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Abstract  
Myeloperoxidase is an important inflammatory factor in the myeloid system, primarily 
expressed in neutrophils and microglia. Myeloperoxidase and its active products 
participate in the occurrence and development of hemorrhagic and ischemic stroke, 
including damage to the blood-brain barrier and brain. As a specific inflammatory marker, 
myeloperoxidase can be used in the evaluation of vascular disease occurrence and 
development in stroke, and a large amount of experimental and clinical data has indicated 
that the inhibition or lack of myeloperoxidase has positive impacts on stroke prognosis. 
Many studies have also shown that there is a correlation between the overexpression of 
myeloperoxidase and the risk of stroke. The occurrence of stroke not only refers to the 
first occurrence but also includes recurrence. Therefore, myeloperoxidase is significant for 
the clinical evaluation and prognosis of stroke. This paper reviews the potential role played 
by myeloperoxidase in the development of vascular injury and secondary brain injury after 
stroke and explores the effects of inhibiting myeloperoxidase on stroke prognosis. This 
paper also analyzes the significance of myeloperoxidase etiology in the occurrence and 
development of stroke and discusses whether myeloperoxidase can be used as a target for 
the treatment and prediction of stroke.
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Introduction 
Stroke refers to a series of cerebrovascular diseases that cause 
brain damage due to changes in blood flow and oxygen delivery 
mediated by blood vessels. Depending on whether the cause of 
stroke is central nervous system hemorrhage or thrombotic ischemia, 
stroke can be classified as ischemic stroke and hemorrhagic stroke 
(Bedard and Krause, 2007; Liang et al., 2020), and ischemic stroke 
is the most common type, accounting for approximately 70% of all 
strokes. According to the 2017 Global Burden of Disease study (GBD), 
stroke is responsible for more than 5% of all disability-adjusted life 
years, and stroke was responsible for 11% of all deaths worldwide, 
which is equivalent to 6.17 million deaths due to stroke each year, 
ranking third among all causes of death (GBD 2016 DALYs and HALE 
Collaborators, 2017; GBD 2017 Causes of Death Collaborators, 2018; 
Avan et al., 2019; Deuschl et al., 2020). The GBD 2016 Lifetime Risk 
of Stroke Collaborators (2018), involving GBDs in various regions of 
the world, was published by the New England Journal of Medicine. 
The results showed over the past 26 years, the global risk of lifelong 
stroke among adults increased by 8.9% to 24.9% (95% confidence 
interval [CI] 23.5–26.2%), with a male risk of 24.7% (95% CI 23.3–
26.0%) and a female risk of 25.1% (95% CI 23.7–26.5%), indicating 
that almost one-quarter of all adults are at risk of experience stroke 
during their lifetimes. Among all adults included in relevant studies, 
18.3% are likely to experience an ischemic stroke, and 8.2% are likely 
to experience a hemorrhagic stroke. During the period from 1990 

to 2016, the stroke incidence in China increased from 204.52 to 
403.08 per 100,000 population, and mortality increased from 122.09 
to 130.94 per 100,000 population (Wang et al., 2020). High blood 
pressure, heart disease, diabetes, atherosclerosis, lack of exercise, 
high blood fat, high-salt diet, smoking, alcoholism, and age have been 
identified as risk factors for stroke (George, 2020; Mai and Liang, 
2020; Zhang et al., 2020). After stroke, the inflammatory system is 
activated. During the early stages of hemorrhagic stroke, the brain 
tissue surrounding the hematoma is characterized by the infiltration 
of inflammatory cells and inflammatory factors, such as free radicals 
and proteases, produced by neurons. These early inflammatory 
factors, including myeloperoxidase (MPO), continue to damage the 
brain during the whole process of the hematoma incident (Wang, 
2010). 

