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Background. Lung cancer (LC) has the highest mortality rate among all the other types of cancer in the world. T cells are known to
be the key factor in inducing the immune response during LC. Objective. In this study, we aimed to screen and analyze RNAs
associated with CD8(+) T cells and activated memory CD4(+) T cells in lung adenocarcinomas, a subtype of non-small-cell lung
cancer (NSCLC-LUAD). Methods. Gene expression RNA-seq data and clinical data of NSCLC-LUAD were downloaded from
the XENA database. The data were divided into low scores and high scores based on the Stromal and Immune scores. Then, all
the genes were screened for identifying those specifically associated with CD8(+) T cells and activated memory CD4(+) T cells.
The screened genes were used for the construction of the protein-protein interaction (PPI) network and for Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis along with prognosis analysis.
Based on the results of the prognostic analysis, the prognostic-related genes were used to analyze long noncoding (lnc)RNA-
micro(mi)RNA-mRNA networks and to predict small chemical molecules. Results. According to the Immune and Stromal
scores, a total of 885 upregulated and 29 downregulated RNAs were identified. A total of 90 differentially expressed genes
(DEGs) were found to be related to CD8(+) T immune cells, and 48 DEGs were related to activated memory CD4(+) T cells.
GPR174 and CD226 suggested a favorable prognosis. For CD8(+) and activated memory CD4(+) T cells, 112 and 113 PPI edges
were obtained, respectively. GPR174 was found to be regulated by hsa-miR-19b-5p and hsa-miR-19b-2-5p, and both of these
two miRNAs were regulated by lncRNA PCED1B-AS1. CD226 was regulated by hsa-miR-379-5p, which was in turn regulated
by lncRNA RP11-81H14.2. Conclusion. Our findings provide a deeper understanding of the T cell-related ceRNA regulatory
mechanism in NSCLC-LUAD pathogenesis.

1. Introduction

Lung cancer (LC) has the highest incidence (11.6% of total
cancer cases) and highest mortality rate (18.4% of total can-
cer deaths) among cancers worldwide [1]. The 5-year overall
survival (OS) rate of LC is about 15% [2]. Non-small-cell
lung cancer (NSCLC) accounts for more than 80% of all LC

cases, and lung adenocarcinomas (LUAD), which is a sub-
type of NSCLC, accounts for 50% of all LC cases. Inconspic-
uous clinical symptoms, difficult early diagnosis, different
histological subtypes, and inadequate understanding of the
biological characteristics of the tumor are the reasons for
poor prognosis and high mortality in case of LC [3]. In recent
years, immunotherapy has become a promising treatment for
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LC. T cells are known to be the key factor in the induction of
immune response during LC [4]. Therefore, it is imperative
to screen T cell-related molecular biomarkers and to under-
stand the mechanism of the regulatory pathways for the early
diagnosis and treatment of LC.

In LC, immune infiltration includes both, adaptive and
innate immune cell populations [5, 6], and these immune
cells are found to be present in a highly ordered state in the
tumor tissue [7]. LC cells form an integral part of the tumor
microenvironment. They express chemokine receptors and
produce chemokines that regulate both, immune and tumor
cells. Previous studies have shown that the chemokine recep-
tor, CXCR4, is upregulated in the tumor cells when com-
pared to the normal cells as it is actively involved in
promoting the survival, proliferation, and metastasis of
tumor cells [8]. Meanwhile, CXCR4-CXCL12 regulatory
complex plays an important role in the metastasis of NSCLC.
Other studies have shown that the regulatory complex,
CCL20-CCR6, can promote the progression of NSCLC
because of its proinflammatory and proliferative effects [9].
Several genes have been identified to mutate in LC, such as
FHIT, RB, TP53, and CDKN2. Studies have shown that
tumorigenic KRAS can potentially inhibit the T cell
immunity-related genes in the pancreatic cancer models,
thereby inhibiting the immune response against the tumor
[10]. HOXD-AS1, a long noncoding RNA (lncRNA), which
is known to be involved in the development of a variety of
cancers, has been demonstrated to be upregulated in NSCLC
tissues and to promote the growth of cancer cells by targeting
miR-147a [11]. It was also shown that miR-199-5p can regu-
late NSCLC proliferation by downregulating the expression
of hypoxia-inducible factor-1α (HIF-1α). It was also found
that the plasmacytoma variant translocation 1 (PVT1) gene
was overexpressed in hypoxic LC cells, which regulated the
expression of HIF-1α through competitive inhibition of the
binding of miR-199-5p [12].

