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Introduction
Energy balance is controlled by the intricate interplay of  gene expression in the hypothalamus, brainstem, 
cortex, and limbic system (Figure 1A). The hypothalamus and brainstem are part of  the homeostatic cir-
cuitry involved in sensing and controlling the energy status of  the organism by integrating multiple periph-
eral metabolic inputs — homeostatic signals — such as circulating metabolites, gut-derived hormones, and 
adiposity-related signals (1, 2). Cortical and limbic brain regions form the executive and reward systems 
of  the forebrain corticolimbic appetitive network. The executive system is involved in the conscious and 
voluntary decision to eat (3, 4). Regions of  the reward system establish the motivational (incentive salience) 
and pleasurable (hedonic) values of  energy balance–associated stimuli and behaviors (5). Homeostatic, 
reward, and executive regions are interconnected by extensive neuronal circuits (5). Disturbances in any of  
these regions or their interconnecting neurocircuitry can lead to an imbalance of  food intake and energy 
expenditure resulting in obesity. To understand the pathogenetic mechanisms of  obesity, detailed knowl-
edge about qualitative and quantitative gene expression patterns of  these brain regions is essential.

Monogenic obesities confirm the essential roles of  specific genes in body weight homeostasis in mice 
and humans (6–8). The vast majority of  human obesity is not monogenic. Many genes of  small effect 
account for only approximately 10% of  the apparent approximately 40% risk variance for obesity within a 
specific environment (9–11). Efforts to find the missing inheritance — in less prevalent genetic variants of  
novel genes — have led to the extensive use of  whole-exome sequencing (WES) in pedigrees or association 
analyses of  extremely obese individuals (12). The vetting of  novel variants for functional relevance can be 
conducted in cell-based and animal transgenic systems (13, 14). To assist in prioritizing genes/alleles for 
such resource-intensive strategies, brain regional expression patterns can be used.

Although there are several comprehensive public resources (e.g., GTExPortal, Brain Architecture Project) 
reporting large-scale gene expression data from many tissues, none of  them allows the direct comparison of  

Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, 
cortex, and limbic system. Gene expression signatures of these regions can help elucidate the 
pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male 
mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The 
expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding 
variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with 
these genetic categories of obesity had localized expression patterns across brain regions. Known 
monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus 
and developing hypothalamus. The obesity-associated genes clustered into distinct “modules” 
of similar expression profile, and these were distinct from expression modules formed by similar 
analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 
diabetes, autism, breast cancer) in the same energy balance–relevant brain regions.
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the molecular signature based on bulk RNA sequencing (bulk RNA-Seq) profiling of  specific brain regions 
involved in the regulation of  energy balance. Therefore, we performed bulk RNA-Seq of  obesity-relevant 
brain regions comprising the nominal homeostatic, reward, and executive regions in both adult and embry-
onic mouse brains (Figure 1, A and B; and Supplemental Table 1; supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.149137DS1). Additional sequencing was obtained from 
brain regions considered not to be involved in the regulation of  energy balance, as well as mouse embryonic 
stem cells (Supplemental Figure 1, A–C; Figure 1B; and Supplemental Table 1). Our study also aims to char-
acterize the utility of  this database for vetting obesity-associated genes of  interest. Thus, we mapped known 
obesity-associated genes — including monogenic obesity genes, rare coding variants, low-frequency coding 
variants, syndromic obesity genes, and variants identified in GWAS for BMI — onto the expression profiles of  
the brain regions with functional roles in energy balance. Moreover, we identified specific expression patterns 
for obesity-associated genes in obesity-relevant brain regions compared with genes associated with other dis-
ease phenotypes — type 1 diabetes (T1D), type 2 diabetes (T2D), autism, and breast cancer. Furthermore, to 
facilitate usage of  these data, we provide access via a publicly available web portal, the Brain Energy Balance 
Atlas, accessible via http://doegelab.com, permitting the region-specific analyses of  any gene of  interest.

Results
Samples cluster according to brain area specification and developmental stage. RNA-Seq was performed on 57 sam-
ples from brain regions (regions of  energy balance and additional regions) from P56 C57BL/6NTac male 
mice (Figure 1, A and B, Supplemental Figure 1, and Supplemental Figure 2); 9 samples from 4 brain 
regions from E14.5 C57BL/6NTac mouse embryos (Figure 1, A and B, and Supplemental Figure 3); and 4 
samples from 2 mouse embryonic stem cell (mESC) lines derived from C57BL/6 mice (Supplemental Figure 
1); sample description including replicates is given in Supplemental Table 2 and Supplemental Table 3. We 
performed hierarchical clustering of  brain regions and mESC samples using expression profiles of  all pro-
tein-coding genes. As expected, samples clustered according to brain area specification and developmental 
stage, with a clear separation of  mESC samples (Figure 2A).

We analyzed the distribution of known neuropeptides (n = 92; ref. 15). Well-characterized neuropeptides 
such as pro-opiomelanocortin (Pomc), agouti-related protein (Agrp), neuropeptide Y, cart prepropeptide (Cartpt), 
and kisspeptin were specifically expressed in the arcuate hypothalamic nucleus (ARH); oxytocin (Oxt), corti-
cotropin-releasing hormone (Crh), thyrotropin-releasing hormone (Trh) in the paraventricular hypothalamic 
nucleus (PVH; Figure 2B); and hypocretin neuropeptide precursor (Hcrt) in the lateral hypothalamic area (LHA; 
Figure 2B). These findings suggest that the punch biopsies were highly specific for the region of interest (ROI).

Genetic categories of  obesity have specific frequency distributions and enrichment scores across brain regions mediat-
ing energy balance. We mapped known obesity-associated genes to our data set. The obesity-associated genes 
included in this study belong to 5 genetic categories: (a) monogenic obesity (n = 9), caused by single gene 
defect (e.g., Lepr; ref. 16); (b) rare coding variants that have been associated with increased BMI (n = 12) 
with a human minor allele frequency (MAF) of  less than 1% (e.g., Plxna3; refs. 14, 17, 18); (c) low-frequen-
cy coding variants associated with BMI (n = 9), MAF = 1% to 5% (e.g., Ache; ref. 18); (d) syndromic obesity 
(n = 25), which are genes that cause a known syndrome that has obesity as 1 phenotypic manifestation 
(e.g., Phip; refs. 19–23); (e) genes inside loci identified by GWAS of  BMI (n = 144) (e.g., Tcf7l2; refs. 24–30; 
and Supplemental Table 4 and Supplemental Table 5). For genes identified in more than 1 modality (Pomc, 
Mc4r, Lepr, Bdnf, Tub, Ntrk2, Bbs4, Sh2b1, Gipr), the genes were counted in all relevant categories.