MPO is an important inflammatory factor in the myeloid system 
(Klebanoff, 2005). Agner (1941) first isolated and purified the heme 
peroxidase-containing MPO from the green purulent fluid obtained 
from tuberculosis patients; due to its green appearance, MPO is also 
known as verdoperoxidase (Klebanoff, 2005; Ray and Katyal, 2016). 
MPO is abundantly expressed in neutrophils and other myeloid cells, 
such as Ly-6Chigh monocytes (Swirski et al., 2009; Grishkovskaya et 
al., 2017), macrophages, and microglia (Gray et al., 2008; Gellhaar et 
al., 2017). After acute cerebral ischemia, due to the destruction of 
the blood–brain barrier (BBB), the infiltration of a large number of 
neutrophils attacks the central nervous system. Studies have shown 
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that the large growth in the neutrophil population is accompanied by 
a large increase in MPO production (Gorudko et al., 2017; Reber et 
al., 2017; Pleskova et al., 2018; Maestrini et al., 2020). Large amounts 
of inflammation are observed during the early stages of stroke, 
and the activation of phagosomes represents an important form of 
inflammation. MPO is an important enzyme in phagocytic vacuoles. 
Among the antimicrobial systems present in the phagosome, a 
significant proportion consists of MPO, hydrogen peroxide (H2O2, 
formed during the respiratory burst), and a halide (X–), particularly 
chloride (Cl–) (Iana and Sirbu, 2020; Marcinkiewicz and Walczewska, 
2020). In the MPO-H2O2-Cl− sterilization system, the oxidant chlorous 
acid/hypochlorite ion (HOCl/OCl−) plays an important role; under 
pathological conditions, a sustained inflammatory effect is exerted 
due to the activation of this system. Here, we outline the etiology 
of MPO production and its contributions during the occurrence and 
development of stroke, evaluate its feasibility for use as an indicator 
in clinical applications, and discuss whether it can serve as a target 
for stroke treatment and prognostic prediction.

Search Strategy
In the MEDLINE database, we searched for related articles using 
the English search terms “stroke, myeloperoxidase” in the limited 
time range from January 1990 to December 2020, and a total of 315 
related articles were retrieved. The inclusion criteria were articles 
directly related to myeloperoxidase-associated stroke research 
and corresponding previous basic research; and similar research 
ideas selected from the latest articles published in authoritative 
journals. Exclusion criteria were repetitive or retrospective studies. 
Two researchers (YCW and YBL) independently read and screened 
the articles by reading the titles and abstracts and then combined 
the screening results. After the readers reported controversial 
documents, YNZ and YWP discussed whether to include them. Any 
articles unrelated to stroke and myeloperoxidase and among highly 
similar studies, only the most recently published article was retained. 
In the end, 106 articles were included in the reference catalog.

The Etiology of Myeloperoxidase in Stroke
The role of MPO in vascular injury before stroke
Stroke is classified as a vascular disease. When blood vessels are 
damaged due to malformations in arteriovenous blood vessels, a 
thrombus can form, leading to ischemic stroke, whereas hemorrhagic 
stroke results from the rupture of cerebral vessels. As a cornerstone 
of the pathophysiological mechanisms of these vascular diseases, 
MPO damages the arterial wall through either direct oxidation 
reactions with components of the arterial wall or indirect damage 
exerted on the integrity and function of the blood vessel (Figure 1). 
Indirect damage includes (i) the promotion of atherosclerotic plaque 
formation of foamy macrophages, resulting in the formation of a 
core rich in low-density lipoproteins; (ii) changes in serum cholesterol 
function, distribution, and flow due to lipid peroxidation; (iii) 
promoting the rupture and instability of atherosclerotic plaques due 
to matrix metalloproteinase (MMP) activation; (iv) the stimulation 
of local occlusive thrombosis through P-selectin interactions; and 
(v) the impairment of vascular reactivity through the depletion of 
endothelial-derived nitric oxide (NO), damaging vasodilatation and 
anti-inflammatory properties (Vita et al., 2004; Lau and Baldus, 2006; 
Nicholls and Hazen, 2009).

