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Purpose: To compare the performance of 3 phenotyping methods in identifying diabetic retinopathy (DR) and
related clinical conditions.

Design: Three phenotyping methods were used to identify clinical conditions including unspecified DR,
nonproliferative DR (NPDR) (mild, moderate, severe), consolidated NPDR (unspecified DR or any NPDR), prolif-
erative DR, diabetic macular edema (DME), vitreous hemorrhage, retinal detachment (RD) (tractional RD or
combined tractional and rhegmatogenous RD), and neovascular glaucoma (NVG). The first method used only
International Classification of Diseases, 10th Revision (ICD-10) diagnosis codes (ICD-10 Lookup System). The
next 2 methods used a Bidirectional Encoder Representations from Transformers with a dense Multilayer Per-
ceptron output layer natural language processing (NLP) framework. The NLP framework was applied either to
free-text of provider notes (Text-Only NLP System) or both free-text and ICD-10 diagnosis codes (Text-and-In-
ternational Classification of Diseases [ICD] NLP System).

Subjects: Adults �18 years with diabetes mellitus seen at the Wilmer Eye Institute.
Methods: We compared the performance of the 3 phenotyping methods in identifying the DR related con-

ditions with gold standard chart review. We also compared the estimated disease prevalence using each method.
Main Outcome Measures: Performance of each method was reported as the macro F1 score. The agree-

ment between the methods was calculated using the kappa statistic. Prevalence estimates were also calculated
for each method.

Results: A total of 91 097 patients and 692 486 office visits were included in the study. Compared with the
gold standard, the Text-and-ICD NLP System had the highest F1 score for most clinical conditions (range
0.39e0.64). The agreement between the ICD-10 Lookup System and Text-Only NLP System varied (kappa of
0.21e0.81). The prevalence of DR and related conditions ranged from 1.1% for NVG to 17.9% for DME (using the
Text-and-ICD NLP System).

Conclusions: The prevalence of DR and related conditions varied significantly depending on the method-
ology of identifying cases. The best performing phenotyping method was the Text-and-ICD NLP System that
used information in both diagnosis codes as well as free-text notes.
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Diabetes mellitus is a leading cause of vision loss among
working age adults in the United States.1 As the prevalence
of diabetes rises, diabetic eye diseases including
retinopathy, macular edema (ME), and related conditions
(e.g., vitreous hemorrhage [VH], tractional retinal
detachments [TRDs], and neovascular glaucoma [NVG])
are also expected to increase.2 Despite the rising
prevalence, identifying such patients in routinely collected
observational health data, for example, the electronic
ª 2024 by the American Academy of Ophthalmology
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health record (EHR), is challenging. Accurately
identifying such patients is important for establishing
disease prevalence for epidemiologic surveillance or
public health planning, for example, to ensure there are
sufficient health care providers to treat the conditions in
certain areas.3 The complexity and richness of the data
available in the EHR also enables hypothesis driven
precision medicine research that accounts for the
uniqueness of each individual.4
1https://doi.org/10.1016/j.xops.2024.100578
ISSN 2666-9145/24

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
<ce:italic>www.ophthalmologyscience.org</ce:italic>
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xops.2024.100578&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.xops.2024.100578


Ophthalmology Science Volume 4, Number 6, December 2024
Accurate case identification of patients with diabetic
retinopathy (DR) and related conditions is essential to
studies using routinely collected observational health data.
Many studies rely on structured data including International
Classification of Diseases (ICD) diagnosis codes for case
identification.5,6 Although investigators have found
acceptable concordance between billing and provider free-
text documentation for many ocular conditions, there are
limitations to solely relying on ICD diagnosis codes for case
identification.7,8 The accuracy of ICD diagnosis codes can
vary by condition and is influenced by local billing
practices and documentation workflows.9,10 For example,
evidence suggests that more severe clinical diseases that
necessitate changes in clinical management, such as
proliferative DR (PDR), tend to be captured more
completely than less severe diseases like nonproliferative
DR (NPDR).9 There are also missing data in diagnosis
codes selected that do not specify laterality (i.e., which
eye is affected) or severity (e.g., mild or severe NPDR).9

Nonspecific diagnosis codes are seen more commonly for
older patients, those with better vision, patients with lower
utilization of eye care, and also depends on the specialty
of the eye care provider.11