All obesity-associated genes were detected in the brain at variable levels in at least 1 region per gene 
(Supplemental Figure 4 and Supplemental Table 6). To assess whether these obesity-associated genes are 
enriched in any of  the brain regions involved in energy balance, the frequency distribution was calculated 
for each obesity-associated gene, by calculating the percentage a sample contributes to the total transcripts 
per million (TPM) for each gene. For each genetic category, the data were compiled, and the average was 
plotted (Figure 3, A–E). This was repeated for all categories together (Supplemental Figure 5A).

Monogenic obesity genes were significantly enriched in the ARH compared with any other brain region; 
monogenic obesity genes also showed enrichment in the terminal hypothalamus (THy) and peduncular 
hypothalamus (PHy). Statistical comparisons between brain regions are given in Supplemental Table 7. The 
other genetic categories showed more equal distribution across brain regions. There were trends for relative 
enrichments in some regions, such as among genes associated with rare coding variants in embryonic brain, 
low-frequency coding variants in hypothalamic regions, GWAS genes in ARH and embryonic midbrain, and 
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syndromic genes in hypothalamus and cerebellum (Figure 3 and Supplemental Table 7). For all obesity-as-
sociated genes as a group (n = 190), we observed a trend for enrichment in some regions, such as ARH and 
embryonic midbrain (Supplemental Figure 5A and Supplemental Table 8).

To better understand the genetics underlying these frequency distributions, we identified the 3 genes with 
the highest percentage expression among the obesity-associated genes in the 2 most enriched regions, within 
each genetic category (Figure 4) as well as within all the obesity-associated genes (Supplemental Figure 5B). 
The genes in the top 2 enriched regions for monogenic obesity were Pomc, Pcsk1, and Lepr in ARH, and Sim1, 
Pomc, and Tub in THy/PHy. All of these genes are expected to be present in these regions and the majority of  
them are components of the leptin–melanocortin pathway. These results are consistent with prior studies that 
have classified monogenic obesity mutations into genes with roles in the hypothalamic melanocortin system 
of feeding regulation (e.g., Lepr, Pomc) and genes that are essential for the development of the hypothalamus 
(e.g., Sim1; ref. 16). The embryonic midbrain with Plxna3, Gpr, and Plxna1 and embryonic hindbrain with Nrp2, 
Sema3a, and Plxna3 are the 2 regions (and top genes) identified as the most enriched for rare coding variants. 
Among genes associated with low-frequency coding variants, we identified Entpd6, Ache, and Rapgef3 as genes 
with the highest TPM values in the ventromedial hypothalamic nucleus (VMH) and Rapgef3, Zfr2, and Ache in 
the PVH. Among syndromic genes, we identified Ttc8, Bbs9, and Mks1 in ARH, and Inpp5e, Alms1, and Mkks in 
central lobule II (CENT2; Figure 4). The genes in the top 2 enriched regions for GWAS loci were Tal1, Tfap2b, 
and Tcf7l2 in embryonic hindbrain and Pomc, Asb4, and Calcr in the ARH (Figure 4). These regions and genes 
were also identified, when combining all genes of all genetic categories (Supplemental Figure 5B).

Figure 1. Bulk RNA-Seq of brain regions involved in the regulation of energy balance. (A) Regions of the hypothalamus and brainstem (green) include 
the paraventricular hypothalamic nucleus (PVH), the dorsomedial nucleus of the hypothalamus (DMH), the ventromedial hypothalamic nucleus (VMH), the 
arcuate hypothalamic nucleus (ARH), the nucleus of the solitary tract (NTS), the dorsal-vagal complex (DVC), the lateral hypothalamic area (LHA), and the 
parabrachial nucleus (PB). Regions of the brain executive system (red) include the anterior cingulate area (ACA) and the frontal cortex (FRP). Regions of 
the brain reward system (yellow) include the nucleus accumbens (ACB), ventral tegmental area (VTA) and LHA. The regions in the developing brain include 
forebrain (F), terminal hypothalamus (THy) and peduncular hypothalamus (PHy), midbrain (M), and hindbrain (H). (B) Schematic of workflow from cryosec-
tions to micropunches and RNA extraction and sequencing for the adult (left-hand side of panel) and embryonic (right-hand side of panel) mouse brain.
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In conclusion, we observed that among all the analyzed genetic categories associated with obesity, mono-
genic obesity genes were most enriched in arcuate nucleus and embryonic hypothalamus. We also observed 
that for all obesity-associated genes, there was a trend for enrichment in ARH and embryonic brain regions.

Next, we performed gene set enrichment analysis (GSEA; Supplemental Figure 6, A–F). All rep-
licates were input, alongside the obesity genetic category gene lists (monogenic, rare coding variance, 
low-frequency coding variants, GWAS, and syndromic). Results of  GSEA are as follows: monogenic 
obesity genes were significantly enriched in the arcuate nucleus of  the hypothalamus and showed a 
trend of  enrichment in the embryonic hypothalamus (Supplemental Figure 6, A and B); rare coding 
variants were significantly enriched in embryonic hypothalamus and hindbrain (Supplemental Figure 
6, A and C); low-frequency coding variants were enriched in hypothalamic regions, significantly in the 
dorsomedial nucleus of  the hypothalamus (DMH; Supplemental Figure 6, A and D); GWAS genes were 
enriched in the embryonic midbrain, among hypothalamic regions significantly in the ARH and DMH, 
and in regions of  the cerebellum (Supplemental Figure 6, A and E); and syndromic genes were enriched 
in regions of  hypothalamus and cerebellum, significantly in the ARH, VMH, and CENT2 (Supplemental 
Figure 6, A and F). In conclusion, as shown above for the frequency distribution, GSEA determined that 

Figure 2. Brain regions cluster according to brain area specification and developmental stage and express known neuropeptides. (A) Dendrogram (unsu-
pervised hierarchical clustering) showing similarity of samples according to the anatomical location within the brain with clear distinction of the embryonic 
samples and the mESCs. (B) Heatmap of known neuropeptides. Genes and brain regions were sorted by hierarchical clustering of scaled genes. Scaled TPM 
values are given in shades of blue. B6-1/B6-2, mouse embryonic stem cell; TPM, transcripts per million.
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obesity-associated genes are enriched in the ARH and embryonic hypothalamus. In addition, GSEA also 
identified the enrichment of  obesity-associated genes in the VMH, DMH, and regions of  the cerebellum.