However, there were few other reports on T cell-related
RNAs in NSCLC-LUAD. Therefore, in this study, we aimed
to complement this research domain by analyzing the char-
acteristics of the RNA expression profile of T cells associated
with NSCLC-LUAD. In the current study, the differentially
expressed RNAs of CD8(+) T cells and activated memory
CD4(+) T cells related to NSCLC-LUAD were analyzed by
the Estimation of STromal and Immune cells in MAlignant
Tumours using Expression data (ESTIMATE, version
1.0.13) algorithm, in order to screen the potential biomarkers
related to the prognosis of NSCLC-LUAD. Thus, it may fur-
ther provide clinical guidance for the prognosis and treat-
ment of LC from the perspective of immunity.

2. Materials and Methods

2.1. Data Collection and Preprocessing. Gene expression
RNA-seq data (including Counts and FPKM) and clinical
data (including phenotype) for the lung adenocarcinoma, a
subtype of NSCLC (NSCLC-LUAD, version07-20-2019),
were downloaded from the TCGA dataset, which is included
in the XENA database (https://xenabrowser.net/) [13]. The

platform used for the sequencing was Illumina HiSeq 2000
RNA Sequencing platform.

RNA-seq data was annotated using the annotation files
(gencode.v22.annotation.gene) present in the Gencode data-
base (https://www.gencodegenes.org/) [14]. Genes whose
annotation information was indicated as “protein_coding”
were extracted as mRNAs. Meanwhile, genes whose annota-
tion information was indicated as “processed_transcript,”
“lincRNA,” “3prime_overlapping_ncrna,” “antisense,” “non_
coding,” “sense_intronic,” “sense_overlapping,” “TEC,”
“known_ncrna,” “macro_lncRNA,” “bidirectional_pro-
moter_lncrna,” or “lncRNA” were extracted as long noncod-
ing RNAs (lncRNAs). Other genes were considered undefined.

The log2 (count +1) value of the sequencing data of
Counts was restored as the count value, and the log2 (FPKM
+1) value of the sequencing data of FPKMwas restored as the
FPKM value. Expression data of tumor samples suffixed with
“01A” were extracted. The “Ensembl ID” was converted to
“Symbol ID,” and when multiple “Ensembl IDs” corre-
sponded to the same “Symbol ID,” the mean of the expres-
sions of these “Ensembl IDs” was taken as the expression of
the resultant “Symbol ID.” Samples for which both expres-
sion data and survival information were available were
extracted, and overall survival time (OS time) and overall
survival status (OS status) were estimated. OS time was mod-
ified from days to months.

2.2. Tumor Microenvironment Analysis Based on ESTIMATE
Algorithm. The Estimation of STromal and Immune cells in
MAlignant Tumours using Expression data (ESTIMATE,
version 1.0.13) algorithm present in the R package was used
to calculate the Stromal and Immune scores of all the samples
[15]. ESTIMATE is a tool for predicting the presence of infil-
trating stromal/immune cells in tumor tissues by using the
gene expression data.

2.3. Differential Gene Expression Analysis. Based on the
median of Stromal and Immune scores and the classical
Bayesian modified t-test method provided by the limma
package (version 3.40.6) [16], the R package was used to
divide the samples into the high-scoring and low-scoring
groups. Differential RNAs (including both, lncRNAs and
mRNAs) were screened from different samples and by esti-
mating the significance levels, for which the threshold was
set as follows: P value < 0.05 and ∣logFC ∣ >1. The differential
RNA volcano map was obtained by using the ggscatter of the
ggpubr tools (version 0.2.2) of the R package [17]. The R heat
map package [18] was used to draw the monolayer and
bilayer clustering heat maps for all the differentially
expressed RNAs, and simultaneously, the monolayer and
bilayer clustering heat maps for the differentially expressed
RNAs were drawn based on the classification of mRNA and
lncRNA.