Sole reliance on ICD diagnosis codes could be mis-
representing the identification of DR and related conditions.
Electronic health record data represent a unique opportunity
to compare diagnosis codes with free-text provider notes of
clinical conditions. To address the identification gap of DR
and related conditions using EHR data, this study aimed to
(1) develop and share a natural language processing (NLP)
framework that can identify DR and related conditions in
ophthalmic provider free-text notes, (2) compare the iden-
tification of these clinical conditions between the provider
free-text notes and structured ICD diagnosis codes, and (3)
report the performance of a combined NLP and ICD method
for optimal sensitivity and specificity in identifying DR and
related conditions.
Methods

Adult patients �18 years with diabetes mellitus seen at a tertiary
care academic referral center (Wilmer Eye Institute) were
included in the study.12 All ophthalmology office visits
containing free-text notes from January 1, 2013 to April 1,
2022 were identified. Ten DR related clinical conditions of in-
terest were included: unspecified DR, NPDR (mild, moderate,
severe), consolidated NPDR (unspecified DR or any NPDR),
PDR, diabetic macular edema (DME), VH, retinal detachment
(RD) (TRD or combined tractional and rhegmatogenous RD), and
NVG. The extraction of these clinical concepts and associated
attributes (e.g., laterality) were compared across 3 phenotyping
methods: International Classification of Diseases, 10th Revision
(ICD-10) diagnosis codes (ICD-10 Lookup System), NLP frame-
work applied to provider free-text notes (Text-Only NLP System),
and NLP framework applied to free-text notes and ICD-10 codes
(Text-and-ICD NLP System). The performance of these systems
were evaluated against a gold standard. The study was approved
by the Johns Hopkins Institutional Review Board which waived
the requirement for patient consent as this was secondary
research. The study also adhered to the tenets of the Declaration
of Helsinki.
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Gold Standard

Free-text notes (i.e., progress notes and problem list documentation)
and encounter-level ICD-10 codes were extracted from EHR’s data
warehouse and merged using a standardized template into a formatted
note (Fig S1, available at www.ophthalmologyscience.org).
Formatted notes from a random selection of 736 office visits from
348 patients were annotated to establish the gold standard labels
for training and validating the NLP framework, and validating the
ICD-10 Lookup System. A set of high-recall regular expressions
was used to identify candidate text spans indicating the clinical
concepts in the formatted notes (e.g., “retinal tear” to identify RD).
The regular expressions were curated based on a combination of
domain knowledge and a qualitative review of 50 randomly sampled
notes from the validation split. Details of the precise regular
expressed used can be found in the GitHub link.13 The text spans
were annotated by 2 graders (a postgraduate year-4 ophthalmology
resident [T.T.] and a licensed optometrist [A.G.]) for correctness (i.e.,
whether the text span indicates the intended clinical concept), and to
assign attribute labels (laterality, status, and severity/type) (Table S1,
available at www.ophthalmologyscience.org). A total of 3042 text
spans were annotated, with a total of 8973 attribute labels.
Disagreements were resolved through discussion overseen by a
board-certified ophthalmologist and clinical informaticist (C.X.C.).
A detailed description of the annotation process can be found in the
appendix of Harrigian et al.14

Span-Level to Encounter-Level Condition
Resolution

The gold standard annotation and NLP framework prediction were
completed using the span-level text, thus incongruent labels were
observed on the encounter-level (e.g., simultaneous identification
of mild NPDR and PDR in the right eye in a given office visit). To
address this issue, we applied post hoc resolution logic to the gold
standard, ICD-10 Lookup System, Text-Only NLP System, and
Text-and-ICD NLP System (Fig S2, available at www.ophtha
lmologyscience.org). The resolution process assigned the highest
identified severity of each condition. For DR, severity from least
to most severe was as follows: unspecified DR, mild NPDR,
moderate NPDR, severe NPDR, and PDR. The assignment was
done for each eye (designed the “per-eye” resolution), and for
each person (designed the “per-person” resolution).

Phenotyping Methods

Three phenotyping methods (i.e., ICD-10 Lookup System, Text-
Only NLP System, and Text-and-ICD NLP System) of extracting
DR related clinical conditions and associated attributes
were developed and compared. A comparison of the 3 methods on
a synthetic formatted note from a single office encounter is
shown in the supplement (Fig S3, available at www.ophtha
lmologyscience.org).

ICD-10 Lookup System

We extracted the ICD-10 encounter diagnoses associated with the
ophthalmology office visits. International Classification of Dis-
eases codes were referenced against a lookup table that indicated
the status and laterality of the clinical conditions of interest9 (Fig
S4, available at www.ophthalmologyscience.org).