Obesity-associated genes cluster into modules. To assess whether obesity genes from different genetic categories 
show similar or different expression profiles across the brain regions of energy balance, we subjected all obesity-as-
sociated genes to weighted correlation network analysis (WGCNA), obtaining 11 modules (Supplemental Figure 
7). The heatmap in Figure 5A visualizes the modules, and detailed information (e.g., genes annotation) is given 
in Supplemental Table 9. In module 1, we observed enrichment of genes in embryonic regions. Genes in module 

Figure 3. Frequency distribution of obesity-associated genes across the brain regions of energy balance for each genetic 
category. The frequency distribution of each obesity-associated gene was determined by calculating the TPM percentage 
for each region compared with the sum of TPM values for all samples (brain regions and mESCs, averaged across each 
replicate). For each genetic category, the frequency score was calculated by compiling the percentage for all the genes in a 
gene list, shown as mean ± SEM. Individual percentage values for each gene were displayed as dots. (A) Monogenic, n = 9; 
(B) rare, n = 12; (C) low-frequency, n = 9; (D) GWAS, n = 144; (E) syndromic, n = 25. B6-1/B6-2, mouse embryonic stem cell; 
TPM, transcripts per million.
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2 had a higher expression in embryonic regions and stem cells. Module 3 featured genes with a high expression 
in regions of homeostatic system and cerebellum. Module 4 was characterized by genes with a high expression 
in regions of the executive system and hypothalamic regions. In module 5, we detected enrichment of genes in 
regions of the cerebellum. In module 6, the expression was highest in regions of the executive system, reward sys-
tem, hypothalamus, and cerebellum. Genes defining module 7 had a high expression in regions of the embryonic 
brain, cerebellum, and in stem cells. In modules 8 and 9, we observed an increased expression of genes in regions 
of embryonic brain and cerebellum; in differentiating 8 from 9, module 8 had an increased expression in executive 
regions. Module 10 showed the presence of genes specifically enriched in embryonic and hypothalamic regions. 
In module 11, genes were more widespread among the regions, with no specific localization (Figure 5A).

To address whether there is an association between expression modules and the genetic categories of obe-
sity evidence, for each module, the number of genes associated to each genetic category was normalized to the 
size of the module, and the normalized gene number was expressed as a percentage (Figure 5B). All modules 
are characterized by the presence of genes belonging to more than 1 genetic category, with modules 1 and 4 
being defined by genes associated with all 5 genetic categories. Except for GWAS genes that were distributed 
across all modules, genes from the remaining genetic categories were present only in a subset of the modules. 
Genes associated with monogenic obesity were primarily expressed in module 10, but also in modules 1, 4, and 
8 (Figure 5B), the modules with predominance of genes in embryonic brain and hypothalamus (Figure 5A). 
These results are in agreement with our previous observations of enrichment of monogenic obesity genes in 
hypothalamic (ARH) and embryonic (THy/PHy) regions (Figure 3, Figure 4, and Supplemental Figure 6, A 
and B). Rare coding variants were distributed across modules 1, 2, 4, 8, and 11. Low-frequency coding variant 
genes were identified in modules 1, 3, 4, 5, and 6, and in particular, in module 5 (Figure 5B), in which there was 
an abundance of genes in cerebellar regions (Figure 5A). Syndromic genes were distributed across all modules, 
except module 11, with predominance in module 6 (Figure 5B), as characterized by genes in regions of the 
executive system, reward system, hypothalamus, and cerebellum (Figure 5A).

Next, we determined whether a genetic category is overrepresented in a given module. We developed an 
overrepresentation score that indicates the deviation from an equal distribution across modules, normalizing 
for module size and gene list size. The deviation from the equal distribution was plotted, where a positive 
deflection denotes enrichment (Figure 5C). Each cluster was enriched with genes specifically associated with 
1 of  the genetic categories. Genes associated with monogenic obesity were enriched in module 10 (Figure 5C), 

Figure 4. Detailed analysis of the 2 most enriched brain regions for each form of obesity inheritance. Visualization of the 3 genes with the highest 
percentage expression in the 2 most enriched regions for (A) monogenic genes; (B) rare coding variants; (C) low-frequency coding variants; (D) GWAS loci; 
(E) syndromic genes. Each slice represents the percentage of expression for a specific gene or group of genes (as indicated in the legend), and the sum of 
all the slices represent the total expression (100%) of genes for a specific genetic category in a selected brain region.
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comprised of  genes with a high expression in the embryonic and hypothalamic regions (Figure 5B), again 
supporting the importance of  this genetic category in these regions (Figures 3 and 4 and Supplemental Figure 
6, A and B); and module 4 (Figure 5C), with a predominance of  genes in the executive and hypothalamic 
regions (Figure 5B). Rare coding variants were enriched in module 1 (Figure 5C), suggesting the involvement 
of  these genes in embryonic brain (Figure 5B, Figure 3, and Supplemental Figure 6, A and C). Futhermore, 
rare coding variants were also enriched in modules 2 and 11 (Figure 5C). Low-frequency coding variants 
were enriched in module 3 and 5 (Figure 5C). These modules feature high gene expression in homeostatic 
and cerebellar regions (Figure 5A), which is in agreement with the previously identified association of  these 
genetic category to hypothalamic regions (Figure 3 and Supplemental Figure 6, A and D). GWAS genes were 
enriched in module 7 and 9 (Figure 5C), showing again a predominance of  this category in embryonic regions 
(Figure 5B, Figure 3, and Supplemental Figure 6, A and E). Syndromic genes were enriched in module 6 and 
8 (Figure 5C), confirming the presence of  these genes in regions of  the cerebellum and hypothalamus (Figure 

Figure 5. Organization of obesity-associated genes into modules using WGCNA. (A) Heatmap of obesity-associated genes. TPM values were scaled for 
each gene to improve visualization. Higher expression is denoted by darker shades of blue. The order of genes on the heatmap was determined by the 
module number, followed by the order the gene appears in hierarchical clustering. (B) Relative abundance (given as percentage) of the genes within the 
modules, based on the genetic categories. (C) Overrepresentation score of the genes within the modules, based on the genetic categories, showing a posi-
tive deflection where a gene list is overrepresented. WGCNA, weighted correlation network analysis.
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5B, Figure 3, and Supplemental Figure 6, A and F). Taken together, these results show that different genetic 
evidence for association with obesity can result in similar expression profiles across brain regions.

