliferation and decrease differentiation, a strategy known as ‘arm
oured CARs’ or ‘TRUCKs’. IL-12 secreting CD19 targeted cord blood 
derived T cells retained a central memory effector phenotype, had 
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increased antitumor efficacy in vitro [71] and resulted in enhanced 
survival in mice in vivo [72]. IL-15 cultured CAR T cells show increased 
proliferative capacity, persistence and anti-tumor activity in murine 
lymphoma models [73]. IL-21 promoted expansion of central memory 
and naïve-like T cell subpopulations, greater expression of interferon 
IFNγ and granzyme B, resulting in greater tumor control in murine 
models of B-ALL [74]. TCR deficient, human IL-18 expressing CD19 CAR 
T cells exhibited enhanced proliferation and antitumor activity in a 
xenograft model [75]. IL-24 armored CD19 CAR T cells enhanced anti
tumor efficacy, while improving proliferation and persistence [76]. In 
order to trigger the co-stimulatory molecules such as CD40, CD86 and 
major histocompatibility complex (MHC) class II, Kuhn et al. generated 
CAR T cells expressing CD40L [77]. 

Multiple antigen targeting 

With multi-antigen targeting, anti-tumor activity can be increased by 
providing efficacy against two or more antigens, especially in tumors 
with heterogeneous antigen expression. Especially, in CD19 negative or 
low relapses, B-cell malignancies retain other B cell markers such as 
CD22, CD20 or CD70a. Co-transduction, co-administration, Bicistronic 
CAR, SUPRA CAR, Tandem CAR, ’AND’ gate CAR, and ’AND’ gate CAR 
synNotch are some of these multiple antigen targeting strategies. In a 
phase 1 study conducted in patients who received CD19 CAR T cell 
therapy and who acquired CD19 negative recurrence or resistance, CR 
was obtained in 73% (11/15) of the patients with CD22 CAR T cell 

therapy [78]. But antigen escape was repeated; relapse with CD22- or 
CD22dim lymphoblasts was observed in 7 of 11 patients. Dual targeting 
of CD19 and CD22 in ALL was effective achieving minimal residual 
disease (MRD) negative in 6 of 8 patients [79].. Stanford group reported 
MRD negative CR in 88% of patients with ALL (n=17) and CR in 29% of 
patients with LBCL with CD19/CD20 CARs [80]. Fousek et al. showed 
that trivalent CAR T cells (targeted CD19, CD20 and CD22) have more 
effective anti-tumoral activities than CD19 CAR T cells, and at the same 
time, trivalent CAR T cells have been shown to form more effective 
immune synapses [81]. 

In order to overcome antigen loss or antigen mutation, universal CAR 
T cells derived from allogeneic healthy donors in which switch mole
cules between CAR T cells and tumor cells were added are on the 
agenda. FITC folic acid [82], chemically regulated SH2 delivered 
inhibitory Tail switch [83], leucine zipper domain [84], peptide 
neo-epitope (PNE) [85] are ‘off’ or ‘on’ safety switch systems that 
facilitate binding of CAR T cells to zipFvs. 

Combination of targeted therapies 

Targeted drugs such as PI3K beta inhibitors, histone acetylase in
hibitors, Bruton’s tyrosine kinase (BTK) inhibitors, checkpoint inhibitors 
(PD-1 and CTLA-4), immunomodulatory drugs (IMIDs), and BCL-2 in
hibitors can be administered together with CAR T cells to overcome 
escape mechanisms and improve anti-tumor activity [86]. Pre-clinical 
models suggested that lenalidomide improves the effect of CAR T cells 

Fig. 1. Resistance mechanisms of CD19 CAR T cells. A. Murine scFV is an immunogeneic epitope B. Different spacer and transmembrane domains effect CAR T 
cell efficacy. Costimulation domains regulate persistence and exhaustion C. Tonic signaling can limit the power of CAR T cells. D. T cell characteristics may effect the 
clinical response (T cell phenotype, T cell aging, T cell exhaustion). E. In antigen negative relapses loss of antigen, splicing variations, lineage swiching, trogocytosis 
are important mechanisms. F. Tumors may be lack of pro-apoptotic molecules. 
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with CD28 co-stimulatory domain by inducing phosphorylation of 
CD28, increasing the expression of nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) and abrogating 
the inhibitory effect of cytotoxic T-lymphocyte-associated (CTLA)-4 Ig 
[87]. In in vivo Burkitt lymphoma preclinical models, CD19 CAR T cells 
in combination with lenalidomide had significantly decreased tumor 
burden and increased tumor infiltration by CD8+ T cells [88]. ZUMA-14 
is a phase II clinical trial that combines axi-cel and lenalidomide in 
patients with refractory large B cell lymphoma [89]. Administration of 
ibrutinib from two weeks before leukapheresis until 3 months after 
CD19 CAR T cell (JCAR014) improved responses, with 88% ORR and 
decreased incidence of severe cytokine release syndrome (CRS) in pa
tients with relapsed refractory CLL [55]. In parallel, 89% MRD nega
tivity was shown when CD19 CAR T cells were administered 
concurrently with ibrutinib to patients who were not in CR despite at 
least 6 months of ibrutinib [90]. Checkpoint proteins (e.g., PD-1, PD-L1) 
have been shown to be upregulated after CAR T cell infusion [91]. 
Co-expression of CAR T cells with PD-1-blocking scFV and CAR struc
tures or combining PD-1-blocking antibodies with CAR T cells are 
currently being investigated in ongoing studies [25](NCT02926833). In 
a phase 1/2 primary analysis of ZUMA-6, investigating axi-cel in com
bination with atezolizumab, a 75% ORR and 46% CR were demonstrated 
in relapsed/refractory DLBCL [92]. 