2.4. Screening of Differentially Expressed Genes (DEGs) and
Enrichment Analysis. As two major nontumor components
in the tumor microenvironment, immune and stromal cells
have certain potential in the diagnosis and prognosis of
tumor. Based on the results of the analysis in the last step,
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the intersections of the Stromal and Immune scores between
the two groups of DEGs (with the same upregulated relation-
ship) were considered the DEGs related to the tumor
microenvironment.

ClusterProfiler (version 3.12.0) [19] was used to analyze
the Gene Ontology (GO) [20] and Kyoto Encyclopedia of
Genes and Genomes (KEGG) [21] pathway enrichment for
both the upregulated and downregulated genes. The GO
analysis included Biological Process (BP), Cellular Compo-
nent (CC), and Molecular Function (MF). P value < 0.05
and count ≥ 2 were considered to indicate significant
enrichment.

2.5. Immunocyte Infiltration Abundance Analysis and T Cell-
Related Gene Screening. The CIBERSORT deconvolution
algorithm [22] of R package and ClusterProfiler were applied
to estimate the infiltration abundance of 22 immune cell
types in all the samples, based on the expression matrix.
The LM22 dataset provided on the CIBERSORT website
was set as the gene expression characteristic template, and
the parameters were set as follows: perm = 100 and QN = F.
The related landscape was drawn using the R package.

The tool corrplot (version 0.84) of R package [22] was
used to evaluate the Pearson’s correlation between the differ-
ential RNAs obtained in the last step, and then, the infiltra-
tion abundance of CD8(+) T cells and activated memory
CD4(+) T cells was estimated, respectively. Differentially
expressed RNAs with the Bonferroni-corrected P value <
0.05 and correlation coefficient ∣r ∣ >0:3were screened, which
were considered to be related to the DEGs of the two T cell
types infiltrated in the LC patients. Then, the GO and KEGG
pathway enrichment analysis of the immune-correlated
DEGs was performed. According to the NSCLC-related
pathways included in the Comparative Toxicogenomics
Database and CTD Database (http://ctdbase.org/) [23], the
KEGG pathways enriched in the immune-related DEGs of
the two T cell types were screened further.

2.6. Survival Analysis. The survival (version 2.44-1.1) tool of
R package [24] was used to analyze the relationship between
the immune-related differential RNAs of the two T cell types
and the OS of the samples. According to the median gene
expression, samples were divided into two groups with high
and low expression, respectively, and were further subjected
to the log-rank test. The threshold was set as P value <
0.05. Prognostic-related RNAs were screened, and Kaplan-
Meier (K-M) survival curve was plotted. The mRNAs that
were related with the survival were also screened.

2.7. Establishment of Protein-Protein Interaction (PPI)
Network. The interaction between the encoded proteins
was predicted and analyzed using the STRING (version
11.0, https://www.string-db.org/) database [25]. The PPI
score was set at 0.4. After the PPI edges were obtained,
Cytoscape software [26] was used to construct a network,
and the survival-related differential genes were identified
from the resultant network. The CytoNCA [27] plug-in
of the Cytoscape software was applied to analyze the topo-

logical properties (betweenness, closeness, and degree) of
the network.

2.8. Competing Endogenous RNA (ceRNA) Network Analysis.
MicroRNAs (miRNAs) that can bind the 3′UTR regions of
the immune-related DEGs of the two T cell types were pre-
dicted using the relevant databases (miRWalk3.0 [28], Tar-
getScan [29], MiRDB [30], and MirTarBase [31]), with a
threshold score > 0:95. Combining the results from different
databases, the validated (MirTarBase database) miRNAs that
were also predicted in either TargetScan or MiRDB were
selected as the final mRNA-miRNA edge. The HMDD V3.2
database [32] was used to retrieve the keywords “Carcinoma,
Lung and non-small-cell” in order to further verify and
screen the predicted miRNAs.