To further strengthen our findings, we utilized an independent approach to assess the expression 
profile of  obesity-associated genes across brain regions of  energy balance. All obesity-associated genes 
were subjected to hierarchical clustering, resulting in 11 distinct modules, each defined by more than 
1 genetic category (Supplemental Figure 8 and Supplemental Table 5). This analysis also found the 
abundance of  genes associated with monogenic obesity in embryonic and hypothalamic regions; the 
enrichment of  rare coding variants in embryonic regions; and the prevalence of  low-frequency coding 
variant genes in regions of  the executive system, reward system, and hypothalamus (Supplemental 
Figure 8). Clustering into additional smaller modules did not lead to the assignment of  just 1 genetic 
category per module (Supplemental Figure 9).

We then looked at changes in the composition of the modules, comparing the 11 modules obtained using 
WGCNA clustering with the 11 modules obtained performing hierarchical clustering, and observed that the 
majority of obesity-associated genes had the tendency to cluster in similar ways in the 2 distinct analyses (Sup-
plemental Figure 10), strengthening the validity of both approaches and the biological relevance of our data set.

To confirm that a genetic category is not assignable to a distinct module, we performed hierarchical clustering 
on all the genetic categories individually and found that genes associated with each of the categories were distrib-
uted across all anatomic regions, without distinct preference for homeostatic, executive, or reward system (Sup-
plemental Figure 4, A–E). Thus, the genetic category per se did not determine regional gene expression profile.

Obesity-associated genes have specific enrichment scores across energy balance–relevant brain regions. To determine 
whether the expression patterns of the obesity-associated genes are specific to obesity, we examined the expres-
sion profiles of genes known to be associated with 4 other diseases: (a) autoimmune disease (T1D, n = 61; ref. 
31); (b) metabolic disease (T2D, n = 140; refs. 32–36); (c) complex brain disorder (autism, n = 190; ref. 37); and 
(d) cancer (breast cancer, n = 98; refs. 38–40; Supplemental Table 10, Supplemental Table 11, Supplemental 
Table 12, and Supplemental Table 13). The expression values for genes associated with obesity, T1D, T2D, 
autism, and breast cancer are given in Supplemental Table 14. Transcripts from all genes were detected in the 
brain at variable levels in at least 1 region per gene. These diseases have some genes in common with obesity (15 
genes of 650 total genes; Supplemental Table 15), which may have been suggestive of the presence of shared 
pathways between diseases and/or obesity as a risk factor for the other diseases and/or vice versa.

To assess if  there was region-specific enrichment for 1 or the other disease, we performed GSEA, where all 
replicates were input alongside the gene list comprised of all obesity-, T1D-, T2D-, autism- and breast cancer–
associated genes (Figure 6 and Supplemental Figure 11, A–E). When analyzed with GSEA, obesity-associated 
genes were significantly enriched in regions of the homeostatic system (Figure 6 and Supplemental Figure 
11A). Autism-associated genes were significantly enriched in regions of the executive system and embryonic 
brain (Figure 6 and Supplemental Figure 11D). Breast cancer–associated genes were significantly enriched in 
mESC samples (Figure 6 and Supplemental Figure 11E). T1D- and T2D-associated genes were not significant-
ly enriched in any region but showed a trend of enrichment in some of the regions: T1D-associated genes in 
regions of the executive system and cerebellum and T2D-associated genes in regions of the homeostatic and 
executive system and embryonic brain (Figure 6 and Supplemental Figure 11, B and C).

Figure 6. GSEA of obesity-, T1D-, T2D-, autism-, and breast cancer–associated genes across the brain regions of energy balance. For each system 
(homeostatic, executive, reward, embryonic brain, cerebellum, mESC), samples from all the regions were aggregated. GSEA was run on the 5 disease gene 
lists. The enrichment score was plotted, and regions with a positive enrichment score and FDR-adjusted nominal P < 0.05 (based on GSEA output) were 
denoted with an asterisk (ref. 139). GSEA, gene set enrichment analysis; T1D, type 1 diabetes; T2D, type 2 diabetes; mESC, mouse embryonic stem cell.
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These results show that obesity-associated genes have specific enrichment across brain regions mediat-
ing energy balance.

Clustering of  obesity-associated genes together with genes associated with other diseases. To assess if  genes asso-
ciated with the 4 aforementioned diseases cluster with obesity, we compared obesity-associated genes with 
T1D-, T2D-, autism-, and/or breast cancer–associated genes using WGCNA, resulting in 15 distinct mod-
ules (Supplemental Figure 12), each defined by admixed genes associated with all diseases, and each com-
posed of  genes with specific regional localization. The heatmap in Figure 7A visualizes the modules, and 
detailed information (e.g., genes’ annotation) is given in Supplemental Table 16. The percentage of  the 
contribution of  each disease to each module, calculated by normalizing the number of  genes associated to 
each disease normalized to the size of  the module and expressed as percentage, revealed that all diseases are 
present, at different levels, in every module. The only exceptions were for T1D-associated genes, absent in 
modules 1, 12, and 14; and T2D-associated genes, absent in module 11 (Figure 7B).

