Supplementary Material

Contents

Supplementary Methods 1: Data collection process

Supplementary Figure 1: Interview schedule

Supplementary Table 1: Health deficits considered in the FI

Supplementary Table 2: UCLA loneliness scale

Supplementary Methods 2: Model selection

Supplementary Figure 2: Correlation between FI and LS

Supplementary Table 3: Univariate FI models

Supplementary Table 4: Comparison of FI models

Supplementary Table 5: Univariate LS models

Supplementary Table 6: Comparison of LS models

Supplementary Table 7: Multiple group analysis with regard to sex

Supplementary Table 8: Multiple group analysis with regard to age

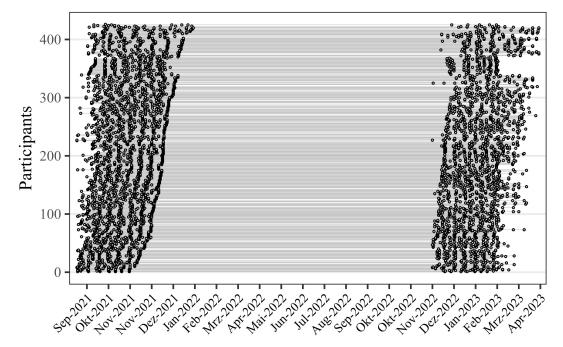
Supplementary Table 9: Multiple group analysis with regard to living alone

Supplementary Table 10: Multiple group analysis with regard to social participation

Supplementary Table 11: LCM-SR with bedrest as time varying covariate

Supplementary Table 12: LCM-SR with falls as time varying covariate

Supplementary References


Supplementary Methods 1: Data collection process

A professional survey agency contacted community-dwelling older adults based on previous participation in population representative surveys. Interviewers explained the study's topic, duration (i. e., two rounds of seven biweekly interviews spaced one year apart), and the information required, ensured the anonymity of all personal data, and obtained written consent from participants before participation.

The first interview of the first burst lasted a median of 23.9 minutes and was conducted in person (computer-assisted personal interview; CAPI) at the homes of the older adults by the end of August 2021. The subsequent computer assisted telephone interviews (CATI; waves 2 to 7) lasted between 8.7 and 9.5 minutes (median; Stolz, 2024). With a total of 40 participants, all interviews were conducted in person due to continued physical performance tests (i. e., grip strength, gait speed, and chair rise; physical performance tests are not considered in the current analysis). The mean duration of the first burst was 87 days (SD=13), i. e., on average, the interviews were repeated at intervals of 14.5 days.

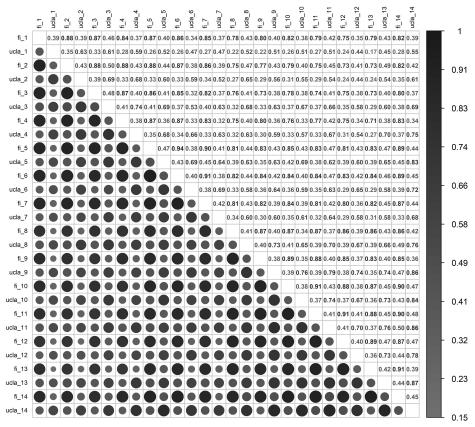
Interviews of the second burst (w8–w14) stared in November 2022 (i. e., one year after the end of the first burst; the average number of days between w7 and w8 was 376, SD=11). Again, the first interview of the second burst (w8) was conducted in person (CAPI) at the home of the older adult and lasted a median of 15.1 minutes. The subsequent interviews (w9–w14) were conducted via telephone (CATI) and lasted between 7.9 and 8.7 minutes (median; Stolz, 2024). The mean duration of the second burst was 76 days (SD=11), i. e., on average, the interviews were repeated at intervals of 12.7 days.

Supplementary Figure 1: Interview schedule in which individuals and completed interviews are depicted with gray lines and black circles, respectively

Supplementary Table 1: Health deficits considered in the frailty index

	Supplementary Table	. Hearth deficits considered in t	inc manny macx	
	health deficit	assigned values	prevalence at baseline (%)	missing data at baseline (%)
1	Self-rated health	0 = excellent $0.25 = very good$ $0.5 = good$ $0.75 = moderate$ $1 = poor$	0 = 6.3 0.25 = 18.5 0.5 = 35.9 0.75 = 28.4 1 = 10.8	-
2	Dizziness	0 = no/1 = yes	1 = 20.7	-
3	Pain (rating from 0–10)	$ 0 = 0 \\ 0.5 = \ge 1 & \le 3 $	0 = 26.1 0.5 = 35.2	_
Ü	1 mm (1 mm g 10 m g 10)	1 = ≥	1 = 38.7	
4	Tiredness	0 = never 0.5 = sometimes 1 = often	0 = 43.0 0.5 = 42.0 1 = 15.0	_
5	Vision	0 = excellent $0.25 = very good$ $0.5 = good$ $0.75 = moderate$ $1 = poor$	0 = 10.4 $0.25 = 38.0$ $0.5 = 35.1$ $0.75 = 13.4$ $1 = 3.1$	0.5
6	Hearing	0 = excellent $0.25 = very good$ $0.5 = good$ $0.75 = moderate$ $1 = poor$	0 = 12.7 $0.25 = 36.2$ $0.5 = 30.8$ $0.75 = 16.9$ $1 = 3.3$	0.2
7	Attention (10 words immediate recall test)	$0 = \ge 5 \text{ words}$ $1 = < 5 \text{ words}$	1 = 20.0	-
8	Memory (10 words delayed recall test)	$ 0 = \ge 4 \text{ words} 1 = < 4 \text{ words} $	1 = 32.6	-
9	Physical inactivity (moderate physical activity)	0 = every day/almost every day & multiple times a week 1 = once per week & less often	1 = 21.4	-
Doc 10	tor told you had: Heart problem (myocardial infarction, coronary thrombosis, other problem including congestive heart failure)	0 = no/1 = yes	1 = 15.3	-
11	High blood pressure or hypertension	0 = no/1 = yes	1 = 48.6	-
12	Stroke or cerebral vascular disease	0 = no/1 = yes	1 = 4.7	-
13	Diabetes or high blood sugar	0 = no/1 = yes	1 = 19.5	-
14	Chronic lung disease such as chronic bronchitis or emphysema	0 = no/1 = yes	1 = 9.9	_
15	Cancer or malignant tumor, including leukemia or lymphoma	0 = no/1 = yes	1 = 5.6	_
16	Arthritis, including osteoarthritis, or rheumatism	0 = no/1 = yes	1 = 27.0	-
17	Chronic renal disease	0 = no/1 = yes	1 = 2.8	_
18	Alzheimer's disease, dementia or any other serious memory impairment	0 = no/1 = yes	1 = 3.1	_
19	Difficulty getting dressed	0 = no/1 = yes	1 = 12.2	_
20	Difficulty walking across room	0 = no/1 = yes	1 = 8.0	0.5
21	Difficulty bathing/showering	0 = no/1 = ves	1 = 9.9	_
22	Difficulty eating	0 = no/1 = yes	1 = 3.8	_
23	Difficulty going in/out of bed	0 = no/1 = yes	1 = 7.5	_
24	Difficulty using toilet	0 = no/1 = yes	1 = 3.5	_
25	Difficulty preparing a warm meal	0 = no/1 = yes	1 = 5.4	0.5
26	Difficulty shopping groceries	0 = no/1 = yes	1 = 11.8	0.7
27	Difficulty using telephone	0 = no/1 = yes	1 = 1.6	_
28	Difficulty taking medicine	0 = no/1 = yes	1 = 1.9	1.6
29	Difficulty walking 100 meters	0 = no/1 = yes	1 = 12.5	0.7
30	Difficulty taking one flight of stairs	0 = no/1 = yes	1 = 23.6	0.7
31	Difficulty reaching or extending your arms above shoulder level	0 = no/1 = yes	1 = 14.8	_
32	Difficulty lifting or carrying weights over 10 pounds/5 kilos, like a heavy bag of groceries	0 = no/1 = yes	1 = 27.8	0.5
33	Difficulty concentrating	0 = never/rarely 0.5 = sometimes 1 = often/always	0 = 71.4 0.5 = 25.8 1 = 2.8	-
34	Everything takes effort	0 = never/rarely 0.5 = sometimes 1 = often/always	0 = 66.9 0.5 = 23.9 1 = 9.2	_
35	Sleep problems	0 = never/rarely 0.5 = sometimes 1 = often/always	0 = 52.7 0.5 = 35.3 1 = 12.0	0.2
36	Could not get going	0 = never/rarely 0.5 = sometimes 1 = often/always	0 = 65.7 0.5 = 27.7 1 = 6.6	-
37	Poor appetite	0 = never/rarely 0.5 = sometimes 1 = often/always	0 = 89.0 0.5 = 8.0 1 = 3.1	-
		, , ,		

Supplementary Table 2: University of California, Los Angeles – Loneliness Scale


ing	ease tell me how often the follow- g applied to you in the last two seks:	rarely or never	sometimes	often or always	don't know/can't say
1	I felt like I was lacking companionship	(1)	(2)	(3)	(999)
2	I felt left out	(1)	(2)	(3)	(999)
3	I felt isolated from others	(1)	(2)	(3)	(999)

Supplementary Methods 2: Model selection

To study individual change over time, two frameworks exist: the mixed-effects (ME) approach and the latent-curve (LC) approach. Previous methodological research has shown that these two modeling frameworks share some overlap and estimates align with optimal data (see for instance McNeish and Matta, 2018 for a brief overview).

