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ABSTRACT: Bayesian models constructed from structure-
derived fingerprints have been a popular and useful method for
drug discovery research when applied to bioactivity measure-
ments that can be effectively classified as active or inactive. The
results can be used to rank candidate structures according to
their probability of activity, and this ranking benefits from the
high degree of interpretability when structure-based finger-
prints are used, making the results chemically intuitive. Besides
selecting an activity threshold, building a Bayesian model is fast
and requires few or no parameters or user intervention. The
method also does not suffer from such acute overtraining problems as quantitative structure−activity relationships or quantitative
structure−property relationships (QSAR/QSPR). This makes it an approach highly suitable for automated workflows that are
independent of user expertise or prior knowledge of the training data. We now describe a new method for creating a composite
group of Bayesian models to extend the method to work with multiple states, rather than just binary. Incoming activities are
divided into bins, each covering a mutually exclusive range of activities. For each of these bins, a Bayesian model is created to
model whether or not the compound belongs in the bin. Analyzing putative molecules using the composite model involves
making a prediction for each bin and examining the relative likelihood for each assignment, for example, highest value wins. The
method has been evaluated on a collection of hundreds of data sets extracted from ChEMBL v20 and validated data sets for
ADME/Tox and bioactivity.

■ INTRODUCTION

Bayesian inference is a category of machine learning that has
been greatly beneficial to computer-aided drug design.1−16 One
category in particular, the Laplacian-modified naiv̈e Bayesian
variant using extended connectivity fingerprints or molecular
function class fingerprints of maximum diameter 6 (ECFP6 or
FCFP6) derived from chemical structures has established itself as
a powerful workhorse tool since it was originally popularized in
Pipeline Pilot.17−19 This Bayesian method has some key advant-
ages over other types of model building techniques applied to 2D
structures (e.g., quantitative structure/property activity relation-
ships (QSAR/QSPR)); it is very fast,20,21 requires little expertise,
is relatively robust with regard to overtraining, and can be
interpreted intuitively since model characteristics are directly
related to structural features, which medicinal chemists are very
well attuned to. The Laplacian modification to the conventional
naiv̈e Bayes formula solves the problem of numerical precision
and skewing caused by use of thousands of priors (structure-
derived fingerprints) at the cost of returning an unscaled result,
which, unlike for the conventional formula, is not a probability.18

We have previously described a simple calibration method that
allows results to be interpreted as a probability-like value.22

The most obvious drawback to using a Bayesian model rather
than quantitative structure−activity relationships or quantitative
structure−property relationships (QSAR/QSPR)23−26 is that

the training data inputs must be classified as one of two states
(e.g., active vs inactive), and predictions return an indication of
the likelihood that the molecule represented by the chemical
structure is one rather than the other.17−19 Because the kinds of
biological measurements that are being used for these models
generally originate as continuous data (e.g., an IC50, MIC, Ki,
EC50, solubility, a value of clearance or metabolic stability, etc.), it
is necessary to precede the model building step by the user
selecting a threshold to partition the collection into two states.
The choice of threshold can depend on a variety of circumstantial
or historical factors. For instance, there may be hard scientific
reasons; for an underdeveloped target where few strong
inhibitors are known, a low threshold is likely to furnish a
model with better predictivity, whereas if there are already a
number of strong inhibitors in the training set, a high threshold
may be more useful if the objective is to double-down on the
structural features required to achieve very high potency.
We have recently developed a newmethod for fully automated

creation of thousands of Bayesian models using publicly available
data, and for this purpose, we needed to design an algorithm for
automatically detecting a suitable threshold for splitting the
data set.22 One of the first lessons we learned is that the choice of
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threshold has a profound effect on the quality of the model,
which is consistent with intuition; if a group of structurally similar
compounds have similar activities, then drawing a line through
the middle will result in a model with very limited ability to
resolve the two categories, whereas drawing the line so that any
such clusters of related structures are on the same side of the
threshold results in highly predictive models. As we experi-
mented with ways to score proposed thresholds, we found that
one of the most effective ways to ascertain the suitability of a
threshold was to actually build a Bayesian model (using a diverse
subset of the data to ensure scalability) and use the computed
receiver operator characteristic (ROC) integral as part of the
score for evaluating the suitability of the threshold. Using this
approach, we were able to propose thresholds that led to very
effective automated model building on a large scale.22