Molecular damage mechanisms mediated by MPO after stroke
The BBB is a highly specialized system for restricting interactions 
between the brain parenchyma and the bloodstream, promoting the 
maintenance of brain homeostasis. After a stroke, damage to the 
BBB is an important contributor to cerebral edema and hemorrhagic 
transformation (Lin et al., 2018). BBB damage can promote lacunar 
infarction, white matter lesions, and microhemorrhages in deep brain 
structures and trigger the production of a large number of neurotoxic 
substances, which damage synapses and neuronal function (Lin et 
al., 2018). The BBB becomes compromised after a stroke, allowing 
many immune cells to enter the central nervous system, where 
they interact with central immune cells to further aggravate the 
inflammatory response. Üllen et al. (2013) demonstrated that MPO 
produced by neutrophils induces the dysfunction of primary brain 
microvascular endothelial cells (BMVEC) in vitro, exacerbating 
the damage to the BBB. Klinke et al. (2011) revealed a previously 
unknown neutrophil recruitment mechanism induced by the 
electrostatic activity of MPO. These findings indicate that MPO and 
neutrophils have an interaction relationship in addition to a simple 
cascade reaction. El Kebir et al. (2008) further revealed that MPO 

could delay neutrophil apoptosis by signaling the adhesion molecule 
CD11b/CD18, prolonging the inflammatory response. Therefore, 
MPO serves to enhance the duration of the inflammatory response, 
which can cause the brain tissue to undergo continual inflammatory 
damaged long after the stroke has resolved (Babior, 1984). Kang et 
al. (2020) showed that neutrophils accumulate in the peri-infarct 
cortex during all stages of ischemic stroke. Neutrophils produce 
intravascular and intraparenchymal extracellular neutrophil traps, 
which peak at 3–5 days. Extracellular neutrophil traps release 
many cytotoxic proteases, such as histones, elastase, and MPO, 
which directly induce endothelial cell damage to increase vascular 
permeability (Villanueva et al., 2011). The infiltration of neutrophils 
can upregulate peptidyl arginine deiminase 4, stimulator of interferon 
genes, and interferon regulatory factor 3. Peptidyl arginine deiminase 
4 is a key enzyme involved in chromatin decondensation (Wang et al., 
2009; Martinod et al., 2013). Stimulator of interferon genes is a DNA 
sensor, and the upregulation of interferon regulatory factor 3 can 
induce the production of interferon-β in large quantities, which can 
disrupt vascular reconstruction and vascular repair after stroke (Kang 
et al., 2020).

Microglia are another innate immune cell type in the nervous 
system associated with MPO, which plays a crucial role after stroke 
occurrence (Qin et al., 2019; Xu et al., 2021). After a stroke occurs, 
the function of microglia primarily depends on the activation signal 
received (Ma et al., 2017; Al Mamun et al., 2018). M1 type microglia 
represent a pro-inflammatory cell type, which primarily contributes 
to the early stages of stroke and can produce tumor necrosis factor-α 
(Feng et al., 2017), interleukin (IL)-1β (Facci et al., 2018), interferon-γ 
(Hwang and Bergmann, 2020), inducible NO synthase (Maksoud et 
al., 2021), and proteolytic enzymes (MMP9 and MMP3) (Bonetti et 
al., 2019). During the later stage of stroke, M2 type microglia exert 
anti-inflammatory effects (Jiang et al., 2018), producing IL-10 (Lobo-
Silva et al., 2017), transforming growth factor β (Spittau et al., 2020), 
insulin-like growth factor (Li et al., 2020), and vascular endothelial 
growth factor (Ju et al., 2019), which are pro-angiogenic and anti-
inflammatory (Ponomarev et al., 2013). Therefore, MPO-related 
damage is primarily mediated by M1 microglia (Figure 2).