Since our analytical focus lies on the decomposition of within- and between-person effects in short-term dynamics (i.e., over weeks and months) between frailty and loneliness, a "complex" residual structure is necessary. In other words, we aim to examine the 1) separate autocorrelation of frailty and loneliness, 2) (within-person) cross-lagged effect of frailty on loneliness (i.e., frailty levels that are higher/lower than usual for a person at time t1 predict corresponding levels of loneliness that are higher/lower than usual at time t2) and loneliness on frailty, and 3) (within-person) within-time relationship between frailty and loneliness (i.e., frailty levels that are higher/lower than usual for a person at time t1 are associated with loneliness levels that are higher/lower than usual at time t1). While both ME and LC frameworks allow the specification of residual structures, the ME framework is often constrained by preprogrammed software options, whereas the LC framework allows the definition of any structure (McNeish & Matta, 2018). Therefore, we used a latent curve model with structured residuals (LCM-SR; Curran et al., 2014) to separate between-person from within-person variability.

Supplementary Figure 2: Pairwise correlations

Supplementary Table 3: Parameters of FI models 1, 2, and 3

	model 1	model 2	model 3
Parameter	Est.[95%CI]	Est.[95%CI]	Est.[95%CI]
Random effects: Means			
Intercept FI1*	0.18 [0.17, 0.19]	0.18 [0.17, 0.19]	0.18 [0.17, 0.19]
Intercept FI2*	0.20 [0.19, 0.21]	0.20 [0.19, 0.22]	0.20 [0.19, 0.22]
Slope FI1*		_	-0.00 [-0.00 , 0.00]
Slope FI2*	_	_	0.00 [-0.00, 0.00]
Random Effects: Correlation (ζ)			
Intercept FI1 \leftrightarrow Intercept FI2	_	0.94 [0.92, 0.97]	0.95 [0.93, 0.97]
Autoregressive (FI \rightarrow FI)			
$lpha_1$	0.89 [0.86, 0.92]	0.26 [0.12, 0.40]	0.26 [0.12, 0.40]
$lpha_2$	0.89 [0.84, 0.93]	0.31 [0.17, 0.45]	0.31 [0.17, 0.45]
$lpha_3$	0.87 [0.82, 0.93]	0.29 [0.05, 0.54]	0.29 [0.05, 0.54]
$lpha_4$	0.88 [0.83, 0.93]	0.08 [-0.10, 0.25]	0.08 [-0.10, 0.25]
$lpha_5$	0.94 [0.93, 0.96]	0.27 [0.09, 0.45]	0.27 [0.09, 0.45]
$lpha_6$	0.92 [0.89, 0.94]	0.20 [0.02, 0.37]	0.20 [0.02, 0.37]
$lpha_7$	0.84 [0.80, 0.88]	0.14 [-0.12, 0.39]	0.14 [-0.12, 0.39]
α_8	0.89 [0.85, 0.93]	0.22 [0.06, 0.38]	0.22 [0.06, 0.38]
$lpha_9$	0.91 [0.87, 0.94]	0.17 [-0.02, 0.37]	0.17 [-0.03, 0.37]
$lpha_{10}$	0.92 [0.90, 0.95]	0.10 [-0.23, 0.44]	0.10 [-0.24, 0.44]
$lpha_{11}$	0.93 [0.90, 0.96]	0.29 [0.07, 0.52]	0.29 [0.07, 0.51]
$lpha_{12}$	0.90 [0.85, 0.95]	0.22 [0.03, 0.41]	0.22 [0.03, 0.41]
α_{13}	0.92 [0.89, 0.96]	0.35 [0.10, 0.60]	0.35 [0.11, 0.60]

Note. FI = Frailty Index. In model 1 only fixed intercepts are specified. For models 2 and 3 random intercepts and fixed slopes are added, respectively. We report standardized parameter estimates and 95%-CI for all variables, except for variables with * in superscript. Here, unstandardized estimates are reported instead.

Supplementary Table 4: Model fit statistics and comparison of FI-models $1,\,2,\,\mathrm{and}~3$

model	$\chi^2(df)$	p-value	ref.	$\Delta_{\chi^2}\left(\Delta df\right)$	$\Delta p - value$	TLI	CFI	SRMR	RMSEA [90% CI]	AIC	BIC
1	1227.65(90)	<.001	_	-	_	0.873	0.874	0.268	0.190 [0.177, 0.204]	-13192	-13074
2	230.76(87)	<.001	1	109.07(3)	<.001	0.983	0.983	0.034	0.070 [0.055, 0.086]	-14183	-14053
3	230.60(85)	<.001	2	0.076(2)	0.931	0.982	0.983	0.034	0.072 [0.056, 0.087]	-14179	-14041

Note. $\chi^2=$ model fit statistic; df= degrees of freedom, ref. = reference model; $\Delta_{\chi^2}=$ Satorra-Bentler scaled chi-square difference test; $\Delta df=$ differences in degrees of freedom; TLI = robust Tucker-Lewis-index; CFI = robust comparative-fit-index; SRMR = standardized root mean square residual; RMSEA = robust root mean square error of approximation; CI = confidence interval; AIC = Akaike information criterion; BIC = sample-size adjusted Bayesian information criterion.

Supplementary Table 5: Parameters of LS-models 1, 2, 3, and 4

* *	v		, , ,	
	model 1	model 2	model 3	model 4
Parameter	Est.[95%CI]	Est.[95%CI]	Est.[95%CI]	Est.[95%CI]
Random effects: Means				
Intercept LS1*	3.46 [3.37, 3.54]	3.45 [3.36, 3.53]	3.39 [3.30, 3.48]	3.39 [3.30, 3.49]
Intercept LS2*	3.41 [3.33, 3.50]	3.48 [3.39, 3.58]	3.51 [3.41, 3.61]	3.51 [3.41, 3.61]
Slope LS1		_	0.02 [0.00, 0.03]	0.02 [0.00, 0.03]
Slope LS2	_	_	-0.01 [-0.02 , 0.00]	-0.01 [-0.02 , 0.00]
Random Effects: Correlation (ζ)				
Intercept LS1 \leftrightarrow Intercept LS2	_	0.92 [0.86, 0.98]	0.92 [0.86, 0.98]	0.83 [0.71, 0.96]
Intercept LS1 \leftrightarrow Slope LS1	_	_	_	-0.14 [-0.55, 0.27]
Intercept LS2 \leftrightarrow Slope LS1	_	_	_	0.28 [-0.16, 0.72]
Autoregressive (LS \rightarrow LS)				
eta_1	0.64 [0.52, 0.77]	0.25 [0.09, 0.42]	0.26 [0.09, 0.42]	0.13 [-0.13, 0.38]
eta_2	0.70 [0.58, 0.82]	0.20 [-0.03, 0.43]	0.19 [-0.04, 0.42]	0.09 [-0.19, 0.36]
eta_3	0.75 [0.62, 0.88]	0.18 [-0.11, 0.46]	0.17 [-0.12, 0.45]	0.13 [-0.11, 0.38]
eta_4	0.71 [0.59, 0.83]	0.01 [-0.22, 0.23]	0.01 [-0.22, 0.24]	0.02 [-0.22, 0.26]
β_5	0.69 [0.57, 0.81]	0.15 [-0.08, 0.39]	0.15 [-0.09, 0.38]	0.12 [-0.20, 0.43]
β_6	0.69 [0.60, 0.78]	0.27 [0.09, 0.44]	0.25 [0.08, 0.43]	0.18 [-0.07, 0.42]
β_7	0.61 [0.49, 0.72]	0.01 [-0.25, 0.27]	-0.01 [-0.27, 0.25]	0.01 [-0.27, 0.29]
β_8	0.74 [0.64, 0.84]	0.08 [-0.16, 0.31]	0.08 [-0.16, 0.31]	0.08 [-0.15, 0.31]
eta_9	0.77 [0.66, 0.87]	0.06 [-0.24, 0.36]	0.06 [-0.23, 0.36]	0.07 [-0.22, 0.35]
eta_{10}	0.75 [0.64, 0.85]	0.04 [-0.23, 0.30]	0.03 [-0.23, 0.30]	0.03 [-0.24, 0.30]
eta_{11}	0.74 [0.64, 0.84]	-0.12 [-0.39, 0.15]	-0.12 [-0.39, 0.15]	-0.12 [-0.39, 0.15]
β_{12}	0.76 [0.66, 0.85]	0.05 [-0.19, 0.28]	0.04 [-0.20, 0.28]	0.04 [-0.20, 0.27]
eta_{13}	0.86 [0.78, 0.94]	0.35 [0.09, 0.62]	0.35 [0.08, 0.62]	0.35 [0.08, 0.62]

Note. LS = loneliness. In model 1 only fixed intercepts are specified. For models 2 and 3 random intercepts and fixed slopes are added, respectively. In model 4, a random and a fixed slope are specified. We report standardized parameter estimates and 95%-CI for all variables, except for variables with * in superscript. Here, unstandardized estimates are reported instead.