Besides the need to find a threshold before building a Bayesian
model, the other obvious drawback is that the result of a model
prediction is a probabilistic indicator, which is in contrast to
traditional QSAR/QSPR methods, for which the result is a
continuous value with the same units as the training data, with
an estimated error. Attempts to map the outcome of a Bayesian
model (which is a floating point number) to a continuous
property value generally gives poor results, which is intuitive and
should be expected. The inputs are partitioned based on above/
below a certain threshold, and so there is no particular reason
why a model should be able to distinguish between multiple
states (e.g., high vs medium vs low).
We have a keen interest in expanding the scope of Bayesian

models for prediction of biological properties because we have
found the method to be highly valuable from a pragmatic point of
view.22,27 In particular, we have the need to provide computer-
aided drug design software for use by scientists who are not
computational experts or even necessarily have any insight into
the nature of the data they are modeling, but are nonetheless in
a position to benefit from machine learning technologies.27 For
many scenarios, structure−activity data can be effectively treated
as if it were binary, such as high throughput screening results,
which are classified as either hits or misses. However, this classifi-
cation is often less reasonable for more thoroughly determined
dose−response assays, which often require more resolution than
active/inactive, although at times it is still useful, as shown by our
recent success using dose response data for Mycobacterium
tuberculosis Bayesian model building.3,4,7,28−31 One alternative
approach is to divide the training set not into two categories, but
rather three or more, i.e., each measurement is assigned to a
“bin”, which represents a range of activities. For example, a data
set might be divided into four bins, defined as [<5, 5..6, 6..7, > 7].
For each of these bins, a Bayesianmodel can be created, for which
its own partitioning is defined as does/does not belong in the bin.
Evaluating a predicted test molecule would involve submitting it
to each of the four Bayesian models, each of which competes for
ownership; the predicted bin membership is based on assignment
to the model with the highest prediction.
This idea of competitive Bayesian models is not particularly

novel or difficult to implement, but during its development, we
found that the effectiveness of the method was profoundly
affected by the choice of segmentation boundaries used to
mark where one bin ends and the next one begins. As with the
development of an algorithm for selecting a single threshold for
a two-state Bayesian model building exercise, the selection of
number of bins, population size, and boundary thresholds should
be done by trying to avoid splitting up clusters of compounds
that have similar structures and similar activities.

Because the objective of this work has always been to provide
inexperienced users with an essentially turn-key user experience
that does not require preexisting knowledge of the data, we
have put considerable effort into designing an algorithm that
can propose a suitable binning scheme without the need for
unexperienced users to engage in trial-and-error attempts to coax
a good multistate model out of their data. The benefits of being
able to provide a predicted bioactivity measurement as a range of
values, rather than greater/less than a particular threshold value,
are self-evident for many data sets. As with our previous recent
work on Bayesian models,22,27 we have made the code available
to the community under the terms of the GNU Lesser General
Public License, and data sets used as validation materials can be
freely obtained from Github (http://github.com/cdd/bayseg)
or CDD Public.32

■ METHODS
Laplacian-Modified Naiv̈e Bayesian Composite Mod-

els. The basic idea involves dividing up the ranges of activity
measurements into bins, each of which is defined by a scope of
possible values. For example, a training set where molecules are
represented by pIC50 or pKi measurements might be divided
up into four bins, as shown in Figure 1. Once the number of

bins and the boundaries between them have been decided on,
the next step is to create a Bayesian model for each bin, using the
Laplacian-modified naiv̈e Bayesian method described previ-
ously.27 Rather than using a cutoff threshold for activity, the
classification is defined as active if the molecule is in the current
bin and inactive if it is not.
By making use of the calibration method that we described

previously for converting the Laplacian-modified predictions
into a probability-like range (i.e., most in-domain predictions are
in the range 0..1),22,27 it is meaningful to compare the prediction
values for each of the bins. For a proposed molecular structure,
the Bayesian model for each bin is applied. The most
rudimentary interpretation is that the bin whose model provides
the highest calibrated prediction value is the most probable
range.