MPO can form HOCl/OCl– in the presence of chloride ions and H2O2. 
These products are important substances that allow the body to 
resist microbial attacks (Babior, 1984; Nybo et al., 2019). However, 
excessive HOCl produced by the MPO-H2O2-Cl– system in neutrophils 
and monocytes can damage various biological tissues, including the 
BBB (Klebanoff, 2005). Low-dose HOCl can trigger cell apoptosis, 
whereas high-dose HOCl can induce cell necrosis, including in 
neuronal cells and astrocytes, which are the main components of 
the BBB (Pullar et al., 2000; Whiteman et al., 2005). As a weak acid 
(acid dissociation constant [pKa] of 7.5) (Morris, 1966; Wei et al., 
2020), HOCl-induced cellular acidosis is unlikely to be the cause of 
HOCl neurotoxicity. Recent studies have shown that the production 
of HOCl can activate an increase in the concentration of calpain. The 
activation of platelets can induce changes in platelet morphology. 
Similar to caspase-mediated cell apoptosis (Wolf et al., 1999), the 
activation of calpain can also rupture cell lysosomes (Yap et al., 2006), 
resulting in the robust occurrence of secondary injury in the central 
nervous system after stroke. BMVECs forms the morphological 
basis of the BBB through the formation of tight junction complexes 
(Swastika et al., 2019). Bernhart et al. (2018) showed that peripheral 
blood leukocytes produce HOCl through the MPO-H2O2-Cl– system, 
which in turn produces chlorinated inflammatory mediators, such as 
2-chlorohexadecanoic acid. 2-Chlorohexadecanoic acid can produce 
a lipid-toxic reaction in BMVECs, destroying the basic BBB structure, 
further aggravating secondary damage following stroke. Secondary 
injuries after stroke include hematoma expansion, perihematomal 
edema, and neurological deterioration (Castellazzi et al., 2010).

In addition to the direct and indirect destruction of the BBB by 
HOCl, MMPs are crucial for BBB destruction. MMPs are proteolytic, 
zinc-containing enzymes responsible for the degradation of the 
extracellular matrices surrounding the blood vessels and neurons 
in the central nervous system (Zhang and Kim, 2009; Fazal and Al-
Ghoul, 2017; Yeo et al., 2020). The activation of MMPs can also 
induce tight junction degradation, leading to BBB breakdown 
following cerebral ischemia-reperfusion injury (Anctil et al., 2005; 
Nalamolu et al., 2020). Fu et al. (2001) showed that HOCl oxidizes the 
conversion of cysteine into thiol residues, which activates pro-MMP7. 
Studies showed that HOCl significantly enhanced the proteolytic 
activity of MMP8 and MMP9 (Weiss et al., 1985; Peppin and 
Weiss, 1986). Furthermore, after the 4-aminobenzoic acid amide-
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Figure 1 ｜ Response caused by myeloperoxidase (MPO) 
in blood vessels before stroke.
MPO may promote stroke due to damage to the arterial 
wall through direct oxidation and indirect effects on 
blood vessel integrity and function, driving a core rich in 
low-density lipoprotein and promoting the formation of 
atherosclerotic plaques by foamy macrophages. These 
plaques affect the function, distribution, and flow of 
serum cholesterol due to lipid peroxidation. The activation 
of matrix metalloproteinases leads to atherosclerotic 
plaque rupture and instability, which can stimulate local 
occlusive thrombosis through P-selectin interactions. 
Depleting nitric oxide (NO) can impair vasodilation 
resistance against inflammation and impair vascular 
reactivity.

Figure 2 ｜ Myeloperoxidase (MPO)-related cascade after stroke.
Active microglia, monocytes, and neutrophils produce MPO when a stroke 
occurs. In addition to direct damage to the BBB, MPO can cause indirect 
damage. After a stroke occurs, myeloid immune cells, such as monocytes, 
neutrophils, and microglia, produce MPO, which participates in the reaction 
between H2O2 and Cl–, generating HOCl and activating MMP7, MMP8, 
MMP9, and other MMPs, further damaging the BBB. MPO may also induce 
the production of 2-ClHA, which further damages the BBB. MPO can 
increase the activity of ROS, which can directly attack the BBB. ROS can 
also enhance the activity of MMP and reduce the activity of TIMP12. The 
simultaneous effects of these positive and negative regulatory actions can 
activate MMPs to a greater extent. MPO can promote the production of O2

– 
and NO by iNOS and NADPH. In addition to increasing MMP activity, MPO 
can produce ONOO–, and ONOO– can further increase the activity of MMPs. 
This series of reactions will cause varying degrees of damage to the BBB, 
increasing the BBB permeability and aggravating secondary brain damage. 
2-ClHA: 2-Chlorohexadecanoic acid; BBB: blood-brain barrier; Cl–: chloride; 
H2O2: hydrogen peroxide; HOCl: oxidant chlorous acid; iNOS: inducible nitric 
oxide synthase; MG: microglia;  NADPH: nicotinamide adenine dinucleotide 
phosphate; NO: nitric oxide; O2