The Prediction Module of DIANA-LncBase v.2 database
(http://carolina.imis.athena-innovation.gr/diana_tools/web/
index.php?r=lncbasev2%2Findex) [33] was applied to pre-
dict the miRNAs that might be related to the immune-
related differences of the two T cell types, and then, the
lncRNA-miRNA regulatory complexes were screened based
on the results of the last step.

The integrated mRNA-miRNA edges and the lncRNA-
mRNA edges were used to construct the ceRNA network
using the Cytoscape software. The differential mRNAs and
lncRNAs and their upregulation status were labeled in the
resultant network.

2.9. Small Chemical Molecule Prediction Analysis. Firstly, in
the Comparative Toxicogenomics Database, “Carcinoma,
non-small-cell Lung” were used as the keywords to search
for genes directly related to this disease. Then, the disease-
related genes were obtained by comparing with the ceRNA
network gene, and further, the relevant small chemical mole-
cules were obtained. Finally, the network was constructed
using the Cytoscape software in order to obtain the small
chemical molecules that might be associated with the disease
treatment.

3. Results

3.1. Data Preprocessing. According to the description pro-
vided in Materials andMethods, a total of 510 tumor samples
were included in this study. We calculated the counts and
FPKM values of these 510 tumor samples, and in the end,
we obtained 58,387 × 510 counts and FPKM expression
matrix. There were 10,221 genes that matched, and 191 genes
that did not match in the ESTIMATE algorithm.

3.2. Identification of Differentially Expressed mRNAs and
lncRNAs. Based on the results of the Stromal score, a total
of 1,031 mRNAs (998 upregulated, 33 downregulated) and
200 lncRNAs (184 upregulated, 16 downregulated) were
obtained (Figure 1(a)). However, based on the results of the
Immune score, a total of 940 mRNAs (886 upregulated, 54
downregulated) and 272 lncRNAs (250 upregulated, 22
downregulated) were obtained (Figure 1(b)). The details are
presented in the Supplementary Tables 1 and 2.
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Figure 1: (a) Volcano plot of DEGs in the Stromal score group, (b) Immune score, and (c) Venn plots of DEGs that are upregulated and (d)
down regulated. (a) To screen the DEGs between the high score group vs. the low score group, the gene expression RNA-seq data (counts,
FPKM) and clinical data (phenotype) of NSCLC-LUAD were downloaded from XENA. In total, 510 tumor samples were obtained. In the
Stromal score group, 1,031 mRNAs (998 upregulated, 33 downregulated) and 200 lncRNAs (184 upregulated, 16 downregulated) were
obtained. (b) A total of 940 mRNAs (886 upregulated, 54 downregulated) and 272 lncRNAs (250 upregulated, 22 downregulated) were
obtained according to the Immune Score result. Blue dots represent downregulated genes. Red dots represent upregulated genes. Grey dots
represent nondifferentially expressed genes. DEGs represent differentially expressed genes. (c, d) In order to further analyze the DEGs, the
intersection of the two groups of DEGs was screened. A total of 885 upregulated RNAs (88 lncRNAs, 797 mRNAs) and 29 downregulated
RNAs (8 lncRNAs, 21 mRNAs) were obtained. Purple represents the Immune score group of DEGs. Yellow represents the Stromal score
group of DEGs. DEGs represent differentially expressed genes.
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3.3. Screening of DEGs and Enrichment Analysis. The results
of the DEG analysis of the two groups were taken as the inter-
section, and a total of 885 upregulated RNAs (88 lncRNAs,
797 mRNAs), and 29 downregulated RNAs (8 lncRNAs, 21
mRNAs) were obtained (Figures 1(c) and 1(d)).