Supplementary Table 6: Model fit statistics and comparison of LS models 1, 2, 3, and 4

mo	del	$\chi^2(df)$	p-value	ref.	$\Delta_{\chi^2}(\Delta d\!f)$	$\Delta p - value$	TLI	CFI	SRMR	RMSEA [90% CI]	AIC	BIC
1	1	1252.11(90)	<.001	_	_	_	0.763	0.766	0.383	0.187 [0.169, 0.205]	11231	11348
2	2	297.02(87)	< .001	1	443.67(3)	<.001	0.987	0.988	0.060	0.043 [0.000, 0.072]	10282	10411
3	3	287.94(85)	< .001	2	9.58(2)	.008	0.988	0.989	0.059	0.041 [0.000, 0.071]	10276	10414
4	4	273.03(82)	< .001	3	4 (3)	.261	0.989	0.990	0.049	0.040 [0.000, 0.071]	10268	10418

Note. $\chi^2=$ model fit statistic; df= degrees of freedom, ref. = reference model; $\Delta_{\chi^2}=$ Satorra-Bentler scaled chi-square difference test; $\Delta df=$ differences in degrees of freedom; TLI = robust Tucker-Lewis-index; CFI = robust comparative-fit-index; SRMR = standardized root mean square residual; RMSEA = robust root mean square error of approximation; CI = confidence interval; AIC = Akaike information criterion; BIC = sample-size adjusted Bayesian information criterion.

Supplementary Table 7: Multiple group analysis: Sex (female vs. male)

v	0 1	\
	Female $n = 275$	Male $n = 151$
Parameter		
Parameter	Est.[95%CI]	Est.[95%CI]
Random effects: Means Intercept FI1*	0.20 [0.18, 0.21]	0.15 [0.14, 0.17]
Intercept FI2*	0.22 [0.20, 0.24]	0.17 [0.15, 0.19]
Intercept LS1*	3.46 [3.34, 3.58]	3.27 [3.15, 3.38]
Intercept LS2*	3.59 [3.45, 3.73]	3.35 [3.24, 3.46]
Fixed effects: Means Slope LS1*	0.02 [0.00, 0.04]	0.01 [0.01 0.02]
Slope LS1 Slope LS2*	-0.01 [-0.03, 0.00]	0.01 [-0.01, 0.03] -0.00 [-0.02, 0.01]
Random Effects: Correlation		
ζ_1 : Intercept FI1 \leftrightarrow Intercept FI2	0.94 [0.90, 0.97]	0.96 [0.93, 0.98]
ζ_2 : Intercept FI1 \leftrightarrow Intercept LS1 ζ_3 : Intercept FI1 \leftrightarrow Intercept LS2	0.54 [0.40, 0.67] 0.56 [0.42, 0.69]	0.65 [0.49, 0.82] 0.64 [0.48, 0.81]
ζ_4 : Intercept FI2 \leftrightarrow Intercept LS1	0.49 [0.35, 0.64]	0.57 [0.41, 0.72]
ζ_5 : Intercept FI2 \leftrightarrow Intercept LS2	0.50 [0.34, 0.65]	0.60 [0.46, 0.74]
ζ_6 : Intercept LS1 \leftrightarrow Intercept LS2	0.91 [0.83, 0.98]	0.95 [0.86, 1.03]
Autoregressive (FI \rightarrow FI) α_1	0.30 [0.11, 0.50]	0.16 [-0.08, 0.41]
α_2	0.30 [0.09, 0.50]	0.30 [0.14, 0.46]
α_3^-	0.35 [0.03, 0.66]	0.15 [-0.16, 0.47]
α_4	0.07 [-0.14, 0.29]	0.05 [-0.35, 0.45]
lpha_5	0.31 [0.10, 0.52] 0.27 [0.08, 0.46]	0.19 [-0.22, 0.60] 0.04 [-0.32, 0.40]
α_7	0.21 [-0.08, 0.49]	-0.19 [-0.47, 0.10]
α_8	0.26 [0.10, 0.43]	0.00 [-0.38, 0.38]
α9	0.29 [0.09, 0.50]	-0.17 [-0.63, 0.29]
$\stackrel{lpha}{\scriptstyle{lpha_{11}}}$	-0.13 [-0.41, 0.14] 0.25 [-0.02, 0.51]	0.46 [-0.06, 0.99] 0.38 [0.07, 0.68]
$\begin{array}{c} \alpha_{11} \\ \alpha_{12} \end{array}$	0.22 [-0.05, 0.50]	0.33 [0.02, 0.64]
α_{13}	0.33 [0.06, 0.59]	0.46 [0.04, 0.87]
Autoregressive (LS → LS)	0.00 [0.05 0.40]	0.00 [0.05 0.50]
β_1 β_2	0.23 [0.05, 0.42] 0.18 [-0.09, 0.45]	0.29 [0.05, 0.53] 0.12 [-0.18, 0.42]
β_3	0.07 [-0.25, 0.40]	0.24 [-0.15, 0.63]
β_4	0.02 [-0.34, 0.38]	-0.13 [-0.54, 0.27]
β_5	0.11 [-0.22, 0.44] 0.24 [0.03, 0.44]	$0.15 [-0.19, 0.50] \\ 0.37 [0.02, 0.72]$
$eta_{f 6}^{f lpha_{f 7}}$	0.08 [-0.22, 0.38]	-0.44 [-0.74, -0.14]
β_8	0.18 [-0.08, 0.43]	-0.24 [-0.60, 0.13]
β_9	-0.04 [-0.35, 0.28]	$0.14 \left[-0.25, \ 0.54\right]$
β_{10}	-0.03 [-0.31, 0.26]	0.04 [-0.43, 0.52]
β_{11} β_{12}	-0.09 [-0.44, 0.25] -0.02 [-0.29, 0.25]	-0.16 [-0.42, 0.10] 0.11 [-0.35, 0.57]
β_{13}^{12}	0.18 [-0.25, 0.61]	0.43 [0.15, 0.71]
Cross-lagged (LS \rightarrow FI)	0.00 [0.40 0.04]	0.00 [0.00 0.05]
$egin{array}{c} \delta_1 \ \delta_2 \end{array}$	0.02 [-0.16, 0.21] 0.08 [-0.08, 0.24]	-0.03 [-0.32 , 0.25] 0.14 [-0.03 , 0.31]
δ_3^2	0.07 [-0.11, 0.24]	-0.00 [-0.25, 0.25]
δ_4	0.11 [-0.15, 0.37]	-0.31 [-0.51, -0.12]
δ_5	-0.01 [-0.21, 0.18]	-0.15 [-0.40, 0.10]
$rac{\delta_6}{\delta_7}$	-0.01 [-0.15, 0.14] 0.08 [-0.07, 0.22]	-0.08 [-0.34 , 0.18] 0.10 [-0.19 , 0.39]
δ8	0.05 [-0.16, 0.26]	-0.17 [-0.43, 0.09]
δ_9	0.09 [-0.16, 0.34]	0.04 [-0.24, 0.32]
δ_{10}	-0.13 [-0.40, 0.13]	0.05 [-0.15, 0.26]
$egin{array}{c} \delta_{11} \ \delta_{12} \end{array}$	0.13 [-0.11, 0.36] 0.07 [-0.18, 0.31]	0.06 [-0.20, 0.31] -0.10 [-0.32, 0.11]
δ_{13}^{12}	0.02 [-0.22, 0.26]	0.04 [-0.11, 0.18]
Cross-lagged (FI \rightarrow LS)		
γ_1	0.09 [-0.04, 0.22] 0.18 [0.01, 0.35]	0.18 [0.02, 0.33] 0.03 [-0.31, 0.38]
$rac{\gamma_2}{\gamma_3}$	0.15 [-0.09, 0.40]	0.27 [0.11, 0.44]
γ_4	0.03 [-0.26, 0.32]	-0.26 [-0.47, -0.06]
γ_5^-	-0.00 [-0.23, 0.23]	-0.05 [-0.36 , 0.25]
γ_6	-0.09 [-0.23, 0.05]	-0.09 [-0.32, 0.14]
$\frac{\gamma_7}{\gamma_8}$	0.08 [-0.07, 0.23] 0.15 [-0.05, 0.34]	-0.11 [-0.33, 0.11] 0.18 [-0.25, 0.62]
78 79	-0.06 [-0.30, 0.18]	0.23 [-0.09, 0.54]
γ_{10}	0.18 [-0.08, 0.44]	-0.02 [-0.36, 0.32]
γ_{11}	0.20 [-0.08, 0.47]	0.22 [0.01, 0.44]
γ_{12} γ_{13}	-0.12 [-0.33 , 0.10] 0.34 [0.03 , 0.65]	0.19 [-0.23, 0.62] 0.03 [-0.09, 0.15]
Within-time (FI ↔ LS)		
λ_1	0.21 [0.08, 0.34]	0.31 [0.10, 0.52]
$\frac{\lambda_2}{\lambda_3}$	0.21 [0.08, 0.34] 0.19 [0.06, 0.33]	0.02 [-0.25, 0.29] 0.15 [-0.02, 0.32]
λ_4	0.22 [0.01, 0.42]	0.08 [-0.11, 0.26]
λ_5	0.20 [-0.09, 0.50]	0.00 [-0.31, 0.32]
λ_6	0.15 [-0.01, 0.32]	0.30 [0.02, 0.57]
λ_7	0.22 [0.08, 0.37] 0.10 [-0.07, 0.26]	0.03 [-0.15, 0.21] -0.01 [-0.38, 0.36]
λ_8 λ_9	0.10 [-0.07, 0.26]	-0.01 [-0.38, 0.36]
λ_{10}	0.06 [-0.18, 0.31]	0.23 [-0.02, 0.49]
λ_{11}	0.12 [-0.15, 0.40]	0.14 [-0.03, 0.30]
λ_{12}	-0.13 [-0.30, 0.05]	0.46 [0.04, 0.87]
$\lambda_{13} \\ \lambda_{14}$	0.12 [-0.06, 0.31] 0.11 [-0.09, 0.32]	$ \begin{array}{ccccc} -0.02 & [-0.17, & 0.13] \\ 0.10 & [-0.12, & 0.31] \end{array} $