Figure 1. Visual example of the binning system: Four groups of
molecular structures are divided according to an activity boundary. For
each bin, a conventional two-state Laplacian-corrected naiv̈e Bayesian
model is constructed using in bin versus not in bin as the classifier.
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During our initial experimentation with this approach, we
found that the success rate for recalling the correct bin was
extremely sensitive to the choice of boundary positions
separating the bins. Using a convenient scheme (e.g., whole
numbers), or selecting bins based on evenly sized proportions,
produced results that were very inconsistent, i.e., minor changes
in selection of boundaries had amajor impact on the rate at which
the models were able to predict the correct bin. This is an
intuitively justifiable observation since the fundamental pre-
requisite of a database of structures and activity measurements is
that certain structural fragments are correlated with positive or
negative trends in activity. If a cluster of compounds with similar
activity values and a similar ensemble of significant structural
fragments is arbitrarily segregated by a boundary partition drawn
through the cluster, one would expect poor results. Consider the
schematic shown in Figure 2; the graph shows a histogram of

frequency plotted against activity, for which the compounds are
divided into three groups. Representative structures from each
of these groups are shown, and each can be clearly seen to have
their own distinctive structural characteristics. In this contrived
example, the solution is obvious; the data set should be
partitioned into three bins, and the boundaries denoted by the
heavy green lines show the optimum partitioning. If one were to
choose a partitioning scheme that balances the bin sizes evenly,
creating three equally proportioned bins would cause the
partitions to be drawn through clusters of distinct structure−
activity groups. Proceeding with this suboptimal partitioning
would be expected to lead to generally poor results because
the ability of any model to distinguish between two structures
that are very similar but have been classified differently due
to miniscule differences in activity will be poor. Similarly
unsophisticated approaches, such as setting boundaries by using
round numbers (e.g., [4, 8] or [3, 6, 9]), leads to inconsistent
results for the same reason.
To solve this problem it is necessary to compose a method for

identifying suitable boundary points that distinguish between
clusters of structure−activity relationships. In general, this is not
straightforward since model building exercises can be expected
to encounter widely diverging scenarios. In some cases, clusters
of structures with similar composition and similar activity are
encountered, i.e., as shown in Figure 2, but many data sets
have much more amorphous relationships between structural
fragments and activity. There are of course many real world
experimental data sets that have essentially no structure−activity
relationship, meaning that a treatment with structure-derived
fingerprints like ECFP6 is unlikely to elucidate any correlation
better than noise.

As mentioned in the introduction, a further constraint of
the requirements for the method is that it has to function as a
“black box” in that the user provides a collection of structures and
activities and is not required to provide any further parameters or
even have any prior knowledge of the content or whether it is
even suitable for modeling. The method we have developed
involves proposing a series of candidate cut points that might be
used to divide bins, and each of them is scored by criteria such as
the relative sizes of the new bins that it would create and howwell
a test-model would be able to predict which side of the threshold
the newly separated molecules reside. The scores are made up
of three components: (1) ROC integral from the trial Bayesian
model, (2) second derivative of the activity population, and (3)
ratio of actives vs inactives. Each of these terms are used in a way
that encourages splitting the data set at points that distinctively
segregate boundaries between structure−activity groups.
The method is iterative and greedy, starting by dividing the

data into two bins, and continuing on to subdivide bins until no
more favorable opportunities exist.
Detection of the partitioning boundaries is performed using

the following steps:

Figure 2. Demonstration of separation of structure activity groups by
population integral (red line) or by boundaries between different
categories of structure−activity relationships (green line).
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In this way, each of the putative boundaries (cut points) that
has a reasonable balance of entries above and below is recorded
and assigned an initial desirability score. The algorithms referred
to in bold are summarized only briefly and can be examined in
more detail in the source code (http://github.com/cdd/bayseg):

• greedy_linear_clustering: If the list of compounds
exceeds a maximum count, the ECFP6 fingerprints are
used to reduce the size to the given count in a way that
maximizes diversity of structural features and diversity of
activity values, while also running in O(N) time for large
data sets.

• all_interstitial_midpoints: The list of activity values is
sorted, and for each adjacent pair of nonequal values, the
midpoint is retained.

• sample_bayesian_ROC: A Bayesian model is created
from the list of compounds where activity is based on being
above/below the putative threshold, and the receiver-
operator-characteristic (ROC) integral is returned; this is
fast because fingerprints are already calculated and the
collection is guaranteed to be small.

• plot_gaussian_intensity: An array of values is defined,
which represents an evenly sampled distribution from
lowest to highest activity, plus an edge buffer; for each
value, a Gaussian distribution is added to the entire array,
resulting in a smooth/smeared out frequency histogram.

• numerical_2nd_derivative: The intensity array is differ-
entiated twice numerically by setting each value to the
difference between its two neighbors.