The GO enrichment analysis of the 797 DEGs obtained
in the previous step showed that the most enriched Biolog-
ical Process (BP) of the upregulated genes included the

regulation of lymphocyte activation and leukocyte migra-
tion. The Cellular Components (CC) mainly enriched were
the external side of plasma membrane and secretory gran-
ule membrane, and the Molecular Functions (MF) mainly
enriched were carbohydrate and cytokine receptor activity
(Figure 2(a)). KEGG enrichment analysis results of the
upregulated DEGs revealed that the most significant
enriched pathway was cytokine-cytokine receptor interaction
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Figure 2: GO and KEGG enrichment analysis of (a, b) upregulated and (c, d) downregulated differentially expressed genes. ClusterProfiler
was used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment involving
both, upregulated and downregulated genes. The GO analysis included Biological Process (BP), Cellular Component (CC), and Molecular
Function (MF). P value < 0.05 and count ≥ 2 were considered significantly enriched. The downregulated DEGs were enriched in 251 GO
terms and 4 KEGG pathways. The upregulated DEGs were enriched in 1128 GO terms and 53 KEGG pathways. DEGs represent
differentially expressed genes.
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followed by hematopoietic cell lineage and cell adhesion
molecules (Figure 2(b)).

For the downregulated DEGs, the BP found to be mainly
enriched were positive regulation of hormone secretion and
plasminogen activation. For the CC, the enrichment was
observed for the platelet alpha granule lumen, while for the
MF, the enrichment was observed for the aldo-keto reductase
activity (Figure 2(c)). The major enrichment pathways of the
downregulated DEGs mainly included complement and
coagulation cascades and platelet activation (Figure 2(d)).

3.4. Immunocyte Infiltration Abundance Analysis and
Screening of T Cell-Related Genes. Out of the 547 related
genes, 539 genes were found to be involved in the LM22 sig-
nal matrix, accounting for 98.54%. The infiltration abun-
dance of the 22 types of immune cells was analyzed, and
the results are shown in Figure 3. The obtained results
showed that 488 samples out of the 510 samples were valid
(P value < 0.05).

The correlation between the infiltration of CD8(+) T cells
and activated memory CD4(+) T cells and the expression
level of DEGs were analyzed. A total of 90 DEGs related to
the CD8(+) T cell immune cells (Supplementary Table 3)

and 48 DEGs related to the activated memory CD4(+) T
cells were obtained (Supplementary Table 4). The results of
the GO enrichment analysis of CD8(+) T cells related
DEGs showed that the BP, CC, and MF mainly enriched
were T cell differentiation, external side of plasma
membrane, and cytokine receptor binding, respectively
(Figure 4(a)). The pathways enriched for these DEGs
mainly included cell adhesion molecules and cytokine-
cytokine receptor interaction (Figure 4(b)). The GO
enrichment analysis results of the activated memory
CD4(+) T cell-related DEGs showed that the BP, CC, and
MF mainly enriched were positive regulation of leukocyte
activation, external side of plasma membrane, and cytokine
receptor binding, respectively (Figure 4(c)). The pathways
enriched for these DEGs mainly included cytokine-cytokine
receptor interaction and viral protein interaction with
cytokine and cytokine receptor (Figure 4(d)).

3.5. CD8(+) T Cells and Activated Memory CD4(+) T Cell-
Related DEGs Are Associated with Prognosis of NSCLC-
LUAD. The results of K-M survival curve analysis revealed
that among the 90 DEGs related to the CD8(+) T cells, 23
DEGs were associated with the survival prognosis of patients
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Figure 3: Landscape of the immune cells. To analyze the abundance of infiltration of the immune cells in the samples, RNA-seq expression
profile data were used to target the differentially expressed genes, and the abundance matrix of the immune cells was evaluated by using the
CIBERSORT deconvolution algorithm. The results showed that 488 of 510 cases were valid (P value < 0.05).
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with LUAD, while among the 48 DEGs related to the acti-
vated memory CD4(+) T cells, 4 DEGs were associated with
the survival prognosis of patients with LUAD. GPR174 and
CD226 were suggested as the potential candidates for favor-
able prognosis of NSCLC-LUAD (Figure 5).