–: superoxide anion; ONOO–: peroxynitrite ion; 
ROS: reactive oxygen species; TIMP12: tissue inhibitor of metalloproteinase 
12; TJ: tight junction.

mediated inhibition of MPO, the expression of MMP9 was reduced 
(Kim et al., 2016). Therefore, HOCl can trigger molecular cascades 
that mediate the activation of MMPs, leading to BBB disruption. 
HOCl itself can also exacerbate oxidative stress, promote the 
translocation of p67(phox) and p47(phox), activating nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase and mediating the 
production of superoxide, peroxynitrite, and oxidize endothelial NO 
synthase dimer in endothelial cells (Xu et al., 2006). Together, these 
compounds increase the damage to the central nervous system.

H2O2 is the final product of free oxygen radicals. Chloride ions act 
as a substrate for the catalytic reaction mediated by MPO, resulting 
in the formation of hypochlorous acid. The toxicity of hypochlorous 
acid is 50 times that of H2O2 (Graham et al., 2007). Therefore, 
excessive MPO increases the catalysis of H2O2 into hypochlorous acid, 
greatly enhancing cellular toxicity, especially in neuronal cells and 
astrocytes after stroke. In addition to these direct cytotoxic effects 
of MPO activity, elevated MPO activity increases reactive oxygen 
species (ROS) formation, MMP activation, and the production of 
inducible NO synthase, and inflammatory cytokines (i.e., IL-1β and 
tumor necrosis factor-α) (Ekdahl et al., 2003; Monje et al., 2003; 
Brovkovych et al., 2008; Cacci et al., 2008). These factors might 
cause indirect damage to neurons and astrocytes after stroke. ROS 
and MMPs can destroy tight junctions and disrupt the BBB, further 
aggravating stroke damage. Furthermore, MPO inhibition can reduce 
these inflammatory mediators (Monje et al., 2003; Cacci et al., 
2008; El Kebir et al., 2008), indicating that MMPs act as downstream 
molecules during MPO-mediated inflammation (Fu et al., 2004; 
Cheng et al., 2018).

ROS avidly interact with large numbers of molecules, including other 
small inorganic molecules, as well as proteins, lipids, carbohydrates, 
and nucleic acids. Through such interactions, ROS may irreversibly 
destroy or alter the function of the target molecules. Consequently, 
ROS have been increasingly identified as major contributors to 
damage in biological organisms (Bedard and Krause, 2007; Diwanji 
and Bergmann, 2020). Related research has shown that ROS 
production increased BBB permeability and monocyte migration, 
and ROS activated MMP1, MMP2, and MMP9 (Haorah et al., 2007). 
The protein tyrosine kinase (PTK)-dependent pathway reduces the 
activity of tissue inhibitor of metalloproteinase 12, and increased 
MMP and PTK activity is closely related to the degradation of tight 
junctions in BMVEC proteins (Song et al., 2018). MMPs, PTKs, and 
antioxidant inhibitors can prevent monocyte migration, suggesting 
that oxidative stress causes BBB damage through the activation of 
MMPs and the PTK-mediated degradation of BMVEC proteins (Haorah 
et al., 2007). NADPH and inducible NO synthase produce superoxide 
anion (O2

–) and NO after stroke, which in turn produce peroxynitrite 
ion (ONOO–) and further produces factors that increase the activity of 
MMPs (Chen et al., 2016), which destroy tight junctions and the BBB 
(Gu et al., 2011). NADPH oxidase is a very important pro-oxidase that 
induces superoxide anion (O2

–) and H2O2 and is a significant source 
of ROS (Bedard and Krause, 2007). Free radicals play an important 
role in cerebral ischemia/reperfusion injury. The accumulation of 
toxic free radicals, such as ROS and reactive nitrogen, increases brain 
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tissue susceptibility to ischemic injury and triggers various molecular 
cascades, resulting in increased BBB permeability, brain edema, 
bleeding, inflammation, and neuronal death. Furthermore, free 
radicals can activate MMPs, which is a critical step in damaging the 
BBB (Figure 2).