After these scores are calculated, the cut point that is most
desirable (lowest score) is recorded and used as the f irst
partition. The remaining cut points are sorted and enumerated,

and this list is used in the following section, which iteratively adds
additional partition boundaries:
The iterative addition of new partition boundaries stops when

the process runs out of candidates or the maximum limit is
encountered. The iterative addition is greedy; at each step, it
attempts to add a new cut point in the midst of an existing
partition in a way that best separates the partition, from a model
building point of view. Each iteration involves going through
all of the candidates and all of the bins, which is in itself O(N2),
but since the number of bins is small and capped and the list of
candidates is initially capped and consists of only cut points
that were considered desirable for applying to the data overall,
the total number of evaluations is never more than hundreds,
depending on the parameters and the properties of the incoming
data set. For large data sets, the process of creating a Bayesian
model for each iteration is kept brief by using the greedy linear
clustering method, which is fast and O(N).
As mentioned in the Introduction, the process of selecting

good partition boundaries is by far the most difficult part of the
method since the remaining steps can be composed from existing
methods for working with Bayesian models. The objective is
to create a model for each bin such that for any proposed
compound the model that gives the highest prediction is that
which corresponds to the range of activities that includes the
actual activity for the compound.
In our previous article,22 we described a method for post-

calibrating the Laplacian-corrected naiv̈e Bayesian models that
are effective for structure-derived fingerprint-based models, so
that the results of each prediction are probability-like. This
calibration is done by analyzing the ROC curve and is used to
transform the numeric results so that most predictions within the
domain of the model fall between the range 0..1, which means
that they can be independently interpreted. It also means that
these calibrated results can be compared between models,
and therefore, it is reasonable to expect that for two mutually
exclusive models the one that produces the higher value can be
considered the leading contender. The extent to which this
hypothesis holds true is described in the Results section.
For conventional binary Bayesian models, the method of

choice for evaluating structure−activity relationships is the
venerable receiver-operator-characteristic (ROC) curve, which
can be neatly summarized by its integral. This does not apply
to the composite models, and instead, a different set of visual
and quantitative metrics is needed. The primary objective is for
all models to predict the correct bin by ensuring that its
corresponding model produces the highest value, and so the
fraction of the time for which compounds in a training set
accomplish this is relevant, relative to the chance of guessing
randomly. For example, a composite model with five bins might
presume that a random guess would be correct 20% of the time,
and hence, if the model predicts the correct bin 60% of the time,
this represents a 3× improvement. For simplicity purposes, it is
assumed that no prior knowledge of the bin distribution of the
training set is available, and hence, each bin is equally likely to
be guessed correctly. It is also assumed that the bin sizes are
approximately the same in terms of membership frequency,
which is reasonable since the detection method ensures that
the training set is partitioned so that no one bin represents a
disproportionate fraction of the training set. For increasingly
large bin counts, the consolation prize for predicting the adjacent
bin (off-by-1) becomes more useful, and so it is relevant to
provide more information than just the “direct hits”.
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Figure 3 shows some of the results obtained by evaluating the
test set for a composite model of aminopeptidase-N inhibitor
candidates (extracted from ChEMBL v2022,33,34). The response
matrix for the test set is shown in (a); as can be seen quickly with
the chosen visual style, the majority of predicted responses are
concentrated along the diagonal, which corresponds to correct
prediction of bins. The off-diagonal cells correspond to
predictions that were incorrect. The table in (b) provides
summary details; the first row indicates that 55.4% of the test set
entries were predicted to be in the correct bin. Since there are
seven bins, a random guess would have a 14.3% chance of being
correct if an even distribution is assumed, and so the composite
model provides an enrichment factor of 3.88. The next row in the
table expands the definition of success to include results that
were predicted to be in the adjacent bin, for which 73.8% of
results qualify, relative to a random chance of 38.8%. Subsequent
rows in the table converge to 100% as the bar is lowered.
On the right-hand side of Figure 3 are a number of visual

representations of individual predictions for selected molecules
from the test set. In each case a series of seven bars are shown,
and these are assigned height and color-coding in proportion to
the calibrated prediction of the underlying model. The highest
(and most green-tinted) bar is taken to be the predicted bin of
choice for bulk evaluation purposes, but for evaluation of a small
number of prospective molecules, it is useful to provide all of
this information in a visually accessible way, so that the user can
make a more informed judgment about the value of the model
prediction.
The most definitive example is shown in Figure 3c, for which