3.6. PPI Network of the DEGs Related to CD8(+) T Cells and
Activated Memory CD4(+) T Cells. For CD8(+) T cells, 112
PPI edges were obtained. A total of 27 nodes were obtained
in the network, and all of them were upregulated. Among

these 27 nodes, five (TRAF2IP3, GPR174, CD226, SLAMF1,
and ITGAL) were identified as the survival-related genes
(Figure 6(a)). For activated memory CD4(+) T cells, 113
PPI edges were obtained. A total of 31 nodes were obtained
in the network, and all of them were upregulated. Among
these, two (CD226 and GPR174) were identified as the
survival-related genes (Figure 6(b)).

3.7. ceRNA Network Analysis of CD8(+) T Cells and Activated
Memory CD4(+) T Cell-Related RNAs. According to the
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Figure 4: GO and KEGG enrichment analysis of (a, b) CD8(+) T cell-related DEGs and (c, d) memory-activated CD4(+) T cell-related DEGs.
ClusterProfiler was used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
involving both, upregulated and downregulated genes. The GO analysis included Biological Process (BP), Cellular Component (CC) and
Molecular Function (MF). P value < 0.05 and count ≥ 2 were considered significant enrichment. The CD8(+) T cell-related DEGs were
enriched in 338 GO terms and 369 KEGG pathways. The memory-activated CD4(+) T cell-related DEGs were enriched in 12 GO terms
and 14 KEGG pathways. DEGs represent differentially expressed genes.
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description in the material methods section, the ceRNA net-
work was constructed. A total of 26 edges were obtained in
the ceRNA network of the CD8(+) T cell-related RNAs.
The network also included 4 lncRNAs, 11 miRNAs, and 4
mRNAs. In this network, GPR174 was found to be regulated
by hsa-miR-19b-5p and hsa-miR-19b-2-5p, and both of
these two miRNAs were regulated by the lncRNA,
PCED1B-AS1. ZNF80 was also found to be regulated by
hsa-miR-19b-2-5p, and hsa-miR-19b-2-5p was regulated by
PCED1B-AS1 (Figure 7(a)).

In the ceRNA network of the activated memory CD4(+)
T cell-related RNAs, there were 7 miRNAs, 1 lncRNA, and
1 mRNA. CD226 was found to be regulated by hsa-miR-
379-5p, which was further regulated by the lncRNA, RP11-
81H14.2 (Figure 7(b)).

3.8. Small Chemical Molecule Analysis of CD8(+) T Cells and
Activated Memory CD4(+) T Cell-Related Genes. For CD8(+)
T cells, 16 small chemical molecules and 6 mRNAs (associ-
ated with prognosis) were obtained from the drug-gene reg-
ulatory network (Figure 7(c)). There were two small
chemical molecules associated with GPR174 that were iden-
tified from the activated memory CD4(+) T cell-related net-
work. Arsenic trioxide has been shown to decrease the
expression of GPR174. Moreover, oxygen could not only
affect the expression of GPR174 but also affect its response
to the substrates (Figure 7(d)).

4. Discussion

The immune response against cancer requires specific activa-
tion and amplification of T lymphocytes that are killed upon
recognition by the antigenic targets expressed by cancer cells.
Thus, T lymphocytes have become the current focus of tumor
immunotherapy. However, the molecular mechanism of T
cell-related RNAs in NSCLC remains unclear. In this study,
we analyzed the RNA-seq data of NSCLC-LUAD downloaded
from different databases, screened out the DEGs related to
CD8(+) T cells and activated memory CD4(+) T cells, and
finally constructed the ceRNA networks of the putative prog-
nostic DEGs. Finally, the corresponding small chemical mole-
cules associated with the target genes were predicted, and the
regulation network was constructed. In this study, a total of
90 and 48 DEGs related to CD8(+) T cells and activated mem-
ory CD4(+) T cells were obtained, respectively. The survival
analysis revealed that the T cell genes, CD226 and GPR174,
were related with the prognosis of NSCLC-LUAD. PCED1B-
AS1-hsa-miR-19b-1-5p/hsa-miR-19b-2-5p-GPR174 and
RP11-81H14.2-hsa-miR-379-5p-CD226 were the two poten-
tial molecular complexes which were identified to be related
to the prognosis of NSCLC-LUAD.