Allogeneic CAR T cells 

CAR T cells produced from allogeneic donors (‘off-the-shelf’ CAR T) 
seems a promising solution for use in T cell intrinsic disorders or pro
duction failures. No cases of acute graft-versus host disease (GVHD) 
were reported in an NCI follow-up study including 20 patients who 
relapsed after allogeneic stem cell transplantation and received anti- 
CD19 CAR T cells derived from donors. Eight of 20 achieved a 
response, with a 6-month PFS of 32% [93]. Various αβTCR and/or MHC 
class I complex expression can be altered by gene editing methods such 
as CRISPR-Cas9 and transcription activator-like effector nuclease 
(TALEN) to prevent T cell reactivity originating from allogeneic T cells 
from healthy, unrelated donors and to minimize GVHD [94]. Encour
aging results were posted from the first in-human trial of anti-CD19 
allogeneic CAR T cell therapy with TALEN-mediated TRAC and CD52 
gene editing in refractory DLBC and follicular lymphoma. The ORR was 
78% with 3 patients in CR, none of whom developed GVHD [95]. Recent 
progress in immunology has elucidated other options beside conven
tional αβ T cells for CAR optimization, such as NK cells, iNKT cells, γσ T 
cells, and induced pluripotent stem cells. CAR NK cells that do not rely 
on the T-cell receptor (TCR) for cytotoxic killing are another allogeneic 
option, and 73% of the relapsed/refractory lymphoid malignancy pa
tients achieved clinically meaningful responses with a novel 
cord-blood-derived CD19-directed CAR-NK product with IL-15 support 
[96]. 

Clinical strategies 

Before CAR T cell therapy is administered, lymphodepletion regi
mens are applied to reduce tumor burden and regulatory T cells and 
increase CAR T cell response. Demethylating drugs such as cyclophos
phamide (Cy), fludarabine/Cy (FC), bendamustine/pentastatin/Cy, and 
Flu/Ara-C (FA) are used in lymphodepletion. In a meta-analysis by 
Zhang et al., the 6-month PFS rate was 94.6% in those who received 
lymphodepletion before CAR T cell therapy, while it was 54.5% 
(p<0.001) in those who did not receive lymphodepletion [97]. Flu/Cy 
conditioning chemotherapy augmented the levels of homeostatic cyto
kines and increased CAR T cell expansion and function [98]. 

The selection of central memory and stem cell-related memory T 
cells during CAR T cell manufacturing and infusion is especially 
important for T cell proliferation and persistence [99]. For in vivo CAR T 
cell fitness, strategies to manipulate the PI3K/Akt pathway are under 

investigation [100]. TET2 downregulation via an epigenetic approach 
was shown to promote T cells towards a central memory like state [101]. 
Microbiota-derived short-chain fatty acids promoted the memory CD8 T 
cells as well as dasatinib resulted in a memory-like phenotype [102, 
103]. 

Sequential infusion of CD19 CAR T cells is another option for 
relapsed patients. In the ZUMA-1 trial, patients with CD19 positive re
lapses were re-treated with CD19 CAR T cells. Out of 13 retreated pa
tients, the ORR was 54% with four in CR and three in PR, and the median 
DOR was 81 days [6]. Gauthier and colleagues re-infused anti-CD19.BBz 
CAR T cells in patients with R/R leukemia and lymphoma and resulted 
that the re-infusion strategy was more effective among patients who 
received fludarabine. However, the outcomes in ALL patients were only 
21% and median PFS of 4 months [104]. A larger study with longer 
follow-up is needed to optimize sequential CAR T cell therapy. 

