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The goal of resuscitative fluid therapy is to rapidly expand circulating blood volume

in order to restore tissue perfusion. Although this therapy often serves to improve

macrohemodynamic parameters, it can be associated with adverse effects on the

microcirculation and endothelium. The endothelial surface layer (ESL) provides a

protective barrier over the endothelium and is important for regulating transvascular fluid

movement, vasomotor tone, coagulation, and inflammation. Shedding or thinning of the

ESL can promote interstitial edema and inflammation and may cause microcirculatory

dysfunction. The pathophysiologic perturbations of critical illness and rapid, large-volume

fluid therapy both cause shedding or thinning of the ESL. Research suggests that

restricting the volume of crystalloid, or “clear” fluid, may preserve some ESL integrity and

improve outcome based on animal experimental models and preliminary clinical trials in

people. This narrative review critically evaluates the evidence for the detrimental effects

of resuscitative fluid therapy on the ESL and provides suggestions for future research

directions in this field.
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INTRODUCTION

The importance of microcirculatory function and health of the endothelium has become a large
area of interest for criticalists in the last two decades. Over this time, fluid resuscitation strategies
have experienced a shift in perspective. Aggressive “clear” fluid resuscitation was once considered
vital for stabilization of macrohemodynamic variables. However, in certain patient cohorts this
approach has now been shown to either not improve outcome or worsen outcome (1–4). Though
fast administration of fluid often serves to normalize the commonly measured clinical parameters
during shock, microcirculation may not necessarily benefit from this therapy. There is growing
evidence that fluid resuscitation may actually harm the endothelium by modifying, or shedding,
the endothelial surface layer (ESL).

The ESL includes a structural scaffold, the endothelial glycocalyx (EG), and associatedmolecules
suspended within a plasma layer. We use the term EG when referring to specific components of the
structure, or biomarkers of these components, whereas ESL is used when referring to the layer as a
whole. In regards to shedding of the ESL, the term ESLwill be used when the evidence supports loss
of the whole layer and the term EG used when the evidence only supports that isolated components
have been shed. Use of the term glycocalyx refers to any type of cell surface glycocalyx and is
not restricted to the endothelium, such as during discussion of glycocalyx shedding biomarkers.
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Resuscitative fluid therapy includes a range of fluid choices,
including isotonic crystalloid fluid, synthetic colloid fluid, and
hyperosmolar crystalloid fluid, with the former being the
most common type of fluid used (5). In general, due to the
pharmacodynamic properties of these fluids in either healthy
subjects or shock models (6–9), the volume of fluid is “large” for
isotonic crystalloid (at least a quarter to half of estimated blood
volume), “moderate” for synthetic colloid (an eighth to quarter
of estimated blood volume), and “small” for hyperosmolar
crystalloids. All three types of fluid resuscitation will be covered
in this review with a particular focus on isotonic “large-volume”
crystalloid fluid therapy due to the evidence for its effects on
the ESL. A summary of the evidence reviewed in this article is
provided in Box 1.

STRUCTURE AND FUNCTION OF THE
ENDOTHELIAL SURFACE LAYER

Basic Structure and Function
Most cells in the body are covered in a protective layer of
carbohydrate scaffold, which houses many different molecules
that serve a variety of functions. This surface layer is called
a glycocalyx. The general structure of the glycocalyx has
similarities between cell types, with only small variations
in individual proteins or carbohydrate molecules. The EG
coats the luminal surface of the endothelium and is a vital
structure for cell signaling and transvascular permeability. It
is composed of proteoglycans, glycosaminoglycans (GAGs),
and glycoproteins (Figure 1). Together with mobile or soluble
components, such as albumin, this compromises the ESL.
Proteoglycans are large molecules that have a cytoplasmic,
transcellular, and extracellular domain (syndecan) or are attached
by a glycosylphosphatidylinositol anchor (glypican-1) (Figure 1)
(10–12). Their extracellular component, or ectodomain, is
covered by GAG side-chains and performs important roles
that assist with cell to cell, or cell to matrix, interactions (13).
These structures provide a structural scaffold for the ESL, in
which many other molecules are housed. The sulfated GAGs
attached to proteoglycans include heparan, chondroitin, and
dermatan sulfate. Heparan sulfate is the most abundant GAG
on syndecans and glypican-1, which is why proteoglycans are
often referred to as heparan sulfate proteoglycans. An additional
GAG, hyaluronan, is not typically associated with a proteoglycan;
instead, it is attached to the endothelium via receptors such as
CD44 or other GAG molecules (Figure 1) (14, 15). Hyaluronan
is a long GAG of varying lengths that weaves its way through the
tall “forest” of proteoglycans, with their sulfated GAG “branches”.
These GAG chains contribute to the barrier function of the ESL
of excluding large molecules (16). Glycoproteins reside on the
luminal surface of the endothelium, hidden within the ESL, and
include adhesion molecules such as integrins and selectins (17).
Glycoproteins play an important role in leucocyte trafficking
during states of inflammation (18); many of their functions
are only initiated once the ESL has been shed or thinned.
Finally, mobile components residing within the forest of the ESL
include proteins, such as albumin, and anticoagulants, such as

BOX 1 | Summary of the evidence for effects of “clear” �uid therapy on

endothelial surface layer (ESL) shedding or modi�cation.