The inflammatory response and oxidative stress both damage the 
BBB and disrupt neurogenesis. Disorders of learning, language 
memory, and execution ability are most likely to occur after a stroke, 
primarily due to damage in corresponding brain areas, such as the 
cerebral cortex and hippocampus. Functional damage to these brain 
areas occurs due to repeated ischemia and inflammatory infiltration, 
which gradually reduces the recruitment of stem cells, affecting 
neurogenesis (Lin et al., 2018; Deng et al., 2021).

Potential of Myeloperoxidase in Stroke
The genetic risk and predictive value of MPO in stroke
The genetic contributions of MPO levels to ischemic stroke and 
recurrent stroke risk have been demonstrated in all races (Liu et 
al., 2012). More specifically, the high expression of MPO-related 
genes may increase the susceptibility to stroke. Manso et al. (2011) 
analyzed differences in the expression levels of MPO-related genes 
between a stroke group and a control group and found a positive 
correlation between the rs8178406 sequence in the MPO gene 
and stroke occurrence, providing the additional evidence that MPO 
is involved in stroke susceptibility and demonstrating a significant 
correlation between the MPO gene and stroke occurrence. 
Furthermore, the high expression of MPO protein also increases the 
risk of stroke, which has been confirmed by other studies (Palm et 
al., 2018; Pravalika et al., 2019; Ramachandra et al., 2020). Another 
study from Phuah et al. (2017) examined a large sample cohort that 
included 1409 cases of primary intracerebral hemorrhage from three 
studies; a cohort containing 1624 controls and 12,577 ischemic 
stroke patients from the NINDSSiGN study; an expanded cohort 
of 25,643 controls; METASTROKE Constatium’s 10,307 ischemic 
stroke cases; and a validation cohort of 29,326 controls. The results 
revealed that genetic determinants of elevated MPO levels and the 
risk of primary intracerebral hemorrhage (odds ratio 1.07, P = 0.04) 
were associated with the risk of recurrent intracerebral hemorrhage 
(hazard ratio 1.45, P = 0.006). In the analysis of ischemic stroke 
subtypes, MPO with increased genetic risk score was only closely 
related to the cavity subtype (odds ratio 1.05, P = 0.0012). These 
results suggest that increased genetic variations in MPO levels 
increased the risk of primary intracerebral hemorrhage and lacunar 
stroke, proving that MPO is correlated with the risk of small vessel 
stroke (Phuah et al., 2017).

High expression of the MPO gene can increase the risk of stroke. 
Simultaneously, MPO plays an important inflammatory role. The 
effects of a lack or low expression of the MPO gene were examined 
by Lanza (1998), who indicated that the lack of MPO does not 
significantly impact human life. Although MPO is an important 
molecule produced by neutrophils and is involved in the killing of 
certain microorganisms, no data or research has shown that a lack 
of MPO results in increased susceptibility to severe or persistent 
infections. Although serious infections occasionally occur in patients 
with MPO deficiency, these affect fewer than 5% of patients with 
MPO deficiency, indicating a low incidence (Kitahara et al., 1981). 
Visceral candida infections have been reported in patients with MPO 
deficiency; however, Stendahl et al. (1984) have shown that the 
microbicidal and fungicidal activities of MPO-deficient neutrophils 
are only slightly weakened compared with normal neutrophils. Some 
studies have shown that MPO-deficient neutrophils have prolonged 
respiratory bursts, resulting in increased H2O2 production in response 
to stimulation. These factors may compensate for the lack of 
peroxidase (Cramer et al., 1982). Therefore, on the basis of research 
performed in MPO knockout models, further relevant research can 
be performed to observe bodily changes in response to the loss 
of MPO production, to determine whether the MPO blockade will 
cause serious damage to the body. Such research should also seek 
to observe changes in the physiological regulation mechanisms 
mediated by MPO. If MPO knockout or knockdown shows little effect 
on the body, MPO inhibition could be applied to animal models of 
stroke to determine the therapeutic effects of MPO inhibition.

MPO as a therapeutic target in stroke
Malle et al. (2007) found that MPO can be used as a target for 
future drug development. Related drugs inhibit MPO activity and 
inhibit substrate production by combining halide binding sites with 

an aromatic substrate or inhibitor binding sites. They included 
4-aminobenzoic acid amide, N-phenylacetamide, and melatonin 
(Malle et al., 2007).