To evaluate whether the modules were enriched for disease-specific genes, even if  composed of  genes 
from all diseases, we generated an overrepresentation score for each gene list by calculating the number of  
genes that should be in each module if  they were equally distributed, normalizing for module size and gene 
list size. The deviation from the equal distribution was plotted, where a positive deflection denotes over-
representation (Figure 7C). Module 1 was enriched by breast cancer–associated genes (Figure 7C). This 
module was characterized by genes with a high expression specifically in stem cells (Figure 7A), confirming 
the previous GSEA results that show significant enrichment of  breast cancer–associated genes in the mESC 
samples (Figure 6 and Supplemental Figure 11E). Module 2, with a high expression of  genes in the embry-
onic regions (Figure 7A), was enriched by obesity-associated genes (Figure 7C), which was expected to be 
highly present in these regions. Module 3, characterized by a high expression of  genes in regions of  the 
executive system and cerebellum (Figure 7A), is enriched with autism-associated genes (Figure 7C), sup-
porting the significant enrichment previously shown for genes associated with this disease in these regions 
(Figure 6 and Supplemental Figure 11D). Module 4 was enriched with obesity-associated genes (Figure 
7C). This module had a high expression of  genes in regions of  the homeostatic system and cerebellum 
(Figure 7A), in agreement with our previous findings (Figure 6 and Supplemental Figure 11A). Autism-as-
sociated genes were enriched in module 5 (Figure 7C), characterized by genes highly expressed in embry-
onic regions and mESCs (Figure 7A). Module 6 was enriched with T1D-associated genes (Figure 7C). This 
module had an increased expression of  genes in cerebellum regions (Figure 7A). We observed a nonsignif-
icant trend of  enrichment of  T1D-associated genes in the cerebellum in the GSEA analysis (Figure 6 and 
Supplemental Figure 11A). Obesity-associated genes were enriched in module 7 (Figure 7C). This module 
showed the highest expression of  genes in regions of  the executive system and homeostatic system (Figure 
7A), confirming the previously obtained results for the latter system (Figure 6 and Supplemental Figure 
11D). Module 8, comprised of  genes highly expressed in the executive system (Figure 7A), was enriched by 
autism-associated genes (Figure 7C), confirming our previous findings (Figure 6 and Supplemental Figure 
11D). Module 9 was enriched by obesity-associated genes (Figure 7C) and characterized by genes with 
a high expression in embryonic regions, cerebellum, and mESCs (Figure 7A). Module 10, with a high 
expression of  genes in hypothalamic regions (Figure 7A), was enriched by T2D-associated genes (Figure 
7C). Module 11 was enriched by obesity-associated genes (Figure 7C). Module 12 showed enrichment of  
autism-associated genes (Figure 7C), with genes primarily localized in embryonic regions (Figure 7A). 
T2D-associated genes were enriched in module 13 (Figure 7C), characterized by a high expression of  genes 
in regions of  the reward system (Figure 7A), and module 14 (Figure 7A), defined by genes with a high 
expression in the embryonic hindbrain (Figure 7A). Taken together, this analysis reveals that clustering 
of  obesity-associated genes together with genes associated with other diseases resulted in modules with a 
higher contribution from 1 or another disease. Such findings indicate that despite some similarities in the 
genetic signature between diseases, they clearly showed the presence of  different gene expression patterns.

We confirmed these findings with an independent method, k-means clustering. First, we compared 
obesity with each of  the other diseases individually. We combined obesity-associated genes with genes 
associated with 1 of  the other 4 diseases and performed k-means clustering, resulting in 4 distinct clus-
ters, each cluster defined by the genes associated with the 2 diseases (Supplemental Figure 13, A–D, F, G, 
and I; Supplemental Table 17; Supplemental Table 18; Supplemental Table 19; and Supplemental Table 
20). For each combination, the results show that more than half  of  the clusters had a higher contribution 
from 1 or the other disease, whereas the remaining clusters had a more equal contribution from both 
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diseases, confirming the presence of  unique gene expression patterns, even with the existence of  small 
similarities (Supplemental Figure 13, A–D, F, G, and I; Supplemental Table 17; Supplemental Table 18; 
Supplemental Table 19; and Supplemental Table 20).

Secondly, we also combined together obesity-, T1D-, T2D-, autism-, and breast cancer–associated genes 
and performed k-means clustering, resulting in 6 distinct clusters, each defined by admixed genes associated 
with all diseases (Supplemental Figure 13, E and J; and Supplemental Table 21). Each cluster was enriched 
with genes specifically associated with 1 of the diseases, and as consequence, there was no cluster with equal; 
genetic contribution from all diseases (Supplemental Figure 13, E and J, and Supplemental Table 21).

Figure 7. Clustering of obesity-associated genes with genes associated with other diseases using WGCNA. (A) Heatmap of obesity-, T1D-, T2D-, autism-, 
and breast cancer–associated genes. TPM values were scaled for each gene to improve visualization. Higher expression is denoted by darker shades of 
blue. The order of genes on the heatmap was determined by the module number, followed by the order the gene appears in hierarchical clustering. (B) 
Relative abundance (given as percentage) of the genes within the modules, based on type of disease. (C) Overrepresentation score of the genes within the 
modules, based on the type of disease, showing a positive deflection where a gene list is overrepresented. WGCNA, weighted correlation network analysis; 
T1D, type 1 diabetes; T2D, type 2 diabetes; TPM, transcripts per million.
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In summary, although there was some overlap in the genetic signature between obesity, T1D, T2D, autism, 
and breast cancer, there was a large genetic component characterized by a clear separation, suggesting an obe-
sogenic signature of obesity-associated genes in brain regions that function in the regulation of energy balance.

Discussion
In this study, gene expression profiles of  16 energy balance–relevant brain regions were obtained from P56 
mice and E14.5 embryos using bulk RNA-Seq. The brain regions chosen were compiled from a comprehen-
sive literature search of  regions known to be involved in the control of  energy balance, as reviewed by Caron 
and Richards (5). To punch the ROIs with the highest possible accuracy, we chose P56 as the age of  adult 
mice to allow the use of  landmarks from the mouse brain map of  the Allen Brain Atlas with the punch size 
chosen by the size of  the ROI. Canonical neuropeptides involved in the regulation of  body weight (e.g., Pomc, 
Agrp, Oxt) and those involved in other functions that are known to map to distinct regions (e.g., Cartpt, Hcrt, 
Trh, Crh) show the expected region-specific expression pattern. This neuropeptidergic expression pattern sup-
ports the accuracy of  the regional identifications and sample ascertainment.