GPR174 is a G protein-coupled receptors, which is acti-
vated by the bioactive lipid lysophosphatidylserine (LysoPS)
[34]. LysoPS inhibits T cell proliferation and the production
of regulatory T cells (Treg) in vitro by activating GPR174.
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Figure 5: Kaplan-Meier survival curves of DEGs related with immune cells. Package survival (version 2.44-1.1) was used to analyze the
relationship between immune-related DEGs of two types of T cells, and the survival of the samples was evaluated. According to the
median gene expression, samples were divided into two groups with high and low expression and were tested by performing the log-rank
test. The threshold was set as P value < 0.05. Patients with a high level of GPR174 and CD226 had a better overall survival than those with
low expression levels.
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Previous studies have shown that an antagonist of GPR174
may have therapeutic potential to promote immune regula-
tion in autoimmune diseases [35]. In this study, GPR174
was found to be regulated by hsa-miR-19b-5p and hsa-
miR-19b-2-5p, and both of these miRNAs were regulated

by the lncRNA, PCED1B-AS1 (lncRNA, PC-esterase domain
containing protein 1B antisense RNA 1). PCED1B-AS1 has
been shown to be closely related to tuberculosis. Studies have
shown that the expression of PCED1B-AS1 is downregulated
in patients with active tuberculosis, and in turn, the apoptosis
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Figure 6: The PPI network of (a) CD8(+) T cell-related DEGs and (b) memory-activated CD4(+) T cell-related DEGs. The interaction
between gene coding proteins was predicted and analyzed using the STRING database. The PPI score was set at 0.4. After the PPI edges
were obtained, Cytoscape software was used to construct a network for them, and survivor-related differential genes were identified from
the network. The CytoNCA plug-in of the Cytoscape software was applied to analyze the topological properties (betweenness, closeness,
and degree) of the network. Red nodes represent the upregulated mRNAs while blue nodes represent the downregulated mRNAs. The size
of nodes represents the corresponding value. Larger nodes indicate a larger value. DEGs represent differentially expressed genes.
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of monocytes is significantly reduced, and autophagy is
enhanced. Meanwhile, it has also been shown that the
in vitro knockdown of PCED1B-AS1 can reduce apoptosis
of macrophages and further promote autophagy. This study
also demonstrated that the binding of PCED1B-AS1 with
miR-155 can regulate the apoptosis and autophagy of macro-
phages during active tuberculosis [36]. Another study has
shown that the silencing of PCED1B-AS1 leads to an effect
that reduces the proliferation capacity of glioma cells, while
the inhibition of the miR-194-5p expression can counteract
this effect [37]. Therefore, we hypothesize that high expres-
sion of PCED1B-AS1 may lead to an increase on the expres-
sion of the mRNA, GPR174 by more binding to the target
miRNA, including hsa-miR-19b-5p and hsa-miR-19b-2-5p.

In this study, PCED1B-AS1 and GPR174 were found to be
highly expressed in cancer tissues. Thus, this may be a poten-
tial NSCLC-LUAD-related ceRNA complex.