Note. We report standardized parameter estimates and 95.00% CI intervals for all variables, except for the means of fixed/random effects; here, we report unstandardized estimates, as indicated by *. Model fit: χ^2 (648) = 1461.66 p <.001; robust TLI = 0.928; robust CFI = 0.938; SRMR = 0.069; robust RMSEA [90% CI] = 0.088 [0.077, 0.098].

Supplementary Table 8: Multiple group analysis: Age (< 74 vs. 75–79 vs. \geq 80)

	$n \le 74 \\ n = 166$	$75-79 \\ n = 127$	
Parameter .	Est.[95%CI]	Est.[95%CI]	Est.[95%CI]
Random effects: Means			
Intercept FI1*	0.14 [0.12, 0.15]	0.18 [0.16, 0.20]	0.24 [0.21, 0.27]
Intercept FI2*	0.15 [0.13, 0.17]	0.21 [0.18, 0.23]	0.27 [0.24, 0.29]
Intercept LS1*	3.30 [3.19, 3.41]	3.35 [3.17, 3.52]	3.57 [3.37, 3.76]
Intercept LS2* Fixed effects: Means	3.31 [3.20, 3.42]	3.40 [3.26, 3.54]	3.82 [3.58, 4.05]
Slope LS1*	0.01 [-0.01, 0.02]	0.02 [-0.01, 0.05]	0.03 [-0.00, 0.06]
Slope LS2*	0.00 [-0.01, 0.02]	0.00 [-0.02, 0.03]	-0.02 [-0.04, 0.00]
Random Effects: Correlation			
ζ_1 : Intercept FI1 \leftrightarrow Intercept FI2	0.91 [0.86, 0.96]	0.95 [0.91, 0.98]	0.95 [0.91, 0.99]
ζ ₂ : Intercept FI1 ↔ Intercept LS1	0.59 [0.45, 0.73]	0.66 [0.47, 0.86]	0.49 [0.30, 0.68]
ζ_3 : Intercept FI1 \leftrightarrow Intercept LS2 ζ_4 : Intercept FI2 \leftrightarrow Intercept LS1	0.54 [0.38, 0.69] 0.48 [0.32, 0.65]	0.54 [0.30, 0.79] 0.58 [0.41, 0.75]	0.55 [0.37, 0.74] 0.45 [0.25, 0.66]
ζ_4 : Intercept F12 \leftrightarrow Intercept LS1 ζ_5 : Intercept F12 \leftrightarrow Intercept LS2	0.45 [0.27, 0.63]	0.50 [0.28, 0.71]	0.53 [0.32, 0.73]
ζ_6 : Intercept LS1 \leftrightarrow Intercept LS2	0.93 [0.87, 0.99]	0.90 [0.73, 1.07]	0.94 [0.86, 1.01]
Autoregressive (FI \rightarrow FI)			
α_1	0.31 [0.08, 0.54]	0.11 [-0.23, 0.44]	0.35 [0.08, 0.62]
α_2	0.32 [0.14, 0.50]	0.21 [-0.07, 0.50]	0.39 [0.06, 0.71]
α_3	0.40 [-0.04, 0.85] 0.01 [-0.52, 0.54]	0.37 [0.00, 0.73] 0.30 [0.02, 0.58]	0.29 [-0.12, 0.70] 0.11 [-0.23, 0.45]
$rac{lpha_4}{lpha_5}$	0.28 [0.00, 0.55]	0.29 [0.01, 0.58]	0.33 [0.02, 0.65]
α_6	0.06 [-0.25, 0.36]	0.26 [-0.02, 0.54]	0.24 [-0.04, 0.52]
α_7	-0.04 [-0.31, 0.23]	0.35 [-0.18, 0.88]	0.00 [-0.34, 0.35]
α_8	0.24 [0.01, 0.47]	0.08 [-0.23, 0.40]	0.25 [-0.03, 0.54]
α_9	0.36 [0.16, 0.56]	0.15 [-0.24, 0.53]	-0.05 [-0.43, 0.34]
α_{10}	-0.27 [-0.62, 0.08]	0.47 [-0.00, 0.93]	-0.10 [-0.57, 0.36]
α ₁₁	0.34 [-0.00, 0.67] 0.24 [-0.25, 0.73]	0.18 [-0.20, 0.56] 0.17 [-0.10, 0.43]	0.44 [0.12, 0.75] 0.18 [-0.10, 0.47]
$lpha_{12} lpha_{13}$	0.25 [-0.06, 0.56]	0.35 [-0.03, 0.74]	0.50 [0.18, 0.83]
Autoregressive (LS → LS)	5.25 [5.55, 5.55]	[,]	5155 [5125, 5155]
β_1	0.07 [-0.36, 0.49]	0.13 [-0.05, 0.30]	0.49 [0.27, 0.70]
β_2	0.00 [-0.27, 0.27]	-0.18 [-0.56, 0.19]	0.53 [0.25, 0.80]
β_3	0.35 [0.07, 0.64]	-0.14 [-0.71 , 0.43]	0.25 [-0.02, 0.52]
β_4	0.09 [-0.21, 0.38]	0.09 [-0.29, 0.47]	0.07 [-0.31, 0.44]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.02 [-0.26, 0.30] 0.29 [-0.02, 0.60]	0.13 [-0.23, 0.50] 0.37 [0.02, 0.72]	0.29 [-0.08, 0.65] 0.23 [-0.07, 0.54]
β_7	0.21 [-0.32, 0.73]	-0.19 [-0.54, 0.17]	0.05 [-0.31, 0.41]
β_8	-0.02 [-0.56 , 0.52]	0.06 [-0.38, 0.50]	-0.03 [-0.31, 0.25]
β_9	-0.44 [-0.94 , 0.06]	-0.20 [-0.73 , 0.34]	0.37 [-0.05, 0.79]
β_{10}	0.15 [-0.13, 0.43]	0.00 [-0.62, 0.62]	0.00 [-0.44, 0.44]
β_{11}	0.10 [-0.33, 0.53]	-0.23 [-0.68, 0.23]	-0.07 [-0.60, 0.46]