Proposed mechanisms of ESL shedding

Dilution of plasma proteins

Release of natriuretic peptides

Inflammatory cytokine release (certain fluid types)

Possible downstream effects

Exacerbation of inflammation

Microcirculatory dysfunction

Increased vascular permeability

Increased interstitial edema

Prothrombotic conditions

Proposed strategies that may mitigate ESL shedding∗

Reduction in dose of clear fluids

Slowing down administration of resuscitative fluids

“Earlier” vasopressor therapy for vasodilatory shock

Adjunctive protein administration (such as plasma)

∗These proposed strategies are not based on evidence from clinical veterinary

research and require further investigation. These guidelines are opinion of

the authors only, after considering the breadth of evidence available. It is

currently unknown if “glycoprotective” strategies benefit patients. Therapy

should always be tailored to individual patient needs, with prioritization of

reestablishing adequate perfusion and a thorough cost to benefit analysis.

antithrombin and tissue factor pathway inhibitor (15, 19). The
presence of plasma proteins are likely important for maintaining
the normal structure and permeability of the ESL, as well as
providing an anticoagulated surface at the blood interface.

The EG serves a range of functions, many of which are
still being characterized. These functions include maintenance
of a surface barrier that buffers circulating leucocytes, inhibits
coagulation, regulates fluid flux, and communicates changes in
vascular wall shear forces. The sulfated GAGs on the surface of
the endothelium generate and maintain a net negative charge,
which repels similarly charged cells from the endothelial surface
(20). Although albumin has an overall negative charge, it is
likely that the positively charged groups within the molecular
structure are what allow for incorporation of albumin into the
ESL (21). Maintenance of this negative charge is important for
endothelial integrity; loss of negative charge on the luminal
surface of the endothelium leads to extravasation of albumin
(22–24). In addition to the importance of electrostatic charge,
the ESL provides a barrier to fluid filtration, thus creating a
protein-poor sub-glycocalyx layer and maintaining a colloid
osmotic pressure (COP) gradient favoring fluid retention within
the vasculature (20).

The traditional Starling hypothesis describes a relationship
between the intravascular and the interstitial colloid osmotic
pressure and implies the importance of this relationship in
determining net transvascular fluid filtration. Many studies
in the last four decades, however, have built a body of
evidence stating that it is mainly the low COP in the sub-
glycocalyx area that creates the pressure gradient opposing
capillary hydrostatic pressure (25, 26). The theory is that the
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FIGURE 1 | The scaffold of the endothelial glycocalyx, within the endothelial surface layer, is provided by proteoglycans, syndecan (four subtypes), and glypican-1.

Glycosaminoglycans are attached to proteoglycans (e.g., heparan sulfate) or the endothelial surface (hyaluronan). Molecules suspended in the plasma of the

endothelial surface layer include proteins such as albumin. These proteins create a protein-poor sub-glycocalyx area that is important for transvascular colloid osmotic

pressure balance. For simplicity, structures within the interendothelial cleft are not represented.

sub-glycocalyx fluid space, within the inter-endothelial cleft,
has a very low concentration of macromolecules. This is due
to the high impermeability of the ESL to macromolecules
and the rapid flow of water and solutes through the sub-
glycocalyx space (27). In the steady state with an intact
ESL, net filtration of fluid occurs across the blood vessel
wall, with only a small limitation from intravascular COP.
Increasing intravascular COP does not, and cannot, serve to
reverse net fluid transudation nor does increasing interstitial
COP lead to an increase in fluid transudation (28, 29). A
large drop in hydrostatic pressure, such as that may occur
during circulatory shock, may reverse transvascular fluid flow
to a resorptive state; however, this effect is transient (29).
These hypotheses explain why fluid would not be “drawn”
out of the interstitium by increasing intravascular COP, such
as the use of synthetic colloid fluids. Rather, they can
reduce extravasation compared to crystalloid fluid. The COP

of the intravascular space, and even of the sub-glycocalyx
space, is microanatomically and physiologically distant from
the interstitial COP. However, the fluid dynamics across
the endothelium in disease states with a denuded ESL,
removing the influence of the sub-glycocalyx layer, is yet to be
fully characterized.

The EG also plays an important role to changing pressures
and flow within the intravascular space. Proteoglycans, especially
those with heparan sulfate chains, play an important role in
responding to changes in vascular wall shear stress or changes in
intravascular pressure (10, 30, 31). Detection of these mechanical
forces leads to morphological changes in endothelial cells and
release of nitric oxide (32–35). Shear stress can also lead to a
change in location of proteoglycans or upregulation of their cell
surface expression (36–38). It is possible that change in location
or upregulation of these molecules during microcirculatory
disturbances may also affect shedding of the extracellular
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components. This becomes relevant when discussing biomarkers
for EG shedding below.

Shedding
Shedding, or modification, of the ESL is a vital step after tissue
injury in order to facilitate leucocyte and platelet adherence
(39). Shedding reproduced in cell culture or ex vivo models
leads to increased expression of adhesion molecules, increased
leucocyte adhesion, and increased cytokine production (32, 40–
43). This process is likely more complex in vivo, whereby certain
disease states may have varying effects, from selective removal
of glycocalyx components to complete denudation. Although
ESL shedding is a necessary step in localized inflammation, it
is becoming clearer that systemic-wide shedding is associated
with severity of illness and poor outcome. There has also
been a growing concern in recent years that interventions
that promote ESL shedding may worsen clinical outcomes for
critically ill patients. Given that ESL shedding is associated with
exacerbating inflammation and increasing vascular permeability
in laboratory models, there is theoretical plausibility that limiting
ESL shedding may improve clinical outcome.