NLP Framework

We developed an NLP framework that first extracted text spans
indicating DR related clinical concepts from the formatted notes
using regular expressions, and then used a suite of machine
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learning classifiers to infer attributes for the extracted clinical
concepts (Fig S5, available at www.ophthalmologyscience.org).

The annotations were consolidated into 7 span-level classifi-
cation tasks. Using the full set of clinical concepts, we trained 1
classifier to infer status (i.e., whether the condition is present or not
present at the time of the visit) and another classifier to infer lat-
erality (i.e., which eye(s) a clinical concept text span refers to).
Using concept-specific annotations, we trained 5 additional clas-
sifiers to infer severity/type and text span correctnessdNPDR
severity, PDR severity, RD type, ME type (e.g., DME or other),
and ME span correctness. The full set of tasks, their associated
clinical concepts, and attribute labels are included in Table S1
(available at www.ophthalmologyscience.org).

Bidirectional Encoder Representations from Transformers-
Multilayer Perceptron Classifiers. We trained separate classifiers
for each classification task. They leveraged the same classification
architectureda Bidirectional Encoder Representations from
Transformers (BERT) encoder15 with a dense Multilayer
Perceptron (MLP) output layer. First, each extracted text span
and up to 128 tokens centered around the text span (i.e., the text
span’s context) were passed through the BERT encoder to
generate token-level embeddings. Next, embeddings for tokens
from the extracted text span were mean-pooled and concatenated
with a one-hot-encoded vector that indicated which clinical
concept was represented by the text span. The one-hot vector was
included to provide concept-specific priors (biases) on the output.
Finally, the concatenated vector representation was passed to the
MLP output layer to generate final attribute predictions. A sche-
matic of this classifier architecture (BERT-MLP) is provided in the
supplement (Fig S5, available at www.ophthalmologyscience.org).

No existing BERT language model has been trained using
clinical text drawn from the ophthalmology domain. We adapted
an existing BERT model to our data distribution through a process
known as domain adaptive pretraining.16 We used
“Bio_ClinicalBERT”17 as the initial BERT model, which was
previously pretrained on nonclinical web data, PubMed and
PubMed Central abstracts, and notes from an intensive care unit
setting. We continued pretraining Bio_ClinicalBERT using a
masked language modeling objective on text from all
ophthalmology provider notes not already included in our
annotated dataset.18

Training and Validation of NLP Framework

To train and evaluate the task specific classifiers, the annotated
dataset was split into 5 mutually exclusive subsets for cross vali-
dationd3 were used for training, 1 for model selection (hyper-
parameter optimization), and 1 to estimate the performance of the
model for validation. This process was repeated 5 times, generating
5 unique machine learning classifiers for each task.

Performance of the NLP Classifiers against the gold standard
span-level annotations was estimated using macro F1 score (i.e., an
unweighted average of class-specific F1 score), precision (i.e.,
positive predictive value), and recall (i.e., sensitivity). Confidence
intervals were estimated using a bootstrap resampling procedure
with 100 iterations.19

Prediction

We applied the NLP framework to all formatted notes. For each
text span, all relevant task specific classifiers of the 35 available
(i.e., 7 tasks � 5 training folds) made predictions about the text
span’s attributes. For each attribute (e.g., laterality, severity), the
most frequently predicted label from the 5 associated classifiers
was used as the output for subsequent analyses. Ties between
classifier predictions were broken randomly. We applied additional
postprocessing logic to facilitate our downstream analysis. For RD,
we consolidated RD types including TRD and combined rhegma-
togenous RD/TRD into RD present. Diabetic macular edema was
noted as being present if the ME span was inferred to have a status
of present and ME type of DME.

Text-Only NLP System

In the Text-Only NLP System, the NLP framework was applied to
and made predictions from only the free-text portion of the
formatted notes.