β_{12}	0.08 [-0.49, 0.64]	-0.08 [-0.38, 0.22]	0.27 [-0.17, 0.71]
β_{13} Cross-lagged (LS $ ightarrow$ FI)	0.36 [0.14, 0.58]	0.32 [-0.36, 1.00]	0.47 [-0.07, 1.00]
δ_1	-0.05 [-0.31 , 0.21]	0.05 [-0.26, 0.36]	-0.02 [-0.23 , 0.18]
δ_2	-0.03 [-0.21, 0.14]	0.19 [-0.08, 0.45]	0.21 [0.04, 0.38]
δ_3	-0.04 [-0.30 , 0.22]	0.09 [-0.26, 0.43]	-0.01 [-0.24 , 0.22]
δ_4	-0.05 $[-0.35, 0.26]$	-0.12 [-0.36 , 0.12]	0.14 [-0.17, 0.44]
δ_5	0.11 [-0.07, 0.28]	-0.11 [-0.41, 0.19]	-0.17 [-0.43, 0.08]
δ ₆ δ=	0.14 [-0.09, 0.36] 0.07 [-0.08, 0.23]	-0.03 [-0.33, 0.27]	-0.12 [-0.31, 0.08]
$rac{\delta_7}{\delta_8}$	-0.06 [-0.19, 0.07]	0.01 [-0.16, 0.18] 0.17 [-0.13, 0.48]	0.11 [-0.16, 0.38] -0.10 [-0.41, 0.20]
δ_9	-0.10 [-0.29, 0.09]	-0.19 [-0.45, 0.07]	0.25 [-0.16, 0.66]
δ_{10}°	-0.09 [-0.37, 0.18]	-0.04 [-0.23, 0.15]	-0.07 [-0.81, 0.67]
δ_{11}	0.01 [-0.19, 0.22]	0.29 [-0.01, 0.60]	-0.12 [-0.37 , 0.14]
δ_{12}	0.27 [-0.06, 0.61]	-0.33 [-0.60 , -0.07]	0.14 [-0.14, 0.42]
δ ₁₃	0.23 [0.06, 0.40]	0.18 [-0.12, 0.48]	-0.08 [-0.45, 0.28]
Cross-lagged (FI → LS)	0.15 [-0.02, 0.32]	0.13 [-0.13, 0.39]	-0.00 [-0.14, 0.13]
$\gamma_1 \\ \gamma_2$	0.20 [-0.07, 0.46]	0.38 [-0.02, 0.77]	0.04 [-0.17, 0.26]
γ_3	0.20 [-0.09, 0.49]	0.07 [-0.21, 0.36]	0.33 [0.01, 0.66]
γ_4	-0.06 [-0.25 , 0.14]	0.16 [-0.21, 0.53]	-0.30 [-0.61, 0.01]
γ_5	0.09 [-0.22, 0.40]	-0.22 [-0.60 , 0.16]	0.13 [-0.19, 0.45]
γ_6	-0.09 [-0.35, 0.17]	-0.01 [-0.25, 0.24]	-0.27 [-0.46, -0.08]
γ_7	-0.06 [-0.23, 0.11]	0.14 [-0.06, 0.33]	0.04 [-0.24, 0.32]
γ ₈	0.04 [-0.14, 0.22] -0.05 [-0.36, 0.25]	0.01 [-0.26, 0.29] -0.11 [-0.42, 0.21]	0.17 [-0.18, 0.51] -0.00 [-0.42, 0.42]
γ_9 γ_{10}	-0.09 [-0.32, 0.14]	0.17 [-0.10, 0.44]	0.01 [-0.57, 0.58]
γ_{11}	0.24 [-0.09, 0.56]	-0.04 [-0.31, 0.22]	0.36 [-0.10, 0.82]
γ_{12}	0.22 [-0.08, 0.51]	0.08 [-0.25, 0.42]	-0.12 [-0.43, 0.20]
γ_{13}	0.55 [0.24, 0.86]	0.08 [-0.48, 0.65]	0.15 [-0.12, 0.43]
Vithin-time (FI ↔ LS)	0.00 [0.17 0.00]	0.05 [0.05 0.40]	0.00 [0.00 0.55]
λ_1	0.06 [-0.17, 0.29]	$0.25 [0.07, 0.43] \\ 0.34 [0.14, 0.53]$	0.38 [0.20, 0.57]
$rac{\lambda_2}{\lambda_3}$	0.08 [-0.16, 0.31] 0.20 [0.03, 0.37]	0.34 [0.14, 0.53]	0.10 [-0.07, 0.26] 0.17 [-0.02, 0.35]
λ_4	-0.09 [-0.30, 0.13]	0.09 [-0.16, 0.34]	0.21 [-0.04, 0.46]
λ_5	0.20 [-0.04, 0.43]	0.14 [-0.25, 0.54]	0.13 [-0.14, 0.41]
λ_6	0.26 [0.01, 0.51]	0.03 [-0.37, 0.44]	0.24 [-0.06, 0.54]
λ_7	0.04 [-0.11, 0.20]	0.19 [-0.06, 0.44]	0.22 [0.02, 0.42]
λ_8	0.16 [-0.01, 0.33]	0.09 [-0.13, 0.32]	-0.01 [-0.27 , 0.25]
λ_9	-0.15 [-0.33, 0.03]	-0.03 [-0.31, 0.26]	0.14 [-0.26, 0.53]
λ_{10}	-0.30 [-0.58, -0.03]	0.11 [-0.14, 0.36]	0.05 [-0.38, 0.47]
λ_{11}	0.21 [-0.19, 0.62] 0.28 [0.04, 0.51]	-0.06 [-0.25 , 0.13] -0.17 [-0.41 , 0.07]	0.07 [-0.42, 0.55] 0.13 [-0.50, 0.76]
λ_{12} λ_{13}	0.28 [0.04, 0.31]	0.26 [-0.01, 0.53]	0.13 [-0.04, 0.76]
λ_{14}	0.29 [0.08, 0.51]	0.05 [-0.32, 0.43]	-0.04 [-0.42, 0.34]

Note. We report standardized parameter estimates and 95.00% CI intervals for all variables, except for the means of fixed/random effects; here, we report unstandardized estimates, as indicated by *.

Model fit: $\chi^2(972) = 2100.69 \ p < .001$; robust TLI = 0.944; robust CFI = 0.952; SRMR = 0.100; robust RMSEA [90% CI] = 0.076 [0.061, 0.089].

Supplementary Table 9: Multiple group analysis: Living alone (yes vs. no)