Shedding alters capillary perfusion, causing a decrease in
functional capillary density (44), in addition to increased
endothelial permeability (45). A decrease in functional capillary
density means that some vessels within a given area do
not have red blood cells traversing their course, consistent
with microcirculatory dysfunction. This can create regions
of tissue hypoxia. A clear association between ESL shedding
and impairment of microcirculatory blood flow is yet to be
demonstrated in either an in vivo animal model or clinical
study (46). However, given that ESL shedding via artificial
means can reduce capillary blood flow (44), it is mechanistically
plausible that shedding of the ESL in critical illness plays a
role in altered microcirculation. It has been well-demonstrated
that heterogeneity of capillary blood flow can persist in critical
illness despite normalization of macrohemodynamic variables,
such as blood pressure and cardiac output (47–51). Further,
persistence of altered microcirculatory flow in critically ill
people is associated with severity of illness and poor outcome
(47, 51–53). Consequently, it appears important to identify
causes of microcirculatory dysfunction that occurs independent
of circulatory shock. More evidence is required to determine
a causal link between ESL shedding and microcirculatory
dysfunction, and whether protection of the ESL can prevent
the latter.

There may be downstream consequences to the release of
EG components into circulation. Shed components can stimulate
inflammation by acting as danger-associated molecular patterns
or “alarmins.” Soluble heparan sulfate molecules play a key
role in modulating inflammation, including leukocyte activation,
increasing production of cytokines, and endothelial activation
(54, 55). Low molecular weight hyaluronan can also stimulate
production of inflammatory mediators (56–59). In contrast,
shed components such as syndecan-1 and−4 ectodomains can
have indirect anti-inflammatory effects by facilitating neutrophil
cytotoxicity (60, 61). The complexity of EG components acting as
effector molecules in the systemic circulation may be analogous

to the systemic inflammatory response, where some cytokine
release is beneficial to the host response, whereas a “cytokine
storm” creates pathological consequences.

It is unclear how long it takes for ESL recovery to occur.
Most evidence is based on data from in vitro cell culture or
ex vivo vascular models, which are unable to fully replicate in
vivo conditions. That being said, individual components can be
regenerated within 24 h (37, 62), but restoration of the structure
itself can take up to 7 days (32, 63). During critical illness,
inflammation likely continues the shedding process, delaying
the repair. Further in vivo research is required using real-time
videomicroscopy or similar means in order to characterize the
temporal changes during ESL recovery.

Assessment of Shedding
Shedding of the ESL can be detected by a number of
means. Laboratory studies utilize several methods, including
measurement of circulating components of the EG (proteoglycan
ectodomains and GAGs), detection of EG components on the
surface of the endothelium, direct visualization of the ESL
via tissue fixation and microscopy, and indirect visualization
via real-time videomicroscopy. Clinical studies usually rely on
measurement of circulating components of the EG, or EG
biomarkers, in serum or plasma samples to assess systemic
shedding. The most frequently reported EG biomarkers are
syndecan-1, heparan sulfate, and hyaluronan. There are several
limitations to relying on this kind of assessment of the ESL.
Firstly, studies often only measure a single component of the
EG at a single point in time. That particular component may
have other sources of shedding. For example, syndecan-1 is not
only present on the surface of the endothelium but also on
epithelial cells and leucocytes (64–68). Also, highly relevant to
intravenous fluid therapy, hyaluronan is abundant throughout
the interstitium and can be “flushed” through the lymphatics
back into systemic circulation (69–71). It is unclear in critical
illness to what degree other sources of glycocalyx shedding
contribute to serum or plasma concentrations. Further, tissue
injury and inflammation during critical illness may upregulate
cell surface expression of these biomarkers, especially the
proteoglycans (38, 72–83). Therefore, an increase in circulating
concentration may reflect an increase in cell turnover rather
than primarily cell surface shedding. Several recent studies have
demonstrated temporal differences in the shedding of several EG
components in people presenting to an emergency department
with sepsis, whereby hyaluronan increased early in treatment
whereas sydnecan-1 increased later (84–86). This raises questions
as to why some biomarkers increase earlier than others. It is
possible that the temporal differences relate to either alternative
sources of the biomarker or differences in upregulation.

Ideally, it would be best to visualize shedding of the EG in vivo
rather than interpreting circulating biomarker concentrations.
These techniques are mostly reserved for use in laboratory
models rather than clinical use. Specialized tissue fixation
techniques can be used to directly visualize the ESL via electron
microscopy, often employed in non-survival rodent models
(28, 87–91). Given the fragility of the ESL, it is best that the
tissue is preserved via perfusion with fixative prior to death,
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either perfusion of an isolated organ or the whole body. Tissue
immersion techniques that avoid whole-body perfusion have
also been recently described (92). Anecdotally, it is challenging
to achieve quality images of intact ESL in tissue sections.
Alternatively, components of the EG may be fluorescently
labeled and visualized by confocal microscopy of cell culture
or tissue models (93). Other laboratory techniques include dye
exclusion with intravital microscopy to estimate ESL thickness
(94–96). Finally, ESL thickness may be estimated in real-time by
sidestream dark field microscopy in both large animal models
and clinical research (46, 97–99). This technology approximates
ESL thickness bymeasuring the perfused boundary region, which
is the region within the blood vessel that is peripheral to the
flow of red blood cells, or the immobile plasma layer. Although
this technique shows promise for future use in veterinary clinical
research (100), image acquisition can be technically difficult
and image quality is currently limited for reliably estimating
ESL thickness.