As expected, known obesity-associated genes (n = 190) were enriched in at least 1 of  the brain regions 
of  nominal homeostatic, reward, and executive circuitry. Monogenic obesity genes were expressed in specific 
regions of  the homeostatic circuits as well as the developing hypothalamus. The arcuate nucleus was found 
to be the region most enriched by the 9 known human monogenic obesity genes, with the highest expression 
of  Pomc, Pcsk1, and Lepr genes, followed by the embryonic hypothalamus, with prevalent expression of  Sim1, 
Pomc, and Tub genes. Our results are in agreement with published literature that strongly associates mono-
genic forms of  obesity, characterized by severe, early-onset obesity, with loss-of-function mutations in genes 
of  the hypothalamic leptin–melanocortin pathway, which plays a critical role in the regulation of  food intake 
and body weight (41), e.g., POMC (42–51), LEPR (52–69), PCSK1 (70–77), SIM1 (78–87), and tubby-like pro-
tein TUB (88–92). Furthermore, we observed that genes carrying rare coding variants, low-frequency coding 
variants, and genes identified in GWAS, as well as genes associated with syndromic obesity, were enriched in 
at least 1 of  the energy balance brain regions: rare coding variants in the embryonic hindbrain; low-frequency 
coding variants and GWAS genes in homeostatic regions; and syndromic genes in hypothalamic regions. 
Interestingly, our data show specific enrichment for syndromic and GWAS genes in regions of  the cerebel-
lum, a region whose link with obesity has not yet been well defined. For these genes, we have to consider 
the following 2 options: (a) expression in these samples is a measure for additional functions of  these genes, 
independent of  their role in obesity, and (b) cerebellum is truly contributing to the regulation of  body weight. 
At this point, experimental testing of  the above hypothesis is needed to understand such expression pattern.

WGCNA clustering of  known obesity-associated genes revealed that these genes cluster in distinct mod-
ules, and each module is defined by more than 1 genetic category (similar results were obtained performing 
an independent hierarchical clustering analysis). Monogenic obesity genes were predominantly expressed 
in module 10, characterized by enrichment for genes expressed in the embryonic brain and hypothalamus. 
Furthermore, the genes defining this module include Pomc and Tub. Six modules (modules 1, 2, 7, 8, 9, 10) 
were characterized by enrichment of  genes in the embryonic regions, consistent with a role for neurode-
velopmental processes mediating susceptibility to obesity (93, 94). In fact, these modules contained genes 
known to participate in brain development, but not functionally characterized with regard to obesity, such as 
Hmgcr (95), Klf7 (96), and Lmo1 (97, 98), as well as genes whose role in both development and obesity have 
been functionally characterized, such as Sim1 (78–87), Creb1 (99, 100), Nrp2 (14), and Phip (22, 23, 101, 102).

In addition, we identified modules with enrichment of  obesity-associated genes in mESCs or cerebellum. 
Modules 2 and 7 are characterized by enrichment of  genes in the mESC lines and embryonic brain. Genes in 
these modules implicated in obesity are Gdf15 (103), Alms1 (104), and Rab23 (20). Their dysfunction during 
neurodevelopment could contribute to susceptibility to obesity. Modules 3, 5, 6, 8, and 9 are characterized 
by enrichment of  genes in regions of  the cerebellum. Some of  the genes present in these modules have been 
functionally associated with obesity, including Irs1 (105), Sdccag8 (106, 107), Negr1 (108–111), Ksr2 (112, 
113), Tlr4 (114, 115), and Sh2b1 (116, 117). Mice with either Lepr neuron–specific or adult-onset, hypothal-
amus-specific ablation of  Sh2b1 develop obesity, insulin resistance, and liver steatosis (118, 119). It would 
be interesting to test whether knocking out Sh2b1 specifically in the cerebellum the mice would result in the 
same phenotype. Cep290 (120, 121) and Inpp5e (19), associated with syndromic ciliopathies that include 
obesity, and Bardet-Biedl syndrome (BBS) causal genes, Arl6, Bbs1, Bbs2, Bbs5, Bbs7 (122), were also present 
in these modules. Whether genes with an enriched expression in the cerebellum are truly causal of  obesity 
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is unclear, because the majority of  them also showed some enrichment in other brain regions. Some patients 
with BBS display characteristic structural brain abnormalities, including within the cerebellum (123, 124). 
The literature implicating the cerebellum in weight regulation does not identify specific neuronal circuitry or 
molecular mechanisms for such an effect (125–132). A role in anticipatory aspects of  ingestive behaviors — 
similar to the cerebellum’s classical role in motor activities (133) — is an interesting possibility, the study of  
which may be assisted by analytic strategies and the tools developed in this project reported here.

To address whether there is an obesogenic signature of  obesity-associated genes in the brain regions of  
energy balance, in our analysis we included genes associated with 4 additional diseases: T1D, an autoimmune 
disease; T2D, a metabolic disease; autism, a complex neurobehavioral disorder; and breast cancer. These 
diseases share some gene overlap with obesity (15 genes out of  650 total genes), suggesting the presence of  
shared pathways between diseases and/or obesity as a risk factor for the other diseases and/or vice versa. We 
observed an enrichment of  obesity-associated genes in regions of  the homeostatic system. Genes associated 
with autism, a neurodevelopmental disorder, were enriched, as expected, in regions of  the embryonic brain 
and the executive system. Breast cancer–associated genes showed enrichment in the stem cells samples. T1D 
and T2D did not show region-specific enrichment. WGCNA clustering of  obesity-associated genes together 
with T1D-, T2D-, autism-, and breast cancer–associated genes across the regions of  energy balance revealed 
that these genes clustered in distinct modules, and that each module was defined by genes associated to each 
disease, with few exceptions, and was characterized by the prevalence of  1 disease over the others. Similar 
findings were observed in k-means clustering of  genes associated with these 5 diseases together. Regardless of  
the comparison examined, some clusters had more equal contribution from the diseases, whereas more than 
half  of  the clusters showed predominant contribution from 1 disease over the other. These results suggest 
that there was a clear separation between the diseases and thus an obesogenic signature of  obesity-associated 
genes in the brain regions of  energy balance.