	1 0	0 (1)
	Yes	No
	n = 281	n = 145
Parameter	Est.[95%CI]	Est.[95%CI]
Random effects: Means		
Intercept FI1*	0.19 [0.18, 0.21]	0.16 [0.14, 0.18]
Intercept FI2* Intercept LS1*	0.21 [0.20, 0.23] 3.48 [3.36, 3.60]	0.18 [0.16, 0.21] 3.24 [3.11, 3.37]
Intercept LS2*	3.56 [3.43, 3.68]	3.41 [3.27, 3.56]
Fixed effects: Means		
Slope LS1* Slope LS2*	0.01 [-0.01, 0.03] -0.01 [-0.02, 0.01]	0.02 [0.00, 0.04] -0.02 [-0.03, -0.00]
Random Effects: Correlation	-0.01 [-0.02, 0.01]	-0.02 [-0.03, -0.00]
ζ_1 : Intercept FI1 \leftrightarrow Intercept FI2	0.95 [0.92, 0.97]	0.94 [0.89, 0.99]
ζ_2 : Intercept FI1 \leftrightarrow Intercept LS1 ζ_3 : Intercept FI1 \leftrightarrow Intercept LS2	0.55 [0.42, 0.68] 0.55 [0.41, 0.69]	0.59 [0.39, 0.78] 0.65 [0.46, 0.84]
ζ ₄ : Intercept FI2 ↔ Intercept LS1	0.52 [0.38, 0.66]	0.48 [0.24, 0.72]
ζ_5 : Intercept FI2 \leftrightarrow Intercept LS2 ζ_6 : Intercept LS1 \leftrightarrow Intercept LS2	0.51 [0.36, 0.66]	0.52 [0.28, 0.76]
ζ_6 : Intercept LS1 \leftrightarrow Intercept LS2 Autoregressive (FI \rightarrow FI)	0.93 [0.86, 1.00]	0.95 [0.84, 1.06]
α_1	$0.26 \ [0.07, \ 0.45]$	0.22 [-0.04, 0.48]
α_2	0.26 [0.09, 0.43] 0.29 [0.02, 0.55]	0.37 [0.12, 0.63] 0.28 [-0.21, 0.76]
$^{lpha}_3$ lpha_4	0.16 [-0.02, 0.33]	-0.22 [-0.79, 0.34]
$\alpha_5^{\frac{1}{2}}$	0.34 [0.15, 0.53]	0.09 [-0.22, 0.40]
α_6	0.24 [0.04, 0.44] -0.05 [-0.23, 0.13]	$0.18 [-0.15, 0.52] \\ 0.36 [-0.03, 0.75]$
$rac{lpha_7}{lpha_8}$	0.17 [-0.03, 0.37]	0.27 [0.03, 0.75]
α_9	0.09 [-0.19, 0.38]	0.31 [-0.04, 0.66]
$^{lpha}_{10}$	0.11 [-0.31, 0.53] 0.23 [-0.02, 0.49]	0.14 [-1.15, 1.43] 0.60 [0.30, 0.89]
$\alpha_{12}^{\alpha_{11}}$	0.22 [-0.03, 0.46]	0.44 [0.02, 0.85]
α_{13}	0.15 [-0.12, 0.43]	0.73 [0.51, 0.94]
Autoregressive (LS \rightarrow LS) β_1	0.25 [0.08, 0.41]	0.22 [-0.16, 0.60]
β_2	0.24 [0.01, 0.48]	-0.08 [-0.57, 0.41]
$eta_3 \ eta_4$	0.08 [-0.23, 0.40] 0.07 [-0.23, 0.37]	$0.36 [-0.07, 0.79] \\ -0.12 [-0.73, 0.49]$
$\frac{\beta_4}{\beta_5}$	0.09 [-0.19, 0.36]	0.37 [-0.05, 0.78]
β_6	0.32 [0.13, 0.52]	0.09 [-0.33, 0.52]
β ₇ β ₈	0.01 [-0.30, 0.32] 0.11 [-0.16, 0.38]	-0.04 [-0.65 , 0.58] 0.07 [-0.46 , 0.61]
β_9^8	0.20 [-0.13, 0.53]	-0.28 [-0.87, 0.30]
β_{10}	0.01 [-0.24, 0.26]	0.08 [-0.57, 0.72]
β_{11} β_{12}	-0.18 [-0.56 , 0.20] 0.02 [-0.32 , 0.36]	-0.10 [-0.48, 0.27] -0.09 [-0.87, 0.69]
β_{13}	0.31 [0.00, 0.63]	0.33 [-0.54, 1.20]
Cross-lagged (LS \rightarrow FI)	-0.06 [-0.21, 0.09]	0.22 [-0.24, 0.68]
$rac{\delta_1}{\delta_2}$	0.04 [-0.11, 0.18]	0.27 [0.01, 0.53]
δ_3	0.12 [-0.05, 0.29]	-0.24 [-0.53, 0.06]
$\delta_{f 4}^3 \ \delta_{f 5}$	0.01 [-0.18, 0.19] -0.06 [-0.24, 0.11]	$-0.11 \ [-0.53, \ 0.31]$ $-0.05 \ [-0.44, \ 0.35]$
δ6	-0.02 [-0.18, 0.14]	-0.08 [-0.27, 0.12]
δ_7	0.08 [-0.05, 0.21]	0.20 [-0.14, 0.54]
δ8 δ9	-0.12 [-0.29, 0.05] -0.04 [-0.25, 0.17]	0.31 [-0.05, 0.67] 0.37 [-0.15, 0.88]
Ø10	0.01 [-0.22, 0.23]	-0.12 [-0.49, 0.26]
⁰ 11	0.08 [-0.10, 0.26] 0.05 [-0.20, 0.31]	0.15 [-0.15, 0.46] 0.06 [-0.15, 0.28]
δ_{12} δ_{13}	0.15 [-0.03, 0.34]	-0.23 [-0.50, 0.04]
Cross-lagged (F1 \rightarrow LS)	0.40 [0.04 0.08]	0.00 [0.45 0.00]
$\gamma_1 \\ \gamma_2$	0.12 [-0.01, 0.25] 0.13 [-0.05, 0.31]	0.06 [-0.15, 0.28] 0.32 [-0.06, 0.69]
$\dot{\gamma}_3$	0.16 [-0.04, 0.36]	0.28 [-0.07, 0.62]
γ_4	-0.09 [-0.32 , 0.13] -0.03 [-0.25 , 0.20]	0.11 [-0.52, 0.74] -0.04 [-0.25, 0.17]
$rac{\gamma_5}{\gamma_6}$	-0.08 [-0.22, 0.06]	-0.11 [-0.33, 0.12]
γ_7	0.05 [-0.10, 0.20]	0.01 [-0.21, 0.24]
γ ₈	0.05 [-0.16, 0.26] 0.01 [-0.22, 0.24]	0.17 [-0.27, 0.62] -0.05 [-0.47, 0.37]
$\gamma_9 \\ \gamma_{10}$	0.06 [-0.19, 0.30]	0.57 [-0.06, 1.20]
γ_{11}	0.28 [0.01, 0.55]	0.23 [-0.43, 0.89]
$\gamma_{12} \\ \gamma_{13}$	0.13 [-0.12, 0.39] 0.05 [-0.15, 0.25]	-0.29 [-1.11, 0.52] 0.35 [-0.21, 0.92]
Within-time (FI ↔ LS)		
$egin{array}{c} \lambda_1 \ \lambda_2 \end{array}$	0.22 [0.09, 0.35] 0.17 [0.03, 0.32]	0.29 [0.10, 0.48] 0.16 [-0.03, 0.36]
λ_3	0.20 [0.08, 0.32]	0.16 [-0.03, 0.36]
λ_4	0.18 [-0.01, 0.37]	0.10 [-0.19, 0.38]
λ_5 λ_6	$0.23 [-0.04, 0.50] \\ 0.23 [0.04, 0.42]$	0.05 [-0.42, 0.51] -0.01 [-0.25, 0.22]
λ_7	0.25 [0.04, 0.42]	0.05 [-0.18, 0.28]
λ_8	0.03 [-0.15, 0.21]	0.28 [-0.02, 0.58]
λ_9	0.06 [-0.14, 0.27] 0.08 [-0.10, 0.27]	-0.01 [-0.48, 0.46] 0.15 [-0.44, 0.74]
$\lambda_{10} \\ \lambda_{11}$	0.14 [-0.07, 0.36]	0.15 [-0.44, 0.74] 0.38 [-0.22, 0.98]
λ_{12}	0.23 [-0.10, 0.57]	-0.21 [-0.45, 0.04]
$\lambda_{13} \ \lambda_{14}$	0.18 [0.02, 0.34] 0.08 [-0.09, 0.25]	-0.01 [-0.19, 0.18] 0.26 [-0.38, 0.89]
Note. We report standardized paramete	. , ,	

Note. We report standardized parameter estimates and 95.00% CI intervals for all variables, except for the means of fixed/random effects; here, we report unstandardized estimates, as indicated by *. Model fit: χ^2 (648) = 1633.09 p <.001; robust TLI = 0.953; robust CFI = 0.960; SRMR = 0.082; robust RMSEA [90% CI] = 0.071 [0.057, 0.085].

Supplementary Table 10: Multiple group analysis: social participation (yes vs. no; participation in at least one social activity)