MECHANISMS OF SHEDDING RELEVANT
TO FLUID THERAPY

Inflammation and Shock
In the patient requiring bolus fluid therapy, it is likely that
alteration of the ESL has already occurred due to the effects of
inflammatory mediators. For example, tumor necrosis factor-
α, a potent pro-inflammatory cytokine, causes reduction in
thickness of the ESL, shedding of syndecan-1,-4, and GAGs
from the endothelium, as well as upregulation of glycocalyx
components on the endothelial surface (76, 81, 90, 101). Matrix
metalloproteinases, one of the main perpetrators for glycocalyx
shedding, are released by activated leucoytes (17). Tissue injury,
such as ischemia and reperfusion, and production of reactive
oxygen species also cause EG shedding (43, 102–104). Activation
of coagulation may also affect the EG, as both plasmin and
thrombin can cleave syndecan ectodomains (74, 105). Relevant
to sepsis, bacterial components such as lipopolysaccharide and
chemotactic peptides also cause shedding of the EG (43, 77,
81, 106–108). Therefore, it is likely that partial or complete
denudation of the ESL has already occurred before fluid therapy
is administered.

Shedding of the EG in states of critical illness, such as shock,
has been demonstrated in animal models before any fluid therapy
has commenced. In mice, hemorrhagic shock was associated with
a thinner pulmonary ESL, as measured by electron microscopy,
and downregulation of syndecan-1 on the endothelial surface,
compared to a sham model (109, 110). In a canine hemorrhagic
shock model comparing different fluid interventions (111),
plasma hyaluronan concentration was significantly increased
across treatment groups after atraumatic blood removal, but
before fluid, compared to baseline (unpublished analysis). An
increase in plasma hyaluronan concentration has also been
demonstrated in a rodent sepsis model, 4 h after Escherichia
coli lipopolysaccharide infusion, where blood pressure was
maintained by norepinephrine administration (112). There are
limited data on EG shedding in the clinical setting before

fluid therapy; however, serum syndecan-1 concentrations above
healthy control levels has been demonstrated pre-hospital in
human trauma patients, though the temporal relationship to fluid
administration by first responders is unknown (113).

Hemodilution
Bearing in mind that alterations to the ESL may already
exist in critically ill patients, there is growing evidence that
administration of “clear” fluids may propagate ESL shedding.
Several clinical studies in critically ill people have identified
an association between volume of fluid administered and
EG biomarker concentrations, including increased hyaluronan
(84), syndecan (114), and heparan sulfate concentrations (115).
Putting aside the confounders of inflammation and severity
of illness, bolus fluid therapy may have a direct effect on the
ESL via hemodilution and production of natriuretic peptides.
Ex vivo vascular models provide important data in regards
to this issue, as they exclude the effects of the varying
pharmacodynamic properties of fluid types administered in vivo.
These vascular models have shown that dilution of plasma with
crystalloid reduces ESL thickness. Notably, amathematical model
derived from meta-analysis of several studies demonstrated
that dilution of blood with fluid reduced vascular resistance,
independent of hematocrit and COP (116). Also, the decrease in
resistance caused by saline was reduced in magnitude when the
vasculature was pre-treated with heparinase. Heparinase sheds
heparan sulfate side-chains from proteoglycans, thus thinning
the glycocalyx (117). From this, it may be inferred that the
decrease in resistance caused by saline infusion is due to not
only changes in hemorrheology but also loss of the ESL. Further,
several studies have shown that perfusion of blood vessels with
crystalloid solution increases vascular permeability. One such
study showed an inverse linear relationship between albumin
concentration in the perfusate and hydraulic conductivity,
or permeability, of vasculature (118). Return to baseline
permeability was not achieved by simply increasing the albumin
concentration back to baseline levels; it required a much higher
albumin concentration. This implies modification of the ESL
and its affinity for albumin after crystalloid infusion. Further
experiments showed that perfusion of blood vessels with plasma
was more effective at restoring normal vascular permeability
after crystalloid infusion (119), compared with an albumin
solution, indicating that substances within plasma are important
for maintaining normal transvascular fluid flux. A more recent
study showed that infusion of guinea pig coronary vasculature
with 0.9% saline significantly increased fluid extravasation,
compared to low molecular weight (LMW) hydroxyethyl starch
(HES) (Voluven R©) and albumin solution (45). Pretreatment
with heparinase combined with saline infusion did not yield
higher fluid extravasation; stripping the EG before infusion was
just as detrimental as saline infusion alone. Interestingly, no
differences between fluid treatments in the appearance of the ESL
were appreciated using electron microscopy. Finally, a murine
hemorrhagic shock model compared 15 mL/kg of either fresh
whole blood (FWB), packed red blood cells in lactated Ringer’s
solution (PRBC in LRS), or washed PRBC in LRS, or 75 mL/kg of
plain LRS (120). Rats that received either washed PRBC or LRS

Frontiers in Veterinary Science | www.frontiersin.org 5 May 2021 | Volume 8 | Article 661660

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Smart and Hughes Fluids and Endothelial Surface Layer

had decreased ESL thickness compared to baseline, as measured
by intravital microscopy, whereas those that received either FWB
or PRBC did not show a significant difference to baseline. Results
were similar for change in plasma heparan sulfate concentration.
Therefore, it appeared that the presence of protein within the
FWB and unwashed PRBC products was effective at mitigating
ESL shedding.