The online database and analytic strategies presented here can be utilized to vet novel obesity candidate 
genes by “positioning” them within specific gene clusters and neural circuits. This information can be used 
to determine next steps with regard to functional analyses. More specifically, to fulfill the promise of  preci-
sion medicine in obesity, we envision the following workflow: clinical genetics using WES/GWAS to identi-
fy novel obesity candidate genes; determine brain region/s of  enrichment for a given novel obesity candidate 
gene for prioritization using the Brain Energy Balance Atlas portal (http://doegelab.com); determine the 
specific cell type/s expressing the candidate gene using single-cell RNA-Seq (scRNA-Seq) in the determined 
region/s; generation of  induced pluripotent stem cells (iPSCs) from patient’s peripheral blood mononuclear 
cells; correction of  obesity candidate mutation using CRISPR to generate isogenic control iPSC; differen-
tiation of  iPSC (mutation carrying and isogenic control) into the cell type identified earlier by scRNA-Seq; 
and phenotypic analysis of  these cells to get a molecular phenotype of  the mutation. The ultimate goal is to 
utilize these patient-specific, functional, in vitro cell systems for drug screening and evaluation.

The vetting of  genes with this database can also be used to relate CNS region–specific gene expression 
and circuits to other metabolic phenotypes such as T2D. Despite evidence implicating the role of  the brain 
in glucose homeostasis, the regions of  the brain involved have not all been identified and the mechanisms 
behind them are not fully understood (134–136). This latter use could help to deconvolute complex interac-
tions of  the CNS with seemingly remote phenotypes such as autoimmune disease and cancer.

Methods
Mice. Bulk RNA-Seq experiments were performed in C57BL/6NTac male P56 mice and E14.5 embryos har-
vested from timed pregnant mice. All mice were obtained from Taconic Biosciences.

Housing and diets. Mice were housed at 22°C to 24°C temperature with a regular 12-hour light/12-hour dark 
cycle (lights were turned off at 7 pm), with no more than 5 adult animals per cage and ad libitum access to Puri-
na 5058 chow diet and water.

Tissue dissection. P56 mice or pregnant mice with E14.5 embryos were sacrificed via cervical dislocation 
followed by decapitation.

For P56, brains were immediately removed and embedded in O.C.T. compound (Thermo Fisher Scientific, 
23730571) and placed in dry ice–cooled isopentane to flash freeze. Each brain was sectioned into 500 μm thick 
coronal sections (Figure 1B, left) using a Microm HM 525 cryotome (Thermo Fisher Scientific) at –6°C. The 
ROIs were microdissected by single or bilateral punching of the brain sections using a dissecting microscope. 
The diameter of the punch, 0.5, 0.75, or 1 mm, was chosen according to the size of the region.
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E14.5 embryos were embedded in O.C.T. compound and immediately placed in dry ice–cooled isopentane 
to flash freeze. Blocks were sectioned into 300 μm thick sagittal sections (Figure 1B, right) as described above. 
The ROIs were microdissected by single punches (0.5–0.75 mm diameter) of the sections.

Sample description. In total, 17 adult mice (P56), 12 mouse embryos (E14.5), and 2 stem cell lines were used 
for bulk RNA-Seq. Sample collection and preparation were performed in 9 batches within 1 month (Supple-
mental Table 2 and Supplemental Table 3). Depending on the size of the brain region, the number of sections 
punched and pooled together varied (Supplemental Table 2).

For each sample from P56 brains, dissected tissue pieces from 3 or 4 mice were immediately pooled in lysis 
buffer for subsequent RNA extraction (Supplemental Table 2). The only exception (due to technical issues) was 
that 1 nucleus accumbens (ACB) sample from only 1 mouse was processed (Supplemental Table 2). The ROI for 
brain areas of energy balance were as follows: frontal pole cortex, anterior cingulate area, ACB, ventral tegmen-
tal area, LHA, PVH, DMH, VMH, ARH, parabrachial nucleus, nucleus of the solitary tract, and dorsal-vagal 
complex (acronyms were taken from the Allen Brain Atlas; Supplemental Table 1, Supplemental Table 2, and 
Supplemental Figure 2). Additional brain regions (not thought to be directly involved in the regulation of energy 
balance) analyzed by bulk RNA-Seq were as follows: entorhinal area, CENT2, culmen lobules IV-V, uvula (IX), 
cerebellar nuclei, and flocculus (Supplemental Table 1; Supplemental Table 2; Supplemental Figure 1, A and B; 
and Supplemental Figure 2).

For each sample from E14.5 embryos, dissected tissue pieces from 4 mice were immediately pooled in lysis 
buffer for subsequent RNA extraction. The ROIs were THy (rostral) and PHy (caudal), forebrain, midbrain, and 
hindbrain (Supplemental Table 1, Supplemental Table 2, and Supplemental Figure 3).

mESC samples were included; they are not directly involved in the regulation of energy balance. Two 
mESC lines termed clone 1 (B6-1) and clone 2 (B6-2) were derived from a C57BL/6 mouse strain (Supplemental 
Table 1, Supplemental Table 3, and Supplemental Figure 1C).

Cell lines. mESC B6-1 and B6-2 lines were a gift from Dietrich M. Egli (Columbia University Irving 
Medical Center).

mESCs were maintained in a humidified incubator at 37°C on irradiated murine embryonic fibroblasts 
(MEFs; CF-1 MEF 4M IRR, GlobalStem) in mESC medium consisting of  DMEM KO medium (cata-
log 10829018, Thermo Fisher Scientific) supplemented with 15% KnockOut Serum Replacement (catalog 
10828028, Thermo Fisher Scientific), 0.1 mM MEM Non-Essential Amino Acids (catalog 11140050, Ther-
mo Fisher Scientific), 2 mM GlutaMAX (catalog 35050061, Thermo Fisher Scientific), 0.06 mM 2-mercap-
toethanol (catalog 21985023, Thermo Fisher Scientific), and 1000 U/mL ESGRO Leukemia Inhibitory Fac-
tor (LIF; catalog ESG1107, MilliporeSigma). Cells were passaged using TrypLe Express Enzyme (catalog 
12605010, Thermo Fisher Scientific).

To obtain RNA without contamination by MEFs, mESCs were plated on gelatin-coated plates and pas-
saged twice to remove remaining feeder cells. More specifically, cultures were collected, filtered through a 40 μm 
cell strainer (catalog 431750, Corning), and seeded onto gelatin-coated plates in a 1:1 mixture of mESC medium 
and MEF-conditioned medium (MEF-CM, prepared as below) supplemented with 3 μM CHIR-99021 (catalog 
S1263, Selleckchem), 0.8 μM CI-1040 (catalog S1020, Selleckchem), 0.4 μM PD0325901 (catalog S1036, Sell-
eckchem), and 1000 U/mL LIF. mESC seeding densities were 6 × 105 cells per 35 mM well for passaging and 3 
× 105 cells per 35 mM well for collection.