	Yes $n = 249$	$ \begin{array}{c} \text{No} \\ n = 177 \end{array} $
Parameter	Est.[95%CI]	Est.[95%CI]
Random effects: Means		
Intercept FI1* Intercept FI2*	0.14 [0.13, 0.16] 0.17 [0.15, 0.18]	0.21 [0.19, 0.23] 0.23 [0.21, 0.25]
Intercept LS1*	3.28 [3.19, 3.38]	3.47 [3.34, 3.61]
Intercept LS2*	3.33 [3.22, 3.44]	3.63 [3.49, 3.78]
Fixed effects: Means Slope LS1*	0.01 [-0.01, 0.02]	0.02 [0.00, 0.04]
Slope LS2*	-0.00 [-0.02 , 0.01]	-0.01 [-0.03, 0.01]
Random Effects: Correlation ζ_1 : Intercept FI1 \leftrightarrow Intercept FI2	0.94 [0.90, 0.97]	0.94 [0.90, 0.97]
ζ_2 : Intercept FI1 \leftrightarrow Intercept LS1	0.44 [0.27, 0.61]	0.60 [0.48, 0.72]
ζ_3 : Intercept FI1 \leftrightarrow Intercept LS2 ζ_4 : Intercept FI2 \leftrightarrow Intercept LS1	0.42 [0.25, 0.59] 0.37 [0.16, 0.58]	0.61 [0.48, 0.73] 0.55 [0.42, 0.67]
ζ_5 : Intercept FI2 \leftrightarrow Intercept LS2	0.37 [0.14, 0.59]	0.57 [0.44, 0.70]
ζ_6 : Intercept LS1 \leftrightarrow Intercept LS2	$0.95 \ [0.87, \ 1.03]$	0.91 [0.84, 0.98]
Autoregressive (FI \rightarrow FI) α_1	0.31 [0.08, 0.53]	0.23 [0.02, 0.43]
α_2	0.15 [-0.02, 0.32]	0.36 [0.17, 0.55]
$lpha_3 \ lpha_4$	0.17 [-0.04, 0.37] -0.06 [-0.37, 0.26]	0.34 [0.01, 0.68] 0.15 [-0.07, 0.37]
α_5	0.33 [0.09, 0.56]	0.30 [0.06, 0.55]
$^{lpha_6}_{lpha_7}$	0.25 [-0.01, 0.50] 0.31 [-0.18, 0.80]	0.24 [0.02, 0.46] 0.01 [-0.25, 0.26]
α_8	0.22 [-0.06, 0.50]	0.20 [0.02, 0.39]
α9	0.27 [-0.04, 0.57] 0.29 [-0.22, 0.80]	0.08 [-0.14, 0.31] -0.11 [-0.50, 0.28]
$^{lpha_{10}}_{lpha_{11}}$	0.31 [-0.05, 0.67]	0.29 [0.01, 0.57]
α_{12} α_{13}	0.24 [-0.07, 0.55]	0.23 [-0.01, 0.47]
Autoregressive (LS \rightarrow LS)	0.36 [0.03, 0.69]	0.35 [0.04, 0.67]
β_1	0.15 [-0.14, 0.44]	0.26 [0.09, 0.44]
$\begin{array}{c} eta_2 \\ eta_3 \end{array}$	0.30 [0.05, 0.55] 0.29 [0.01, 0.58]	0.10 [-0.19, 0.38] 0.05 [-0.32, 0.42]
β_4	0.04 [-0.19, 0.27]	0.02 [-0.30, 0.35]
$eta_5 \ eta_6$	0.12 [-0.07, 0.30] 0.38 [0.16, 0.60]	$0.14 [-0.17, 0.45] \\ 0.22 [-0.03, 0.46]$
β_7	0.36 [0.04, 0.68]	-0.24 [-0.52 , 0.04]
eta_8 eta_9	-0.07 [-0.47 , 0.34] 0.12 [-0.37 , 0.62]	0.08 [-0.21, 0.36] 0.02 [-0.38, 0.42]
β_{10}	0.27 [-0.20, 0.73]	-0.11 [-0.38 , 0.16]
β_{11} β_{12}	-0.01 [-0.43, 0.41] 0.27 [-0.18, 0.72]	-0.16 [-0.51, 0.20] -0.11 [-0.45, 0.24]
β_{13}	0.23 [-0.08, 0.53]	0.52 [0.24, 0.80]
Cross-lagged (LS \rightarrow FI) δ_1	-0.13 [-0.32, 0.07]	0.06 [-0.16, 0.28]
δ_2	0.15 [-0.02, 0.32]	0.06 [-0.11, 0.23]
$rac{\delta_3}{\delta_4}$	0.02 [-0.20, 0.25] -0.06 [-0.25, 0.13]	0.05 [-0.16, 0.25]
δ_5	-0.01 [-0.21, 0.19]	-0.04 [-0.24, 0.16] -0.08 [-0.26, 0.10]
δ_6	-0.20 [-0.36 , -0.03] 0.13 [-0.06 , 0.32]	$0.03 [-0.13, 0.19] \\ 0.02 [-0.16, 0.21]$
$\delta_{f 7}^{f \sigma}$ $\delta_{f 8}$	-0.07 [-0.25, 0.11]	0.05 [-0.17, 0.27]
89	-0.03 [-0.27, 0.21]	0.07 [-0.27, 0.40]
δ_{10} δ_{11}	0.02 [-0.18, 0.22] 0.12 [-0.14, 0.38]	-0.05 [-0.32, 0.23] 0.09 [-0.13, 0.31]
812	0.19 [-0.08, 0.45]	-0.04 [-0.22 , 0.14]
δ_{13} Cross-lagged (FI \rightarrow LS)	0.16 [-0.07, 0.39]	0.02 [-0.21, 0.24]
γ_1	0.10 [-0.05, 0.25]	0.12 [-0.01, 0.25]
$rac{\gamma_2}{\gamma_3}$	$0.03 [-0.14, 0.19] \\ 0.23 [0.06, 0.41]$	0.21 [-0.04, 0.46] 0.12 [-0.14, 0.38]
γ_4	-0.15 [-0.34 , 0.03]	-0.06 [-0.31, 0.19]
γ_5 γ_6	-0.11 [-0.30, 0.08] -0.05 [-0.21, 0.11]	-0.03 [-0.29, 0.22] -0.10 [-0.27, 0.07]
γ_7	0.01 [-0.21, 0.22]	0.08 [-0.08, 0.24]
γ_8 γ_9	0.13 [-0.28, 0.54] 0.10 [-0.14, 0.34]	0.12 [-0.10, 0.33] -0.08 [-0.33, 0.16]
γ ₁₀	0.02 [-0.19, 0.22]	0.18 [-0.25, 0.60]
γ_{11}	$0.19 [-0.19, 0.57] \\ -0.11 [-0.32, 0.10]$	0.22 [-0.02, 0.46] 0.25 [-0.07, 0.58]
$egin{array}{c} \gamma_{12} \ \gamma_{13} \end{array}$	0.30 [-0.04, 0.64]	0.03 [-0.12, 0.18]
Within-time (FI \leftrightarrow LS)	0.10 [0.01 0.28]	0.26 [0.12, 0.40]
$egin{array}{c} \lambda_1 \ \lambda_2 \end{array}$	$0.19 [-0.01, 0.38] \\ 0.24 [0.05, 0.43]$	0.14 [-0.01, 0.28]
λ_3	0.11 [-0.01, 0.23]	0.20 [0.04, 0.36]
$\lambda_4^{\lambda_4}$ λ_5	$0.19 [0.01, 0.37] \\ 0.08 [-0.21, 0.37]$	$0.13 [-0.11, 0.37] \\ 0.17 [-0.10, 0.43]$
λ_6	0.19 [0.02, 0.37]	0.16 [-0.08, 0.41]
λ_7 λ_8	0.27 [0.08, 0.47] -0.02 [-0.31, 0.26]	0.18 [0.03, 0.33] 0.11 [-0.07, 0.29]
λ_9	0.06 [-0.18, 0.30]	0.03 [-0.22, 0.29]
$\lambda_{10} \ \lambda_{11}$	-0.11 [-0.28, 0.06] 0.09 [-0.16, 0.34]	0.15 [-0.12, 0.42] 0.15 [-0.16, 0.47]
λ_{12}	-0.02 [-0.28 , 0.24]	0.17 [-0.21, 0.55]
$\lambda_{13} \ \lambda_{14}$	0.04 [-0.13, 0.21] 0.12 [-0.16, 0.40]	0.13 [-0.04, 0.31] 0.08 [-0.09, 0.25]
Note. We report standardized parameter		

Note. We report standardized parameter estimates and 95.00 % CI intervals for all variables, except for the means of fixed/random effects; here, we report unstandardized estimates, as indicated by *. Model fit: χ^2 (648) = 1343.61 p <.001; robust TLI = 0.953; robust CFI = 0.960; SRMR = 0.065; robust RMSEA [90% CI] = 0.069 [0.058, 0.058].

Supplementary Table 11: Analysis with bedrest as time-varying covariate (N=162)