Natriuretic Peptides
Another mechanism of EG shedding during bolus fluid therapy
is the action of natriuretic peptides on the endothelium. Atrial
and brain natriuretic peptides (ANP and BNP, respectively) are
released from the cardiac atria and ventricles during stretch of
the myocardium (121). These peptides counteract the effects
of hypervolemia by decreasing systemic vascular resistance and
causing a natriuresis, among other mechanisms. Natriuretic
peptides also increase vascular permeability (122, 123). A more
recently discovered role of these peptides is shedding of the
EG. All three major natriuretic peptides (ANP, BNP, and C-
type NP) can shed the EG, as measured by increased syndecan-
1 and heparan sulfate concentrations in the effluent of guinea
pig coronary arteries (88, 124). These studies also demonstrated
increased vascular permeability and visualized denudation of the
ESL via electron microscopy.

Fast intravenous administration of isotonic crystalloid fluid
may stimulate natriuretic peptide release during the bolus phase.
The dose of crystalloid administered for treatment of shock far
exceeds the volume remaining in circulation after redistribution.
This rapid rise and fall of blood volume during a crystalloid
bolus was demonstrated by Silverstein and others (7), whereby
the blood volume rapidly rose by 76% during a large bolus
of 0.9% saline before dissipating. Therefore, it is possible that
atria may become “over-stretched” during crystalloid bolus
fluid therapy and release natriuretic peptides, which may then
contribute to systemic EG shedding. Two studies in human
surgical patients have shown a rise in ANP in parallel with
EG biomarker concentrations after fluid loading (125, 126).
These studies showed a significant increase in serum syndecan-
1 and hyaluronan concentrations but not heparan sulfate. One
additional study showed an increase in ANP and all three EG
biomarker concentrations in cardiac surgical patients; in both
those undergoing cardiopulmonary bypass and those undergoing
“off-pump” procedures (127). In contrast, one study in people
undergoing hysterectomy (n = 26) showed no significant rise
in BNP or biomarker concentrations (syndecan-1 and heparan
sulfate) after 25 mL/kg of LRS given over 30min during surgery
(128). An additional study showed no significant rise in BNP or
any EG biomarker concentrations (syndecan-1, heparan sulfate,
hyaluronan) in human surgical patients or healthy volunteers
during a modest fluid load of 3 mL/kg of 20% albumin, though
sample size was small (n = 15 per group) (129). A recent canine
hemorrhagic shock study did not observe a significant increase in
plasma ANP concentration after 80 mL/kg of balanced isotonic
crystalloid given over 20min, however small sample size (n = 6)
and baseline variability may have hampered the ability to detect a
difference (111).

Other Considerations Related to EG
Biomarker Type
One of the challenges of interpreting studies that measure EG
biomarker concentrations as the primary assessment of EG
shedding is the variability in choice of biomarker. Acrossmultiple
studies investigating the effect of fluid loading on the EG, it
appears that hyaluronan is consistently increased immediately
after a large volume of crystalloid, or synthetic colloid fluid
in the setting of hypervolemia (111, 125, 126). Syndecan-1
concentration significantly increases after fluid in humans and
rats (110, 125, 126, 130–132), but not in all studies (128, 133).
Heparan sulfate has not been shown to significantly increase in
humans (125, 126, 128) but has been shown to increase in rats
(120, 130, 133). Unpicking these consistencies is difficult due
to differences across species, study designs, fluid doses, timing
of intervention and blood sampling, and choice of comparator
(other fluid vs. no fluid vs. sham). Studies may also vary
in whether or not they adjust the biomarker concentration
for the effects of hemodilution, such as indexing to albumin,
hemoglobin, or other tracer concentration in the blood. Although
this may help to account for the different pharmacodynamics
of each fluid type, and their variable dilution of blood tracer
components, indexation of biomarker concentrations can create
a margin of error. On closer inspection of individual studies,
inconsistency has been shown within the studies themselves,
showing a significant change in one biomarker but not the other
(125, 126, 133). As mentioned above, the source of circulating
EG biomarkers may not be restricted to the endothelium
and other sources, such as the interstitium or surface of
other cells, may be contributing. Therefore, a healthy sceptism
should be applied to any conclusion drawn from biomarker
concentrations alone.

COMPARATIVE EFFECTS OF DIFFERENT
FLUID TYPES

Much of the evidence concerning EG or ESL shedding
after fluid therapy concerns the use of large volumes
of crystalloid fluid. Administering other fluid types
that have less redistribution to the interstitium may
theoretically be associated with less EG shedding. This
section assesses the evidence for the comparative effect of
crystalloid, synthetic colloid, and hypertonic fluids on the
EG or ESL.