MEFs were maintained in MEF medium consisting of DMEM (catalog 11995073, Thermo Fisher Sci-
entific) supplemented with 10% heat-inactivated FBS (catalog 10082147, Thermo Fisher Scientific). To obtain 
MEF-CM, MEFs were incubated with mESC medium for 24 hours. MEF-CM was collected daily and filtered 
through a 45 μm filter (catalog SCHVU01RE, MilliporeSigma).

RNA extraction. For all punches collected from P56 and E14.5 mice, total RNA was extracted using PicoPure 
RNA Isolation Kit (Thermo Fisher Scientific, KIT0204) with on-column DNase I (QIAGEN, 79254) treatment 
to remove genomic DNA contamination; RNA was stored at –80°C until further processing.

mESC were homogenized in TRIzol reagent (catalog 15596026, Thermo Fisher Scientific) and total RNA 
was extracted using RNeasy Plus Micro Kit (catalog 74034, QIAGEN) with on-column DNase I treatment; 
RNA was stored at –80°C until further processing.

An Agilent 2100 Bioanalyzer was used to assess the total RNA quality. Agilent 2100 Expert software (ver-
sion B.02.08.SI648) was used with the Eukaryote Total RNA Nano Series II assay settings. Only RNA samples 
with an RNA integrity number greater than or equal to 7.6 were sequenced.

Library preparation and sequencing. Strand-specific RNA-Seq libraries were prepared using the KAPA mRNA-
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Seq Library Preparation Kit (Kapa Biosystems). Twelve-cycle PCR was performed to amplify libraries. Sequenc-
ing was performed on Illumina HiSeq2000 by multiplexed single-read run with 33 cycles. Raw sequence data 
(BCL files) were converted to FASTQ format via Illumina Casava 1.8.2. Reads were decoded based on their 
barcodes and read quality was evaluated with FastQC (137).

Data analysis. All samples were aligned to mouse assembly GRCm38 cDNA sequence downloaded from 
Ensembl with Kallisto (ref. 138; version 0.43.1; fragment size set as 120 with SD as 20, default seed as 42, with 
100 bootstrap per sample). For the transcript model, genome Ensembl GRCm38 release was used. Gene level 
expression were obtained by summing transcript abundances (TPM units).

Raw data and Kallisto output can be found at NCBI Gene Expression Omnibus (accession GSE178290; 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178290).

Principal component analysis was used for outlier detection.
Hierarchical clustering was used to determine the how the regions cluster together (Figure 2A) and 

show gene order for most heatmaps. Genes were routinely visualized with heatmaps, which were produced 
by averaging the TPM data across the replicates for each brain region and for mESC (replicates’ details are 
given in Supplemental Table 2 and Supplemental Table 3). The TPM values for each gene were scaled for 
each gene to improve visualization.

To calculate the frequency distribution, the TPM of each gene was calculated as a percentage compared 
with the total TPM values for all samples (brain regions and mESC, averaged across each replicate). The fre-
quency score and standard error was calculated by compiling the percentage for all the genes in a gene list.

GSEA (v 4.1.0; ref. 139) was used to complement the frequency distribution. All replicates were input, 
alongside either the obesity gene lists (monogenic, rare coding variants, low-frequency coding variants, GWAS, 
and syndromic) or the broader gene list (obesity, T1D, T2D, autism, and breast cancer). GSEA generated an 
enrichment score, which indicated whether the genes within a particular gene list were ranked highly in the sam-
ple compared with all other samples (Supplemental Figure 6 and Supplemental Figure 11), within all the genes 
from the gene lists input, and the enrichment score was plotted.

WGCNA (v1.70-3; ref. 140) was used to see how obesity genes cluster and how they cluster with other 
disease genes. This allows for determination of genes with similar expression patterns within the data set and 
consideration of how genes are expressed across the brain regions (e.g., homeostatic regions). Replicates of the 
same brain region were averaged and then a soft thresholding power was chosen to give the highest separation 
between modules. WGCNA outputs discrete modules and a dendrogram (Supplemental Figure 7 and Supple-
mental Figure 12). Heatmaps were used for visualization of the modules. The order of genes on the heatmap 
was determined by the module number, followed by the order the gene appears in hierarchical clustering. To 
determine if  a gene list is enriched within a module, we developed an overrepresentation score, which indicates 
the deviation from an equal distribution across modules, normalizing for module size and gene list size. Overrep-
resentation score was calculated using the following equation: (w/[x/y] × z) – 1, where w = n genes per module 
per gene list, x = n genes in gene list, y = n all gene lists, and z = n genes in module. This overrepresentation score 
was plotted to show a positive deflection where a gene list is overrepresented.

K-means clustering was used to partition n observations into k clusters, in which each observation belongs 
to the cluster with the nearest mean (141). The number of clusters was decided based on the slope change on an 
elbow plot. Enrichment was determined using the same method used for WGCNA, where a k-means cluster is 
substituted for a WGCNA module.

Sequencing data are available on an interactive web portal, the Brain Energy Balance Atlas, which is acces-
sible via http://doegelab.com. This portal allows users to search for expression of any annotated gene and its 
differential expression profiles across the 22 brain regions and 2 mESC lines studied. Counts files were analyzed 
with DESeq2 (ref. 142; version 1.28.1) to compare the expression pattern in each brain region with all other 
brain regions or mESCs.

Statistics. Frequency distribution was expressed as mean ± SEM. For each gene list, pairwise comparisons 
of all brain regions were evaluated using 1-way ANOVA and reporting the Benjamini, Krieger, and Yekutieli 
2-step false discovery rate–corrected P value. P values of less than 0.05 were considered significant. For GSEA 
enrichment score plots, regions with a positive enrichment score and an FDR adjusted P value of less than 0.05 
were denoted with an asterisk (139). All analyses were performed in R (v 1.3.1093) or in GraphPad Prism (v 9).

Study approval. Animal care and experimental procedures were performed according to Columbia University 
animal welfare guidelines and approved by the Columbia University IACUC, protocol number AC-AAAS4459.
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