a single bin corresponds to a very high prediction, and the other
six are essentially zero. As it happens, the molecular structure
contains a hydroxyamide functional group, which is unique within
the training and test sets and represents an overwhelmingly
dominant structure−activity trend. The example in Figure 3d is
quite definitive, with one predictionthe correct onestanding

out, but with nonzero predictions for several other bins. The cases
shown for Figure 3e−g all predict the correct bin, but there are
patterns of competing structure−activity relationship that make
other options quite plausible and hence might be thought of
skeptically. For case Figure 3h, the correct result is marked by a
red dot above the bar, which does not correspond to the highest
prediction; however, it can be seen that the model is working
quite well and hit the adjacent bin by a moderate margin. Case
Figure 3i, on the other hand, shows a poor result, where the actual
activity is in the lowest category, but the intermediate level models
showed quite high predictions.
Figure 4 shows three response matrices for selected data

sets (Caspase3, Death kinase, and dihydrofolate reductase),
also extracted from ChEMBL v20. In Figure 4a, the Caspase3
distribution was resolved into only three distinct bins. While the
models performed well and the correct prediction rate for the test
set was 75.5%, the enrichment rate is only 2.27 since the chance
of randomly guessing the correct bin is 1 in 3. The other two
examples, Figure 4b and c, were divided into six bins, and both
indicate a respectable success rate. However, the rate of correct
prediction for each of the bins is quite variable. While there is
significant opportunity for random error when using a small test
set, an abnormally low success rate for a particular bin tends to be
indicative of the inability to extract a meaningful structure−
activity relationship for the compounds within the bin using
Bayesian methods and ECFP6 fingerprints.

■ RESULTS

In order to determine the boundaries of performance with
composite models using real data, we applied the method to a
selection of 1843 data sets, extracted from ChEMBL v 20,33,34

using a method similar to that which we described previously.22

Each of the models contained at least 100 structure−activity data
points assigned to the same target and consisted of either Ki or
IC50 type measurements but not both. The validation data sets

Figure 3. Example of a data set containing activities against aminopeptidase N-protein with 651 measurements, of which 65 were reserved for use in the
training set. The correctness matrix is shown in (a), while (b) shows enrichment statistics, and (c−i) show examples of molecular predictions from the
test set.
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were not filtered in any way by the presence or absence of an
actual structure−activity relationship, and so it can be expected
that some proportion of the data sets are simply not suited
to modeling. We consider it reasonable to operate under the
assumption that the data sets extracted from ChEMBL are
representative of the kinds of real world drug discovery scenarios
for which this method will be used. The collection of structures
and activities that were used for this validation exercise can be
downloaded from http://www.collaborativedrug.com/
composite-bayes.32

For each data set, 10% of the entries were set aside to use as the
test set. These entries were selected using the greedy clustering
algorithm described earlier, which means that in general the
choice of test set is nondiabolical and falls within the same
domain as the training set (although it should be noted that when
we repeated the experiment with a random selection of testing
sets there was no bias in favor of preclustering). Data sets for
which the partition detection method was not able to detect at
least three bins were left out of the results.
Figure 5 shows the distribution of results, where the percent-

age of successful prediction of compounds within the testing set

is plotted against the size of the data set. The first row shows
the enrichment rate of correct detection for each of the bin sizes
from 3 through 8. In each case, a horizontal purple line shows
an enrichment rate of 1, which corresponds to no better than
random. The average and standard deviation is indicated to the
left of the vertical axis. As shown, the large majority of data sets
demonstrate substantial predictive power relative to random
guessing. As the size of the data set grows, the enrichment rate
converges toward the overall average, which indicates that larger
data sets are less prone to random fluctuations.
The second row of graphs in Figure 5 shows the enrichment

rate for predictions that indicated either the correct bin or a bin
adjacent to the correct bin as the highest performer. While the
chance of meeting this criterion by random guessing is increased,
especially for smaller bins, the same overall trend is observed.
Three data sets were selected for further study: solubility

(log S),35 mouse epoxide hydroxylase (mouse, pIC50),
32,36−39

and Chagas disease (pIC50).
40 In order to establish that the

compositemodels are adding predictive value relative to themuch
simpler method of correlating the raw prediction values from a
single Bayesianmodel, each of these data sets was partitioned into

Figure 4. Three examples of recall rates: (a) Caspase (980 rows), (b) Death kinase (926 rows), and (c) dihydrofolate reductase (1056 rows). In each
case, 10% of the structures were retained for use as the testing set.