The effect of allogeneic hematopoietic stem cell transplantation 
(allo-HSCT) in patients who achieve complete remission after CAR T cell 
therapy is controversial. Although Summers et al. showed that the use of 
stem cell transplantation for reinforcement increased progression-free 
survival (p=0.059) [105], Watanabe et al. found no difference in 
progression-free survival or overall survival [3]. Zhao et al. observed 
similar leukemia-free survival (70.2% vs 64.1%) and OS (70.2% vs 
65.4%) after a median follow-up of 4 years in patients who received 
allo-HSCT after achieving complete remission from CAR T therapy or 
after achieving CR following chemotherapy [106]. 

Mechanisms of BCMA CAR T cell resistance and how to cope with 
them 

In clinical studies of relapsed refractory MM in which BCMA-targeted 
CAR T cells were applied, the ORR were between 70% and 100%, while 
the CR was between 25% and 70%. PFS in some studies was less than 12 
months, indicating myeloma recurrence [107,108]. Unlike CD19 CAR T 
cell treatment, investigations on resistance are still few, and not all of the 
mechanisms have been discovered. 

Humoral and/or cellular immune responses 

The tumor binding site of the BCMA CAR is one of the sites that has 
been studied for resistance. In order to reduce the humoral and/or 
cellular immune responses against CAR T cells, human scFVs have also 
been used in anti-BCMA CAR T cells with orvacabtagene autoleucel. This 
approach increased the ORR to 92% and reduced the occurrence of se
vere CRS and neurotoxicity (3%) [109]. However, the development of 
orvacabtagene autololuecel may not be proceeded due to company de
cision. Similarly, fully human B-cell maturation antigen specific CAR T 
cells (CT053) achieved 100% CR with 50% VGPR or better with a me
dian follow-up of 4.5 months [110]. Simplifying the CAR 
antigen-binding domain to remove the light-chain domain reduced the 
immunogenicity. Furthermore, when the CAR structure is simplified to a 
fully human heavy-chain variable domain (FHVH33), 4-1BB and CD3z 
domains mediated similar cytokine release; reduction in tumor burden 
compared to an identical CAR with a conventional scFv might be related 
to better gene expression by transduced T cells [111]. Alternative 
manufacturing process for delivering CAR transgene with 
transposon-based piggyBac is potentially less immunogenic than 
virus-based vector. In PRIME phase 1 / 2 study, the incidence of adverse 
events were lower as well as the ORR of 57% [112]. 

T cell factors 

Preclinical studies showed that persistence was improved if the 
product is rich in memory-like phenotype [99]. BB21217 is a 
next-generation anti-BCMA CAR T therapy uses the same lentiviral CAR 
T design as idecabtagene vicleucel (bb2121), but it adds the phosphoi
nositide 3 kinase inhibitor bb007 during ex vivo culture for more 
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persistence and to enrich the product for memory-like T cells. In a 69-pa
tient trial, the ORR was 68% (CR of 29%, median response of 17 months) 
[113]. In BCMA CAR T cell resistant patients, the expression of inhibi
tory immune checkpoint receptors such as LAG-3, TIGIT and PD-1 direct 
T cells to terminally exhausted and senescent stage [114]. To improve 
CAR T cell activity, CAR T cells can be engineered to secrete PD-1 or 
PD-L1 antibodies, co-transduce a PD-1/CD28 chimeric receptor, 
knockdown or knockout of PD-1 may be selected [115]. 

For broader application and to overcome the limitations due to 
manufacturing related with T cell fitness, allogeneic CAR T cells are 
increasingly popular. Sommer et al. demonstrated a sustained antitumor 
response in mice using allogeneic BCMA CAR T cells with TALEN gene 
editing, which was further enhanced by incorporating a CD20 
mimotope-based intra-CAR off switch [116]. Allogeneic anti-BCMA CAR 
T cell phase I studies are ongoing (NCT04244656, NCT04171843). 
Initial phase 1 data of ALLO-715, a human scFV with 41BB cos
timulatory domain, showed promising ORR of 60% with 40% of VGFR 
or better without observing any graft versus host disease [117]. 

Antigen loss or downregulation 

Some relapses are either antigen-negative or antigen-low. Biopsy 
proven BCMA loss at relapse was shown in 8% of patients whereas in 
another cohort 67% of patients had a reduction in BCMA intensity on 
myeloma cells following BCMA CAR T cell infusion including 4 out of 9 
non-responders [118,119]. In the KarMMa study, a loss of antigen at 
relapse was observed in one relapsed patient out of 16 (6%) in immu
nohistochemistry assessment, and serum antigen loss by soluble BCMA 
in approximately 4% of cases(122). A single-cell transcriptome profiling 
study on serially collected bone marrow samples showed a biallelic loss 
of BCMA in a case that represented an initial response followed by lack 
of response to second Idecabtagene vicleucel infusion [120,121]. 
Gamma secretase mediated shedding from plasma cells can lead to in
crease of soluble BCMA. When a gamma secretase inhibitor, which in
creases binding to BCMA and decreases soluble BCMA, is added to 
anti-BCMA CAR T cell therapy, treatment efficacy is increased [109, 
122]. In a phase I first-in-human trial combining CAR T cells expressing 
a fully human BCMA scFV with an orally administered gamma secretase 
inhibitor, the best ORR was 100% (5 VGPR, 1PR) with 5/6 patients MRD 
negative [123]. Cilta-cel is another anti-BCMA CAR T designed with a 
bi-epitope BCMA binding that confers high-avidity binding. Preliminary 
results indicated that 97% of patients received at least PR with stringent 
CR in 67%; the response was independent of baseline BCMA expression, 
CAR T cell expansion and persistence [124]. 