Text-and-ICD NLP System

In the Text-and-ICD NLP System, the NLP framework was applied
to both the free-text and ICD-10 diagnosis codes of the formatted
notes. This system used the free-text that surrounds ICD-10 codes
in the formatted notes to make probabilistic predictions about the
ICD-10 codes’ attributes. Importantly, the Text-and-ICD NLP
System is not a simple additive combination of the outputs of the
deterministic ICD-10 Lookup System and Text-Only NLP System.
The Text-and-ICD NLP System uses a fully probabilistic approach
that leverages text-based context around the ICD-10 codes. The
system is able to assign laterality when the deterministic ICD-10
mapping does not specify it, and also differentiates between pre-
sent (e.g., active) and not present (e.g., negated, resolved) condi-
tion statuses. In the example provided in the Supplement, the Text-
and-ICD NLP System was able to leverage context and correctly
identify that the DME, only specified in the ICD-10 code and
completely missed by the free-text, was still present in the right eye
but had resolved (or was not present) in the left eye (Fig S3,
available at www.ophthalmologyscience.org).

Statistical Analyses

Comparing Performance of the Phenotyping Methods with the
Gold Standard. The performance of the 3 phenotyping systems for
each of the 10 clinical conditions was evaluated at the encounter-
level and compared with the gold standard. Macro F1, precision,
and recall scores were computed for both per-eye and per-person
resolutions. Confidence intervals were estimated using bootstrap
resampling with 100 iterations.

Clinical Outcomes

Summary statistics were used to describe the baseline character-
istics of patients included in the study (e.g., age, sex, race/ethnicity,
insurance). The prevalence of each clinical condition was estimated
on the patient level using each system (i.e., ICD-10 Lookup System,
Text-Only NLP System, and Text-and-ICD NLP System).

The prevalence estimates as ascertained using the Text-Only
NLP System or Text-and-ICD NLP System were compared with
ICD-10 Lookup System using the Fisher test. The agreement be-
tween the 2 systems for each clinical condition in the per-eye and
per-person resolutions was calculated across all encounters using
the kappa statistic.20

Among office encounters that were identified in both the Text-
Only NLP System or Text-and-ICD NLP System and the ICD-10
Lookup System, the date of the earliest encounter in which each
clinical condition was identified for each patient was extracted. The
difference in the first date of diagnosis as identified by the 2 sys-
tems was calculated, with confidence intervals generated using
bootstrap resampling with 100 iterations.

All analyses were performed using Python (Python Software
Foundation, Python Language Reference, version 3.10.9) and Stata
statistical software (version 17.0 for Windows; StataCorp LLC).
3
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Table 6. Baseline Characteristics of Patients with Diabetes
Mellitus Included in the Study

Number of Patients (%) N [ 91 097
Office Visits: 692 486

Age (yrs)
�20 280 (<1%)
>20 to �45 13 717 (15%)
>45 to �65 40 065 (44%)
>65 37 035 (40%)

Sex
Male 40 805 (44%)
Female 50 284 (55%)
Other 8 (<1%)

Race/ethnicity
Non-Hispanic White 43 962 (48%)
Non-Hispanic Black 31 096 (34%)
Hispanic 4358 (5%)
Other 11 681 (13%)

Insurance
Private 35 873 (39%)
Medicare 36 167 (40%)
Medicaid 8049 (9%)
Other 7671 (8%)
None 1772 (2%)
Missing 1565 (2%)

Ophthalmology Science Volume 4, Number 6, December 2024
Sensitivity Analysis

We performed a sensitivity analysis using only ophthalmology
office visits from January 1, 2016 to April 1, 2022. This sensitivity
analysis was conducted as ICD-10 was not implemented by health
care providers in the United States until October 2015. Cross-
mapping of historic ICD-9 to ICD-10 codes at our institution
was achieved to variable degrees. Furthermore, evidence shows the
possibility of coding inaccuracies in the early use of ICD-10 from
October 2015 to January 2016 due to a coding learning curve.9

Results

Validation of NLP Framework

Of the 3042 high-recall regular expression matches reviewed
by annotators, 3024 (99.4%) were identified as being
correctly extracted. On the span-level, the machine learning
classifiers achieved average F1, precision, and recall scores
(95% confidence interval) of 0.88 (0.83, 0.92), 0.90 (0.88,
0.93), and 0.89 (0.85, 0.93) across the 7 classification tasks.
Additional details are provided in the Supplement (Table S2,
available at www.ophthalmologyscience.org).

Performance of ICD-10 Lookup System, Text-
Only NLP System, and Text-and-ICD NLP
System

On the encounter-level, the Text-and-ICD NLP System had
the highest macro F1 scores across most clinical conditions
in both the per-eye and per-person resolutions (Table S3,
available at www.ophthalmologyscience.org). The Text-
Only NLP System performed the best with the highest
macro F1 scores for DME, RD, and VH. The ICD-10
Lookup System had the highest macro F1 score for severe
NPDR in the per-person resolution. Both the Text-Only
NLP System and Text-and-ICD NLP System were able to
assign laterality in instances where the ICD-10 Lookup
System lacked specificity (Tables S4 and S5, available at
www.ophthalmologyscience.org).