Isotonic Crystalloid Fluid
Multiple rodent studies have shown that administration of large
volumes of crystalloid fluid for hemorrhagic shock is associated
with more EG shedding, compared to fluids containing protein
(109, 110, 120, 130–133). However, it is difficult to compare
interventions in regards to effects on the EG in many of
these studies, as cardiovascular parameters are either not
closely monitored or are different between treatment groups.
Shock itself, without fluid resuscitation, can cause EG shedding
(109, 110, 131, 134–136), which becomes a confounder when
comparing resuscitation strategies that provide inequitable blood
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volume expansion. However, several key studies allow some
assessment of this issue. A murine hemorrhagic shock model
showed that administration of protein-poor fluids, either washed
PRBCs or LRS, was associated with a thinner ESL, whereas
protein-containing fluids (FWB and PRBCs) were not (120).
Cardiovascular parameters after resuscitation appeared similar
across these groups, based on the limited data available. Another
murine hemorrhagic shock model compared seven different
fluid strategies: 15 mL/kg of FWB, PRBC, fresh frozen plasma
(FFP) or 5% albumin, 8 mL/kg of 3% saline, 45 mL/kg of
0.9% saline, or 75 mL/kg of LRS (130). Shock index, usually
defined by heart rate divided by systolic blood pressure,
was compared before hemorrhage and immediately after fluid
resuscitation within each fluid group. Rats that received either
5% albumin, LRS, 3% saline, or 0.9% saline had a significantly
increased shock index after fluid resuscitation, whereas rats
that received FWB, PRBC, and FFP showed no change in
shock index. When comparing only the fluid types that did
not resolve shock, based on shock index, rats that received 5%
albumin had higher ESL thickness and lower EG biomarker
concentrations, compared to the crystalloid groups. Finally,
a murine hemorrhagic shock model used a blood pressure-
targeted resuscitation method for comparing crystalloid fluid
with plasma (109). Administration of LRS was associated
with a thinner ESL, visualized on electron microscopy, and
decreased endothelial expression of syndecan-1, compared to
administration of plasma.

There is a scarcity of “large animal” models, or those
including pigs, sheep, and dogs, that have assessed ESL shedding
after fluid resuscitation. This may be partially due to a
limitation on validated assays available for measuring glycocalyx
biomarkers across these species. Current commercially available
validated options for assessing EG shedding are restricted to
circulating hyaluronan concentration. A canine hemorrhagic
shock model did not detect a significant difference in plasma
hyaluronan concentrations when comparing dogs that received
20 mL/kg of FWB (n = 6) with those that received 80
mL/kg of Plasmalyte-148 R© (n = 6) (111). Other differences
in parameters were seen between the crystalloid and colloid
fluid groups in this study, which is discussed further below. In
an ovine endotoxemia model, a pressure-targeted resuscitation
method using vasopressor therapy was used to compare
either norepinephrine alone or 0.9% saline (40 mL/kg) in
combination with norepinephrine (137). Although there was
no comparison to resuscitation with a protein-containing fluid,
the comparison of crystalloid fluid to no fluid in the setting
of sepsis provided interesting results. There was no significant
difference in serum hyaluronan concentrations between groups
over time, though sheep that received 0.9% saline showed
a greater rate of increase in this biomarker. This greater
increase was not observed directly after the fluid bolus, like
in the aforementioned canine study, but beyond 6 h, which
may have been related to worsening septic shock in this
group. Atrial natriuretic peptide was significantly higher at
the end of the fluid bolus in the sheep that received fluid
(see previous discussion on natriuretic peptides). Detection of
between-group differences was also likely affected by small

sample size in this study (n = 8 per group), similar to the
study in dogs.

Synthetic Colloid Fluids
Given that crystalloid fluids generally require a larger volume
to expand circulating blood volume to the same extent as
colloid fluids (6–9), crystalloids cause greater hemodilution
during the fluid bolus and, potentially, greater natriuretic
peptide release. This begs the question if administration
of colloid fluids causes less EG shedding than crystalloid
fluid. Two main types of synthetic colloid are currently in
use: HES and gelatin products. The aforementioned canine
hemorrhagic shock study included both of these fluid types at
20 mL/kg, as comparator fluids to 80 mL/kg of Plasmalyte-
148 R© (111). Dogs administered HES had significantly lower
plasma hyaluronan concentration immediately after the fluid
bolus, compared to both FWB and crystalloid groups. In
contrast, the group that received 4% succinylated gelatin had
significantly increased plasma hyaluronan concentration 40
and 100min after the end of the fluid bolus, compared to
FWB. Given that inflammation may cause EG shedding, these
differential effects observed between these two colloids may
be due to release of inflammatory mediators; HES has been
associated with mitigation of inflammation (138–141) whereas
gelatin has been associated with pro-inflammatory effects (142).
However, there were no differences in plasma concentrations
of inflammatory mediators between the two colloid groups in
this study (111). Therefore, the effect of gelatin on hyaluronan
shedding may be a direct effect of the fluid, rather than
pro-inflammatory effects, such as washout of the interstitium.
Another hemorrhagic shock study in rats replaced the shed
volume with crystalloid, at either shed volume, two times shed
volume, or three times shed volume, or shed volume with
HES (n = 6 per group) (141). This study did not identify
any significant differences between groups in response of blood
pressure to fluid resuscitation, organ syndecan-1 expression,
or circulating syndecan-1 concentration. A hemorrhagic shock,
stroke volume-targeted resuscitation model in pigs compared
balanced crystalloid to HES and found no differences in post-
fluid serum syndecan-1 or glypican concentrations (6). Blood was
sampled 120min after commencement of fluids, therefore any
peaks in EG biomarker shedding may have been missed. Given
the limited evidence for different effects of colloid fluids on the
EG or ESL, compared to crystalloids, a conclusion cannot be
currently drawn.