Figure 5. Unsupervised model building based on 1843 data sets extracted from ChEMBL v20. Results are divided into bin sizes (columns). Each point
corresponds to the ratio of correctly predicted bins versus chance of random guessing (enrichment), with a purple line indicating the null hypothesis.
The average and standard deviation are marked on the Y-axis. Training set size is shown on theX-axis. The testing sets were made up of 10% of each total
data set.
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equally sized training and testing sets (using the greedy linear
clustering method, as described above) with the threshold set to
themedian activity. Figure 6 shows each of the predictions plotted
against the actual value, and in each case, the correlation is very
poor. This is to be expected since the two-state Bayesian model is
quite simply not provided with enough information to distinguish
between intermediate predictions.
The results for running the composite model method on three

selected data sets are shown in Figure 7. The axis positions
represent actual vs predicted bins, whereby each occupancy along
the diagonal represents an instance where the correct bin had
the highest prediction. The grid sizes are scaled so that the area of
each cell on the diagonal is proportional to the actual population
of the bin. Off-diagonal occupancies show how far and how often
the strongest prediction strayed from the correct value. Each
cell is color-coded using a shade that is scaled according to the
average actual population of the corresponding bins, i.e., diagonal
cells are darkest if there are no incorrect predictions, and a pair
of off-diagonal cells (i, j) would be darkest if all predictions for
either i or j were incorrectly transposed.
The analyses for using the training set data are shown in

Figure 7a, c, and e, while the test set predictions are shown in
Figure 7b, d, and f. As would be expected, the results for the
training set have a much higher recall rate. Nonetheless, the
testing set predictions demonstrate substantial enrichment
relative to random, and in each case, the correct result ± off by
1 portion is greater than 50%. The effectiveness of the method is
largely a function of the extent to which the data set is organized
into islands of structure−activity: clusters ofmolecules with similar
structure characteristics and activity values within a distinctive
range. The presence of molecules with similar structural features
and a wide range of activities spanning multiple groups degrades
the ability of themethod to prioritize the correct bin as the primary
choice, but as shown in Figure 3, the probabilistic results can at
least favor a subset of all the available options. The underlying
fingerprints (ECFP6) are designed to statistically express explicit
structural features, which has the advantage of being highly
interpretable by chemists examining the structures, but it should
be noted that this is not necessarily the most effective way to
capture more abstract features like shape, size, polarity, etc. The
ability to resolve effects like bioisosterism is only possible if the
applicable patterns are present in the training set.
It is important to think of the composite Bayesian model

approach as a solution to a particular use case, rather than an

alternative to methods such as QSAR/QSPR41−44 modeling of
continuous properties, which it is not intended to displace. As
mentioned in the Introduction, the requirements for the method
are that the user possess no expertise in modeling, has no
preexisting understanding of the structure−activity trends, and
is not required to perform any analysis or refinement of the
model. The method is required to operate with the user simply
uploading a collection of structures and activities and from this
provide a way to evaluate proposed structures and gain insight
that is qualitatively useful.

■ DISCUSSION

This study extends the preceding work describing the develop-
ment of open source Bayesian models.22,27 In addition, it
complements earlier efforts to partition training or test sets.22

For example, our recent work on microsomal stability in mouse
demonstrated improved binary Bayesian models by “pruning”
out the moderately unstable/moderately stable compounds from
the training set.45 Earlier work had used a support vector machine
to perform novelty detection and margin detection to remove
uncertain predictions from models using Kernel−PLS.46 These
represent attempts to refine the way we approach using data for
test or training sets with Bayesian and other machine learning
models.
We have now extended the use case scenario for the popular

Laplacian-modified naiv̈e Bayesian method based on ECFP6
fingerprints to include predictions for data sets that are more
appropriately divided into multiple categories rather than just
two states. In doing so, we have preserved some of the most
desirable properties of this Bayesian method, such as requiring
little or no expertise on behalf of the user, being quite robust to
the effects of over/under-training, producing intuitive results that
are closely related to the underlying structure activity relation-
ship, rapid performance on modest computing hardware, and
being constructed entirely of open source and easily portable
algorithms. We have also made a point of evaluating the method
on a huge collection of curated data sets (extracted from
ChEMBL v2033,34,47), which is intended to simulate the diversity
of data encountered in drug discovery research. Whereby, some
collections have a strong and easily identifiable correlation
between structural features and activity, while other collections
have very little correlation, for a variety of possible reasons (e.g.,
multiple binding modes, multiple targets, complex biology,
low data quality, noise, frequent hitters,48−50 aggregators,51−55