Comparing ICD-10 Lookup System and Text-
Only NLP System for Clinical Outcomes

A total of 91 097 patients and 692 486 office visits were
included in the study. Most of the patients were >45 years
of age (84%), female (55%), non-Hispanic White (48%),
and with Medicare insurance (40%) (Table 6).

In comparing the ICD-10 Lookup System and Text-Only
NLP System, the Text-Only NLP System identified a higher
prevalence for most clinical conditions (Fig 6). The ICD-10
Lookup System identified a higher prevalence of mild
NPDR, consolidated NPDR, and NVG. The agreement
between the ICD-10 Lookup System and Text-Only NLP
System ranged from slight to moderate (0.03 for
unspecified DR to 0.56 for PDR) in the per-eye resolution
(Table S7, available at www.ophthalmologyscience.org).
Overall, the agreement between the ICD-10 Lookup
System and Text-Only NLP System was higher in the per-
person resolution as compared with the per-eye resolution
(Table S7, available at www.ophthalmologyscience.org).
4

For all clinical conditions, the Text-Only NLP System was
able to assign laterality where the ICD-10 Lookup System
lacked specificity (Tables S8 and S9, available at
www.ophthalmologyscience.org). Results were similar on
sensitivity analysis (Table S7, available at
www.ophthalmologyscience.org).

In comparing across the 3 phenotyping methods, the
highest prevalence of nearly all clinical conditions was
identified using the Text-and-ICD NLP System in the main
analysis and sensitivity analysis (Table S7, available at
www.ophthalmologyscience.org). The exceptions were
unspecified DR in the sensitivity analysis and NVG in
both the main and sensitivity analysis (Table S7,
available at www.ophthalmologyscience.org, Figs 6 and
S7, available at www.ophthalmologyscience.org).

In comparing the date of diagnosis, the ICD-10 Lookup
System identified an earlier date for nearly all conditions
when compared with the Text-Only NLP System (Table S7,
available at www.ophthalmologyscience.org). The Text-
Only NLP System identified an earlier year of diagnosis
for VH. The first year of diagnosis was similar between
the ICD-10 Lookup System and Text-Only NLP System for
severe NPDR and RD. On sensitivity analysis, the ICD-10
Lookup System identified an earlier year of diagnosis for
all clinical conditions except for VH.

Discussion

Using a BERT-MLP language model, we developed an NLP
framework that can accurately identify DR and related
conditions (i.e., DR, NPDR, PDR, DME, VH, RD, and
NVG) and infer attributes including laterality, status, and
severity/type. The NLP framework outperformed the ICD-
10 diagnosis codes-only approach in F1 score, precision,
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Figure 6. The percent prevalence (and 95% confidence interval) of DR and related conditions as identified by each of the 3 phenotyping methods (ICD-10
Lookup System, Text-Only NLP System, Text-and-ICD NLP System). DME ¼ diabetic macular edema; DR ¼ diabetic retinopathy; ICD-10 ¼ International
Classification of Diseases, 10th Revision; NLP ¼ natural language processing; NPDR ¼ nonproliferative diabetic retinopathy; NVG ¼ neovascular glau-
coma; PDR ¼ proliferative diabetic retinopathy; RD ¼ retinal detachment; VH ¼ vitreous hemorrhage.

Harrigian et al � Natural Language Processing and DR
and recall for each of the NLP classification tasks.
Compared with ICD diagnosis codes alone, we were able to
identify more cases, or a higher prevalence, of most DR
related conditions using the provider free-text notes; how-
ever, this varied substantially depending on the clinical
condition. We achieved the best performance using our
combined Text-and-ICD NLP system that made context-
informed probabilistic predictions about clinical concepts
indicated by ICD-10 diagnosis codes and within the free-
text. The combined system generally had the highest F1
score and identified the highest prevalence of nearly all DR
and related conditions.