Hypertonic Crystalloid Fluids
Hypertonic solutions exert immunomodulatory effects both
in in vitro and animal model studies, including decreased
leucocyte response to pro-inflammatory stimuli or circulatory
shock states, when compared to other fluid types (143–156).
Administration of hypertonic saline to human trauma patients
also reduced inflammatory biomarker concentration, compared
to isotonic saline (157, 158). Several studies have also shown a
reduction in vascular leakage of macromolecules (147, 151, 155).
Given these effects, it is possible that hypertonic solutions may
have a beneficial effect in regards to reducing ESL shedding.
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In the rodent hemorrhagic shock model previously discussed
comparing many different type of fluids, rats that received 8
mL/kg of 3% saline had a lower increase from baseline in
plasma heparan sulfate concentration, compared to both isotonic
crystalloid groups (45 mL/kg of 0.9% saline or 75 mL/kg of
LRS), and a lower loss of ESL thickness (130). This difference
was despite a persistence of an elevated shock index and
hyperlactatemia after resuscitation with 3% saline. Therefore,
although hypertonic saline may have had less impact on the
EG, it may have also provided inadequate fluid resuscitation. A
preliminary randomized clinical trial in people with suspected
sepsis could not demonstrate a difference between groups in
hyaluronan concentrations after treatment allocation of either
5 mL/kg of 3% saline or 10 mL/kg of 0.9% saline (86).
Serum syndecan-1 concentration decreased after 0.9% saline,
compared to baseline, whereas serum syndecan-1 concentration
did not change after 3% saline. Though this significant difference
between groups may reflect hemodilution, as twice the volume of
0.9% saline was administered, this was not reflected in differences
in hemoglobin concentration. It is unclear what the clinical
significance is of this subtle difference in change in serum
syndecan-1 concentration, whether it reflects more syndecan-1
shedding in the hypertonic saline group or not. Limitations of
this study included a low severity of illness and small sample size,
and further studies are needed to clarify the effects of hypertonic
solutions on the EG.

GLYCOPROTECTIVE THERAPIES

The clinical relevance of ESL shedding due to fast or large-
volume fluid administration is yet to be determined. This type
of fluid administration can cause shedding of the ESL, which
may propagate microcirculatory dysfunction, inflammation,
and procoagulation. Therefore, there has been much interest
developing in “glycoprotective” fluid strategies or adjunctive
therapies during the resuscitation phase.

Restricting or Avoiding Fluid
Blood volume expansion is the cornerstone of managing
circulatory shock, with some types of shock an exception
such as cardiogenic shock. Conventionally, this is achieved by
administering large (more than 20 mL/kg) volumes of crystalloid
fluid intravenously as rapidly as possible, or as a bolus (159, 160).
This serves to increase cardiac preload and improve cardiac
output. The need for this intervention is intuitive for shock
caused by hypovolemia; however, some types of shock have a
component of vasodilation and microcirculatory dysfunction.
This includes states of shock due to a systemic inflammatory
response, such as sepsis and blunt trauma. For these types
of shock, improvement of macrohemodynamic variables, such
as cardiac output and blood pressure, may not improve
microcirculatory blood flow in a linear way. This is particularly
pertinent to septic shock, where the role of fluid bolus therapy
has been called into question, with a movement toward early
vasopressor therapy instead (161, 162). Further to the lack of
improvement in microcirculatory flow, it has been suggested
that fluid bolus therapy in sepsis can propagate vasodilation,

due to endothelial shear stress, release of nitric oxide, and
direct vasodilatory effects of natriuretic peptides. This may
contribute to some patients becoming refractory to vasopressor
therapy. In an ovine endotoxemia model, administration of 40
mL/kg of 0.9% saline was associated with a significantly higher
dose of noradrenaline subsequently administered in order to
maintain blood pressure, compared to sheep that received only
noradrenaline (137). Given the concern that bolus fluids may
cause harm in sepsis, a preliminary randomized clinical trial
was completed demonstrating feasibility of restricting crystalloid
fluid early in the treatment of sepsis in people (163). Following on
from this, a large multi-center human randomized clinical trial
is underway to compare a restrictive fluid strategy with a more
liberal one in people with early sepsis (164).

It is much less known if restricting crystalloid fluid in
other types of shock may be beneficial. In the setting of
human trauma, discussion concerning restrictive crystalloid
fluid strategies focuses on delayed resuscitation or permissive
hypotension in order to avoid clot disruption and dilutional
coagulopathy before definitive hemostasis (4, 165). Although
animal models have shown that fluid resuscitation is likely
beneficial for severe uncontrolled hemorrhage, it increases the
risk of mortality in lower grades of severity of bleeding, compared
to not administering any fluid (166). Hypotensive resuscitation,
in parallel with lower volumes of administered fluids, is also
associated with a reduced risk of mortality in human trauma
patients (167, 168), though the evidence is mixed (169). This
benefit is likely related to improved coagulation and clot stability;
it is unknown if there are also benefits associated with reducing
endothelial dysfunction. Currently, the recommendation in
human trauma medicine is for limitation of “clear” fluid and
early, yet judicious, administration of blood products. This
includes packed red blood cells, plasma, and platelets in parallel
during resuscitation. The early administration of plasma may
not only serve to limit dilutional coagulopathy but also assist
with repairing the ESL. It is difficult to translate this practice
to veterinary medicine, given the cost of transfusion, limited
availability, and variability in blood banking practices. Given
there aremany factors entering into the cost to benefit assessment
of administering plasma or albumin products to individuals,
theoretical benefits of plasma for the ESL are of lesser importance,
until more is known. Also, caution should be applied when
restricting crystalloid fluid to any patient with shock, as the
benefits of a restrictive strategy may be only relevant to certain
patient populations, such as sepsis. This concept was highlighted
by a recent randomized clinical trial in human surgical patients
whereby participants randomized to receive a restrictive fluid
strategy had a significantly higher rate of acute kidney injury and
surgical site infection, compared to those randomized to a liberal
fluid strategy (170).