Figure 6. Three examples of correlating raw Laplacian-modified naiv̈e Bayesian predictions with activity: (a) solubility (test set = 649, R2 = 0.513),
(b) mouse epoxide hydroxylase (test set = 328, R2 = 0.582), and (c) activity against Chagas disease (test set = 371, R2 = 0.393).
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PAINS,56 etc.). These new models can be downloaded at http://
www.collaborativedrug.com/composite-bayes. The large major-
ity of data sets demonstrate substantial predictive power relative
to random. As the size of the data set grows, the enrichment
rate converges toward the overall average (as is demonstrated in
Figure 5), which suggests that larger data sets are less prone to
random fluctuations.
Three additional data sets were studied with the composite

Bayesian model approach: solubility,35 epoxide hydrolase,32,36−39

and Chagas disease.40 While conventional two-state Bayesian
modeling can be used to some effect on these data sets (as we have
previously described22,27,40), the classification of all molecules
into two categories is a blunt instrument and is generally
ineffective at predicting intermediate responses. The process of
bin assignment followed by compositemodel generation provides
more degrees of freedom for structure features to be associated
with finer grained activity levels. Whether this is the appropriate
method for the data set, i.e., multiple groups of structure−activity

correlations actually exist, can be evaluated by the quality of the
metrics returned by the method. The enrichment value for
correctly predicted bins from within the training set can also be
used as a top level indication of model quality, much like ROC
values are used for conventional Bayesian models. While they do
not tell the whole story, they do convey a significant amount of
information about the likely effectiveness of the model building
exercise, and low values definitively indicate poor results from this
modeling technique.
Machine learning approaches have found wide applications in

numerous areas such as genetics and genomics57 (e.g., predicting
multiple cancer classes58). The Bayesian classifier approach has
also been used widely in cheminformatics for target prediction
where there are multiple classes/targets.59−64 The composite
Bayesian model approach that we have described should be
considered as an extension of the two-state Bayesian method
rather than a replacement for prediction of continuous proper-
ties by conventional QSAR/QSPR methods, as the outcome is

Figure 7.Analysis for three data sets: aqueous solubility, mouse hydrolase epoxide, and Chagas disease. The correctness matrix and enrichment statistics
results for the training sets (a, c, e) are shown on the top; test sets are shown below (b, d, f).
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probabilistic in nature rather than an attempt to simulate an
experimental measurement, complete with error bars.
The composite Bayesian method described has been made

available as open source (http://github.com/cdd/bayseg) along
with the corresponding validation materials. We are currently
creating a user interface that fits within the CDD Models27

extension to the CDD Vault65,66 service, and we intend to bring
this additional form of structure−activity modeling to nonexpert
users in this commercial software, much as we did when the
binary Bayesian modeling was implemented in the same
software. Because the composite Bayesian method is designed
for unsupervised use, we will be able to design the functionality
in such a way that the user is taken directly to the results of
the model building rather than having to setup various model
parameters and iteratively examine their effectiveness. We will
also apply variations of the methods described in this article
for making an automated determination of whether a data set
is more appropriate for binary Bayesian modeling or for the
multistate composite Bayesian method.
The composite model technique that we have described is

comprised of two distinct steps: selecting the partitions and
modeling them competitively. While we have applied the same
set of Bayesian/ECFP6 technologies to solve both of these
problems, it may well be productive to explore other techniques
for scoring molecules for membership within these bins (such as
other machine learning methods). The use of sampled Bayesian
models to detect boundary thresholds and separate groups of
structure−activity relationships is effective and has desirable
properties (e.g., performance, unit agnostic), but methods such
as QSAR/QSPR may turn out to be more effective for scoring
the resulting bins. In future work, we intend to investigate such
methods, as it may well be possible to deliver improved
predictions while still adhering to the same use-case constraints,
namely, zero user input.
In conclusion, while much has been published on the use of

Bayesian models in cheminformatics,67 we have now developed
an approach (which to our knowledge has not been addressed
before) that may extend them further, making them potentially
more useful, when further granularity is required. The advantages
of this approach are that it is fast, designed for use without
operator intervention, easily implemented, and open source.
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