Natural language processing is increasingly used in
ophthalmology, particularly for the identification of clinical
conditions.21e23 Multiple studies have shown that case se-
lection is greatly enhanced with the application of NLP to
free-text notes, and that diagnosis codes are either inade-
quate to capture all cases of a disease of interest, or only
capture a small portion of those cases.21,22,24 We similarly
show that for most DR and related conditions, up to
twofold to threefold more cases could be identified using
free-text notes but this was not true for all conditions. The
variability in the clinical condition prevalences identified
across our 3 phenotyping systems highlights the impact of
local coding practices and documentation workflow on case
identification using ICD-10 codes alone. For example, for
conditions such as VH that are poorly coded,9 application of
the NLP to free-text was superior when compared with ICD-
10 codes alone (identifying a prevalence of 4.01% compared
to 1.80%). However, for conditions such as NVG, more
cases were identified using ICD-10 codes as compared with
NLP of free-text (1.67% compared to 0.95%). Despite
identifying more cases, ICD-10 codes alone had lower
precision and recall as compared with the free-text. Inter-
national Classification of Diseases, 10th Revision codes
appeared to be identifying NVG cases that had already been
resolved. Similarly with mild NPDR, ICD-10 codes identi-
fied a higher prevalence with a higher recall compared with
NLP of free-text but at the expense of precision.

A unique aspect of our study was that we were able to
directly compare the accuracy of each phenotyping system
compared with the gold standard chart review. In circum-
stances where such chart review is not possible and one
cannot critically examine the impact of local coding patterns
on accuracy, it is even more advantageous to use a com-
bined system that uses both free-text as well as diagnosis
codes, as in our Text-and-ICD NLP System. We designed
our NLP framework as an aggregation of 7 classifiers rather
than a single multilabel classification based on preliminary
experiments not reported in this paper. We experimented
5
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with a multitask learning setup in which a single BERT
encoder was used with multiple classification heads for each
attribute type. Throughout these experiments, performance
either matched that of the independent models, or fell below
that of the independent models, possibly because of negative
transfer. Furthermore, due to the significant sample size
variation across attributes, we found that the checkpoint in
the training process at which an “optimal” level of perfor-
mance for a particular attribute was achieved frequently
differed from the optimal checkpoint of other attributes. In
this case, we would still have needed multiple versions of
the same model to achieve optimal levels of performance
across all tasks.

There are other advantages to our NLP framework. A
major advantage is its ability to infer the laterality of the DR
related condition. The NLP framework was able to identify
laterality in all relevant encounters with excellent perfor-
mance. The ability of the NLP framework to assign laterality
is why the per-eye agreement with the ICD-10 only system
is lower than that of the per-person agreement. Another
advantage is that it is able to infer status, present or not
present, again with excellent performance. Furthermore, the
NLP framework is able to assign severity to DR, for
example, mild/moderate/severe in cases where the ICD-10
only had unspecified DR. This is why the identified preva-
lence of unspecified DR by the NLP framework is lower
than that of the ICD-10 only system.

In the context of DR, prior NLP efforts to identify the
stage of DR have leveraged MediClass, a knowledge-based
system that detects clinical events.25,26 The NLP system
developed here leverages the same 2-stage structure
employed by MediClass, namely concept identification
and classification. In both cases, concept identification is
facilitated using a domain-specific knowledge base which
contains relevant clinical concepts/events and sets of terms/
phrases that represent them. While there are minor imple-
mentation differences in how the 2 systems extract con-
cepts from the free-text, the most significant difference lies
in the classification stage. Whereas MediClass requires
manual specification of logical rules to validate the cor-
rectness of a span extraction and to assign appropriate at-
tributes (e.g., laterality, severity), our NLP framework uses
a contextual language model and statistical classifier which
automatically learns linguistic relationships using labeled
examples to perform the same tasks. A recent study
adopted a similar approach to our NLP framework, but it
was only designed to operate on imaging reports from
patients already diagnosed with DR, and was unable to
infer attributes of clinical concepts if they were not
explicitly mentioned in the free-text.27

In comparing the date of diagnosis, the ICD-10 Lookup
System often identified an earlier date of onset compared
with the Text-Only NLP System but this difference was
generally limited to a few months. This systematic differ-
ence could reflect coding patterns unique to our institution,
where optometrists who often make an initial DR related
diagnosis are more likely to use problem based documen-
tation before referring to a retina specialist who is more
likely to use progress notes. One notable exception is VH
where NLP of the free-text often identified the clinical
6

condition much earlier than ICD-10 codes by on average 4
months. This is again consistent with prior findings that VH,
a condition that is intermittent and often self-resolving, is
poorly coded.9