Slowing Fluid Administration
Fast fluid administration serves to rapidly improve clinical
signs and macrohemodynamic variables, and has been the
bread-and-butter of emergency and critical care medicine
for decades. However, normalization of macrohemodynamic
variables in people does not always translate to improved
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microcirculatory flow (47–49, 51). This is termed a lack of
hemodynamic coherence (171). Intravenous fluid delivered
rapidly during the stabilization phase may be contributing to
persistence of disturbed microcirculatory flow. When viewing
the microcirculation using sidestream dark field microscopy
during anesthesia in pigs, fast fluid administration (20 mL/kg/hr)
for 3 h was associated with development of heterogeneity in
capillary blood flow, compared to “standard” anesthesia fluid
rates (5 mL/kg/hr) (172). Although a direct relationship between
estimated ESL thickness and microcirculatory flow has not
been established in the clinical setting (46), it is possible that
amplification of ESL shedding caused by fast fluid administration
may be contributing to microcirculatory dysfunction. It is
possible that slower fluid administration may achieve the same
resuscitation end-points while avoiding some of these deleterious
effects on the endothelium. This concept has been explored
in a handful of studies. In a rodent model where 40% of the
blood volume was removed by atraumatic hemorrhage, rats were
assigned to receive no fluid, rapid fluid (0.9% saline at three times
shed volume over 30min), or slow fluid (0.9% saline at three
times shed volume over 12 h) (173). Rats in the fast fluid group
showed higher inflammatory cytokine concentrations early in
the study and some markers of worse outcome over the latter
part of the study, including lower mean arterial blood pressure,
higher blood glucose and lactate concentrations, and an increase
in markers of lung injury, compared to rats in the slow fluid
group. As the rats were euthanased after 24 h, it is unknown how
their recovery progressed. In a human open randomized clinical
trial, including 50 surgical and 16 septic patients, no significant
difference was found in estimated ESL thickness between patients
that received fast crystalloid administration (5–10min) and slow
crystalloid administration (20–30min) (48). However, an overall
decrease in estimated ESL thickness after fluid administration
was observed. Given that there is some evidence that rapid fluid
administration (i.e., within 10min) may not provide any clinical
benefit over slower fluid administration (i.e., within 20 to 60min)
(8, 174), larger clinical trials are justified to explore effects of fluid
rate on the microcirculation and clinical outcomes.

Choice of Clear Fluid Type
Intense ongoing debate surrounds the choice of fluid for critically
ill patients, including crystalloid, synthetic colloid, and protein-
containing solutions. These conversations surround relative fluid
effectiveness and adverse effects, many of which are still yet to
be fully elucidated for clinical relevance in certain species or
disease subsets. Adding in the potential benefit or detriment of
certain fluid types to preservation of the ESL and optimizing
microcirculation is still premature. Bearing that in mind, the

current evidence supports mitigating hemodilution and avoiding
hypervolemia in order to optimize ESL recovery. There is
theoretical benefit for the ESL to the use of protein-containing
solutions, such as plasma and albumin, rather than “clear” fluids,
but this must be carefully considered against any detrimental
effects of blood products, including financial cost. At this stage,
no clear recommendation can be made for veterinary medicine,
and more clinical research is required.

Adjunctive Therapies
Many drugs have been explored as to their protective or
resurrecting actions for the ESL and have been reviewed in detail
elsewhere (175, 176). These therapies may become viable in the
future for use during the optimization and stabilization phase
of fluid resuscitation (177). Therapies that are in current use
in veterinary medicine that have been shown to have beneficial
effects on the EG or ESL include albumin solution, plasma,
hydrocortisone, heparin, and N-acetylcysteine.

CONCLUSIONS

The coating of endothelium by the EG and its associated
molecules serves many functions in the body, both intact
and when denuded. Infusion of large volumes of fluid causes
disruption of this layer, which may propagate interstitial
edema and inflammation. There is some evidence that slow
fluid administration or restricting the volume of crystalloid
fluid for shock resuscitation may benefit the patient. Exactly
how to do this and for which patient subset this strategy
benefits in veterinary medicine remains to be identified. Clinical
veterinary research assessing the effect of glycoprotective therapy
or strategies is currently limited by a lack of validated
EG biomarker assays and affordable, reliable technology for
estimating ESL thickness in vivo. Further work is required
on developing validated, reliable EG biomarker assays and
determining the relationship between these biomarkers and
shedding of the ESL in vivo, especially for dogs and cats.
Despite these current limitations, future research directions
should also focus on strategies limiting crystalloid fluid
volumes, especially in the setting of sepsis and early
vasopressor drug therapy.
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