On the basis of the hypothesis that MPO targets can be used as 
drugs, many animal experiments have been performed to examine 
the application of MPO inhibitors to stroke models in recent years. 
The classic MPO-specific inhibitor, 4-aminobenzoic acid amide, is a 
common drug used in stroke treatment research, and neurogenesis 
following ischemic stroke increased after 4-aminobenzoic acid amide 
treatment. The inhibition of MPO also increased the levels of brain-
derived neurotrophic factor, phosphorylated C-reactive protein, 
acetylated H3 receptor, Cys-X-Cys receptor 4, and neuronal core 
antigen and reduced inflammatory cell infiltration mediated by 
MMP9. These results underscore the detrimental role of MPO activity 
in post-ischemia neurogenesis. A series of experiments demonstrated 
that MPO activity is inversely proportional to neurogenesis after 
stroke, and the inhibition of MPO activity increases cell proliferation 
and improves neurogenesis after ischemic stroke (Drexelius et al., 
2019; Kim et al., 2019; Qiu et al., 2021). They further found that the 
protective environment induced by MPO inhibition or the knockout 
of MPO genes can reduce inflammatory cell aggregation and increase 
survival factors, which can improve stroke outcomes. MPO inhibition 
may represent a promising therapeutic target for stroke therapy, 
possibly even days after the stroke has occurred (Kim et al., 2016).

New MPO inhibitors are being discovered continuously. For example, 
N-acetyl lysyl-tyrosyl cysteine amide can inhibit the activity of MPO, 
which can reduce the numbers of M1 microglia and N1 neutrophils 
in the brains of stroke mouse models, protecting neuronal function 
(Yu et al., 2018). Many drugs can also exert antioxidant and anti-
inflammatory effects and inhibit MPO. For example, in the study of 
ischemic stroke, after using rosmarinic acid (Fonteles et al., 2016), 
melatonin (Pei and Cheung, 2004), tropisetron (Daneshmand et 
al., 2011), and the traditional Chinese medicine extract Leonurus 
heterophyllus (Liang et al., 2011), a significant decrease in the 
amount and activity of MPO was observed. Importantly, cerebral 
infarction and neuronal damage were improved. Another example is 
in the study of hemorrhagic stroke. Lee et al. (2006) induced cerebral 
hemorrhage by injecting collagenase into the rat basal ganglia 
and administered memantine to inhibit inflammation. They found 
that the number of MPO-positive cells around the hematoma was 
significantly reduced in the memantine-treated group, which induced 
functional recovery after cerebral hemorrhage (Lee et al., 2006).

Although no MPO inhibitors are currently approved for use in 
clinical stroke patients, many preclinical candidate drugs are under 
development, and one candidate drug has completed Phase IIa 
clinical trials (Churg et al., 2012; Forbes et al., 2013; Ward et al., 
2013). On the basis of the above review, MPO plays a vital role 
in stroke occurrence and development. After MPO inhibition, 
neurogenesis becomes active, and stroke recovery improves; 
therefore, MPO is expected to become a new target for stroke 
treatment.

Conclusions
MPO leads to a significant increase in stroke occurrence and 
development. The overexpression of MPO typically results in 
impaired BBB permeability. For patients with congenital or acquired 
loss of MPO expression, the effects on their immunity are not 
significant. Therefore, MPO can be targeted clinically for stroke 
treatment and potentially other inflammation-related diseases. 
Currently, no MPO inhibitors have been approved for clinical use, 
and the most commonly used specific inhibitor of MPO, ABAH, has 
a strong toxic effect on the human body. Many other inhibitors, 
including those mentioned in our article, are not specific inhibitors, 
and few studies have been performed on these inhibitors, none of 
which have reached the level of clinical trial. Whether these non-
specific inhibitors have side effects on the human body remains 
unclear. The specific damage mechanism of MPO also remains 
unclear, and more research is necessary to clarify the underlying 
mechanisms. The specific etiological mechanism that leads to the 
activation of MPO during the occurrence and development of stroke 
also requires further clarification. Neutrophils are a key source of 
MPO production, and central immune cells can also produce MPO. 
Additional MPO-targeting drugs that are safe for clinical use must be 
developed.
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