We identify a lower prevalence of milder disease and a
higher prevalence of more severe and vision-threatening DR
compared with national estimates. Nationally, the preva-
lence of mild NPDR ranges from 16.3% to 36.6%, moderate
NPDR 1.7% to 10.3%, severe NPDR or PDR 1.0% to 6.9%,
and DME 1.2% to 8.9%.28 In our study, we identify a lower
prevalence of the milder diseases including mild NPDR
(8.7%), moderate NPDR (3.7%), and slightly higher
prevalence of vision-threatening DR including PDR
(6.0%) and DME (17.9%). When defining vision threatening
DR to include severe NPDR, PDR, or DME, we find a
prevalence of 18.6% (using the Text-and-ICD NLP System),
which is higher than previous reports of 5.1% to 8.2%.5,28

This is not surprising as tertiary care referral centers tend
to have more severe disease.

There are fewer studies characterizing the prevalence of
other neovascular sequelae of DR including VH, TRD, and
NVG. A prospective study of patients presenting with first
time spontaneous VH estimates an incidence of 7 cases per
100 000 inhabitants.29 Another study using administrative
claims estimates a crude incidence rate of 4.8 cases per
10 000 person-years.30 Among patients with PDR enrolled
in a prospective clinical trial, 5.6% developed VH or TRD
requiring surgical intervention with pars plana
vitrectomy.31 In a study using administrative claims in
Optum, Gange et al quote an incidence of TRD of 0.3%,
and NVG 0.1%.6 It is difficult to compare the estimates
for these DR related conditions to those in this study as
they are slightly different measures (incidence compared
to prevalence). In general, we find a prevalence of VH of
4.8%, 0.9% for RD (which combines TRD and TRD/
rhegmatogenous RD), and 1.1% for NVG.

There are limitations to this work. One disadvantage of
the NLP framework is its performance with respect to rare
events in the annotation dataset (e.g., nonehigh-risk PDR
and incorrect ME text spans). Future dataset expansion ef-
forts may benefit from active learning techniques to more
efficiently annotate rare targets.27,32 We also have not
quantified the degree to which the initial list of high-recall
regular expressions could be missing relevant concepts.
Based on domain expert knowledge, we suspect that the
false negative rate is low. However, since the NLP system
was developed at a single institution, we do not know the
degree to which our algorithm is generalizable to other in-
stitutions. This could also limit the scalability of the
framework. Another disadvantage of the NLP framework is
its computational expense requirements. Due in part to these
computational limitations, we only explored the BERT-
MLP architecture with a handful of possible encoder
initialization strategies. Alternative architectures (e.g.,
generative pretrained transformers and text-to-text transfer
transformer) may have yielded better performance, though
we note that BERT models continue to achieve state-of-the-
art levels of performance in a variety of clinical and
biomedical tasks when annotated data is available.33e35

Furthermore, as described in our methods-focused study,14
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adaptation of the language model to our clinical language
domain via continued pretraining and task fine tuning
provides a benefit to performance well beyond what is
provided by choosing a different encoder initialization.
When training the classifiers, we did not include examples
in which the attribute label could not be determined by
the annotators (i.e., unspecified). This exclusion during
training means it is possible that the classifier’s
performance estimate could be overconfident, with the
examples containing specified attributes potentially being
easier. Although we use a random sample of patients from
our population, there is a possibility that our system
performs differently for subgroups within the population
(e.g., performs worse for female patients or certain race
and ethnicity groups or performs worse for notes written
by providers with a certain level of training). While the
training sample is still representative of the target
population, any group imbalance in the training data can
implicitly motivate the model to perform better on
majority groups.36 Lastly, although we discuss the
prevalence of disease, we recognize that since these values
were derived from a single institution, they do not
represent national prevalence. Despite these limitations,
we share a useful NLP framework that can identify DR
and related conditions and infer attributes including
laterality, status, and severity/type. Future work using our
NLP framework should focus on establishing the external
validity of the system and its performance at other
institutions. This system will enable more detailed
analyses of EHR data at scale to derive clinically
meaningful insights around DR.

In conclusion, we provide a comprehensive comparison
between ICD-10 diagnosis codes and free-text note iden-
tification of many crucial concepts in the study of DR and
related conditions, showing the strengths and weaknesses
of each approach. The best performing phenotyping
method was the Text-and-ICD NLP System that used in-
formation in both diagnosis codes as well as free-text
notes.
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