The immunoglobulin-like glycoprotein CD226 (DNAX
accessory molecule-1), which is a transmembrane glycopro-
tein, plays a critical role in the detection of tumors and to
study the autoimmune diseases. The level of soluble CD226
in serum of tumor patients was found to be significantly
higher than that of healthy individuals [38]. Meanwhile,
CD226 gene polymorphisms were identified as risk factors
associated with NSCLC [39]. In this study, the ceRNA net-
works related to activated memory CD4(+) T cells revealed
that CD226 was regulated by hsa-miR-379-5p, and at the
same time, hsa-miR-379-5p was regulated by lncRNA,
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Figure 7: ceRNA network of (a) CD8(+) T cell-related DEGs and (b) memory-activated CD4(+) T cell-related DEGs and chemical small
molecule-target network analysis of (c) CD8(+) T cell-related DEGs and (d) memory-activated CD4(+) T cell-related DEGs. The lncRNA-
miRNA interaction of the immune-related genes was predicted by using the relevant database (miRWalk3.0, TargetScan, MiRDB, and
MirTarBase), with a threshold score > 0:95. The prediction module of DIANA-LncBase v.2 database was used to predict the miRNAs that
might be related to lncRNAs, which were related with CD8(+) T cell- and memory-activated CD4(+) T cells. Based on the lncRNA-
miRNA and miRNA-target interaction edges, the lncRNA-miRNA-mRNA network was constructed utilizing the Cytoscape software. The
red diamond represents the lncRNAs, the green triangle represents the miRNAs, and the red circle represents the mRNAs. The
“Carcinoma, Non-Small-Cell Lung” was used as the keyword in the Comparative Toxicogenomics Database to search for lung cancer-
related genes and chemicals. Besides, the overlapping genes that were associated with lung cancer and belonged to the T cells related genes
in the ceRNA network were used to screen the chemical-target edges. Furthermore, the small chemical molecule-target network of the T
cells was generated by using the Cytoscape software. The CD8(+) T cell-related DEG’s group involved 6 mRNAs and 16 small chemical
molecule drugs. The memory-activated CD4(+) T cell-related DEG’s group involved 1 mRNAs and 2 small molecule drugs. Red
represents mRNA, and green represents small molecule drugs.
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RP11-81H14.2. In a study on miR-379 and NSCLC, the
researchers found that the miR-379 might be an inhibitory
gene related to NSCLC, which could inhibit the cell growth
and proliferation, and further promote cell apoptosis. In
addition, it was found that miR-379 might also be inhibited
in the process of tumor development, but it can reduce some
of the malignant damages caused by tumors by inhibiting the
expression of the conserved helix-loop-helix ubiquitous
kinase (CHUK) [40]. It has been shown that the overexpres-
sion of miR-379-5p inhibits the migration, invasion, and
metastasis of hepatocellular carcinoma (HCC) cells. How-
ever, the knockdown of miR-379-5p leads to an increase in
the migration and invasion of hepatocellular carcinoma cells.
miR-379-5p can inhibit the expression of focal adhesion
ligase by targeting CHUK and further reverse the anticancer
effect of miR-379-5p in HCC cells [41]. Wang et al. found
that the lncRNA, RP11-81H14.2, was significantly upregu-
lated in HCC cells [42]. Thus, the RP11-81H14.2-hsa-miR-
379-5p-CD226 axis may act as a possible regulatory molecu-
lar pathway in case of NSCLC-LUAD.

In this study, we found that GPR174 and CD226 could
act as favorable prognosis markers of NSCLC-LUAD.
Groups with higher Stromal and Immune scores showed
high levels of GPR174 and CD226, and higher scores are pre-
dicted as lower disease progression than those with lower
scores. This suggested that the T cell-mediated immunity
might be involved in the regulation of tumor. However, the
prognosis depends on a variety of factors, such as the
destruction and reconstruction of the immune system in
patients with advanced tumors, the negative feedback of the
immune system, the tolerance of immune cells, and the direct
effects of the antitumor drugs. Therefore, the expression
levels were not sufficient to determine the prognosis. We also
identified several ceRNA axes that were associated with LC,
but these axes have not been reported in the literature yet.
Therefore, more experiments were required to perform in
the future to verify the assumptions obtained from the bioin-
formatics analyses of this study. We predicted the small
chemical molecules, which associated with T cell-related
prognostic indicators. These results can further provide clin-
ical guidance for prognosis judgment and treatment of LC
from the perspective of immunity. In this study, multiple
NSCLC-LUAD ceRNA networks associated with T cells were
identified by bioinformatics analyses. Meanwhile, factors and
drugs related to the prognosis of LC were identified, which
will also provide clinical guidance for the prognosis judgment
and the treatment of LC.

5. Conclusion

Our findings provide a deeper understanding of the T cell-
related ceRNA regulatory mechanism in NSCLC-LUAD
pathogenesis.
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