There are several ways to engineer multi-specific T-cell products for 
antigen escape, including single bicistronic vectors expressing two 
CARs, tandem vectors in which a single CAR contains two binder se
quences, or co-transduction of CAR T cells with two separate CAR- 
encoding vectors [111,125]. Several targets are studied in multiple 
myeloma rather than BCMA: CD19, CD38, GPRC5D, CD1 and SLAMF7. 
CD19/BCMA co-targeting studies showed a high overall response rate of 
95% with CR rates between 16% and 57% [126]. Jiang et al. conducted 
a study in high-risk patients using BCMA-CD19 dual FastT CAR T cells, 
which showed an ORR of 93.8% with a median follow-up of 7.3 months 
[127]. GPRC5D is another novel target antigen expressed on all 
CD138-positive cells and restricted to plasma cells. When BCMA and 
GPRC5D were targeted together, significant survival increased in BCMA 
escape or two-antigen positivity compared to single-antigen targeting in 
in vivo models [128]. Dual-target CAR T expressing CD38 and BCMA 
achieved an ORR of 88% with a median follow up time of 9 months and 
PFS of 75% [129]. 

Tumor microenvironement 

Immunosuppressive effects arising from the tumor microenviron
ment are another component of resistance to treatment in MM. The 

tumor microenvironment consists of tumor-associated immune cells 
(macrophages, myeloid-derived suppressor cells, regulatory T cells 
(Treg)), fibroblasts, endothelial cells, extracellular cytokines, matrix 
proteins, and chemokines. Tumor specific activation of CAR T promotes 
IL-2 that upregulates T reg population. Disruption of the IL-2 axis by 
engineering CAR T cells to express the IL-7 receptor would reduce the 
Tregs and improve anti-tumor response [130]. Recent studies have been 
conducted to show that the expression of programmed cell death ligand 
1 (PD-L1) by tumor cells triggers apoptosis in immune effector cells. 
Hypoxia, accumulation of lactic acid after glucose depletion, and low pH 
levels impair the effector function of T cells and decrease IL-2 and IFN 
levels. Prostaglandin E2 (PGE2) synthesized by tumor cells and anti
tumor activity in T cells have been shown to decrease via IL-6, chemo
kine ligand 1 (C-X-C motif, CXCL1) and granulocyte colony stimulating 
factor (G-CSF) pathways [131]. To overcome the inhibitory effects from 
the tumor microenvironment: ‘Armored’ CAR T cells can be engineered 
to secrete immune-stimulatory cytokines, immune-suppressive signals 
can be inhibited or genes encoding inhibitory signals can be removed 
[115]. In MM, urokinase-type plasminogen activator receptor (uPAR) 
was reported to increase cancer-associated fibroblasts during disease 
progression, and anti-uPAR CAR T was shown to ablate the cells in vitro 
and in vivo and restore tissue homeostasis in mice with liver fibrosis 
[132]. The resistance mechanisms to BCMA CAR T cells and the stra
tegies to overcome them are summarized in Table 2. 

Conclusion 

Anti-CD19 and anti-BCMA CAR T cell therapy is a breakthrough 
advance in malignant hematology and has dramatically changed the 
treatment landscape. Nonetheless, long term benefit can be achieved in 
half of the patients [18,107]. Despite intensive efforts, CAR T cell 
resistance remains an important drawback. Various studies have eval
uated the resistance mechanisms associated with CAR-T cell infusion: 
lack of CAR T cell persistence, T cell exhaustion, target antigen escape, 
lineage switch, genetic mutations, factors related with tumor and tumor 
microenvironment [49–53,108,130,135]. Strategies to overcome the 
resistance or relapse following CAR T cell infusions are optimizing CAR 
design, sustaining T cell fitness, endorsing optimal manufacture condi
tions, targeting multiple antigens, switching from autologous products 
to universal, safe and potent allogeneic products, combining pharma
ceuticals to fight with microenvironmental negative effects [78,86,93, 
130]. Eventually, evidence of enhanced potential of CAR T cells will 
shape the future and allow broader applications in B cell malignancies. 
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