ore 11. Timeryore wrent boar obt as	time varying ee
Parameter	Est.[95%CI]
Ti 1/D 1 0 1 1	
Fixed/Random effects: Means Intercept FI1*	0.16 [0.14, 0.17]
Intercept FI2*	0.18 [0.14, 0.17]
Intercept LS1*	3.32 [3.19, 3.45]
Intercept LS2*	3.53 [3.37, 3.68]
Random effects: Means Slope LS1*	0.03 [0.01 0.05]
Slope LS1 Slope LS2*	0.02 [-0.01, 0.05] -0.02 [-0.03, -0.01]
Random Effects: Correlation	0.02 [0.03, 0.01]
Intercept FI1 ↔ Intercept FI2	0.96 [0.93, 0.98]
Intercept FI1 ↔ Intercept LS1 Intercept FI1 ↔ Intercept LS2	0.50 [0.30, 0.70]
Intercept F11 \leftrightarrow Intercept LS2 Intercept F12 \leftrightarrow Intercept LS1	0.52 [0.35, 0.69] 0.51 [0.31, 0.70]
Intercept FI2 ↔ Intercept LS1 Intercept FI2 ↔ Intercept LS2	0.53 [0.38, 0.69]
Intercept LS1 ↔ Intercept LS2	0.97 [0.88, 1.07]
Autoregressive (FI \rightarrow FI)	
α_1	0.18 [0.01, 0.35]
$rac{lpha_2}{lpha_3}$	0.21 [-0.01, 0.43] 0.27 [-0.02, 0.57]
α_4	0.14 [-0.16, 0.44]
α_5^-	0.27 [0.05, 0.49]
α_6	0.21 [-0.06, 0.48]
α ₇	-0.02 [-0.23, 0.20] 0.15 [-0.09, 0.39]
$\frac{\alpha_8}{\alpha_9}$	0.34 [0.17, 0.52]
α_{10}	0.09 [-0.14, 0.33]
α_{11}	0.09 [-0.09, 0.27]
α_{12}	0.17 [-0.04, 0.39]
α_{13} Autoregressive (LS \rightarrow LS)	0.40 [0.16, 0.65]
β_1	0.28 [0.01, 0.55]
β_2	0.51 [0.27, 0.76]
β_3	0.46 [0.14, 0.78]
$eta_4 \ eta_5$	0.47 [0.16, 0.79] 0.41 [0.16, 0.66]
$_{eta_{6}}^{ ho_{5}}$	0.36 [0.13, 0.59]
β_7	-0.07 [-0.42 , 0.28]
β_8	-0.15 [-0.44, 0.14]
$eta_{9}^{eta_{9}}$	0.06 [-0.36, 0.48] -0.20 [-0.51, 0.12]
$eta_{10} \ eta_{11}$	-0.20 [-0.51, 0.12] -0.23 [-0.49, 0.03]
$eta_{12}^{eta_{11}}$	-0.23 [-0.49, 0.03] -0.04 [-0.34, 0.25]
β_{13}	0.22 [-0.08, 0.52]
Cross-lagged (LS \rightarrow FI)	
δ_1	-0.05 [-0.22, 0.12]
$ \delta_2 $ $ \delta_3 $	0.12 [-0.03, 0.27] 0.07 [-0.13, 0.26]
δ_4	0.04 [-0.22, 0.30]
δ_5	0.03 [-0.16, 0.22]
δ_6	-0.00 [-0.25, 0.24]
δ ₇ δ ₈	0.08 [-0.10, 0.27] 0.09 [-0.25, 0.43]
δ_9	-0.01 [-0.22, 0.20]
δ_{10}°	0.06 [-0.11, 0.22]
δ_{11}	0.06 [-0.10, 0.22]
δ_{12}	-0.04 [-0.20, 0.11]
δ_{13} Cross-lagged (FI $ ightarrow$ LS)	0.09 [-0.05, 0.24]
γ_1	0.04 [-0.11, 0.19]
γ_2	$0.20 \ [-0.03,\ 0.43]$
γ_3	0.24 [0.02, 0.45]
$\frac{\gamma_4}{\gamma_5}$	-0.21 [-0.40 , -0.01] 0.15 [-0.05 , 0.36]
γ_5 γ_6	0.02 [-0.12, 0.16]
$\dot{\gamma}_{7}$	0.15 [-0.11, 0.42]
γ_8	-0.27 [-0.49, -0.05]
79	0.08 [-0.19, 0.35] 0.11 [-0.17, 0.39]
$\gamma_{10} \ \gamma_{11}$	0.13 [-0.07, 0.32]
γ_{12}	-0.07 $[-0.32, 0.19]$
γ_{13}	0.12 [-0.07, 0.30]
Within-time (FI \leftrightarrow LS)	0.16 [0.02 0.34]
$egin{array}{c} \lambda_1 \ \lambda_2 \end{array}$	0.16 [-0.02, 0.34] 0.10 [-0.09, 0.29]
λ_3	0.10 [-0.02, 0.23]
λ_A	0.25 [-0.08, 0.57]
λ_5	-0.11 [-0.34, 0.11]
$\lambda_6 \lambda_7$	0.27 [0.09, 0.44] 0.16 [-0.05, 0.38]
λ_8	-0.08 [-0.30, 0.14]
λ_9	0.17 [-0.09, 0.43]
λ_{10}	0.10 [-0.10, 0.31]
$\lambda_{11} \\ \lambda_{12}$	-0.11 [-0.35, 0.12] 0.15 [-0.19, 0.49]
λ_{13}	0.03 [-0.14, 0.20]
λ_{14}	0.09 [-0.06, 0.23]
Time-varying covariate	
$\begin{array}{ccc} \operatorname{bedrest}_1 & \rightarrow & \operatorname{r}_{-}\operatorname{fi}_1 \\ \operatorname{bedrest}_1 & \rightarrow & \operatorname{r}_{-}\operatorname{ucla}_1 \end{array}$	0.21 [0.06, 0.35]
$bedrest_1 \rightarrow r_ucia_1$ $bedrest_2 \rightarrow r_fi_2$	-0.08 [-0.21, 0.04] 0.42 [0.23, 0.60]
L - J	0.00 [-0.20, 0.20]
$bedrest_3 \rightarrow r_f_3$	0.32 [0.03, 0.60]
$bedrest_3 \rightarrow r_ucla_3$	-0.13 [-0.29, 0.02]
bedrest $\rightarrow r_h q$	0.28 [0.10, 0.46]
bedrest ₄ → r fi ₅	-0.09 [-0.27, 0.09] 0.39 [0.20, 0.58]
bedrest $_2 \rightarrow r$ _ucla $_2$ bedrest $_3 \rightarrow r$ _ucla $_3$ bedrest $_4 \rightarrow r$ _ucla $_4$ bedrest $_4 \rightarrow r$ _ucla $_4$ bedrest $_5 \rightarrow r$ _ucla $_5$ bedrest $_5 \rightarrow r$ _ucla $_5$	0.18 [-0.00, 0.37]
$\begin{array}{ccc} \text{bedrest}_6 \rightarrow \text{r_nfi}_6 \\ \text{bedrest}_6 \rightarrow \text{r_ucla}_6 \\ \text{bedrest}_7 \rightarrow \text{r_fi}_7 \end{array}$	0.29 [0.13, 0.46]
bedrest $\rightarrow r_ucla_6$	0.04 [-0.08, 0.17]
$\begin{array}{c} \text{bedrest}_7 \rightarrow \text{r}_\text{n}_7 \\ \text{bedrest}_7 \rightarrow \text{r}_\text{ucla}_7 \end{array}$	0.24 [0.03, 0.46] -0.02 [-0.14, 0.11]
$bedrest_8 \rightarrow r_fi_8$	0.37 [0.18, 0.56]
$bedrest_8 \rightarrow r_fi_8$ $bedrest_8 \rightarrow r_ucla_8$	-0.12 [-0.28, 0.05]
$bedrestg \rightarrow r_fig$	0.30 [0.11, 0.50]
$bedrest_9 \rightarrow r_uclag$ $bedrest_{10} \rightarrow r_f_{10}$	0.23 [0.05, 0.42] 0.33 [0.20, 0.47]
$bedrest_{10} \rightarrow r_ucla_{10}$	-0.13 [-0.26, 0.00]
$bedrest_{11} \rightarrow r_fi_{11}$	0.20 [0.02, 0.39]
$bedrest_{11} \rightarrow r_ucla_{11}$	0.09 [-0.08, 0.27]
$bedrest_{12} \rightarrow r_{-}fi_{12}$	0.34 [0.15, 0.52] 0.01 [-0.22, 0.23]
$\begin{array}{ccc} \operatorname{bedrest}_{12} \to \operatorname{r_ucla}_{12} \\ \operatorname{bedrest}_{13} \to \operatorname{r_fi}_{13} \end{array}$	0.01 [-0.22, 0.23] 0.26 [0.11, 0.42]
bedrest ₁₃ \rightarrow r_ucla ₁₃	0.19 [-0.01, 0.39]
$bedrest_{14} \rightarrow r_fi_{14}$	0.28 [0.12, 0.45]
$bedrest_{14} \rightarrow r_ucla_{14}$	0.06 [-0.15, 0.27]
Note. We report standardized parameter estir	nates and 95.00 % CI

bedrest₁₄ \rightarrow r_ucla₁₄ 0.06 [-0.15, 0.27] Note. We report standardized parameter estimates and 95.00 % CI intervals for all variables, except for the means of fixed/random effects; here, we report unstandardized estimates, as indicated by * Model fit: χ^2 (688) = 1195.14 p <.001; robust TLI = 0.942; robust CFI = 0.948; SRMR = 0.148; robust RMSEA [90% CI] = 0.055 [0.047, 0.064].

Supplementary Table 12: Analysis with falls as time-varying covariate (N=162)

able 12. Allalysis with falls as	
Parameters	Est. [95%CI]
Random effects: Means Intercept FI1*	0.16 [0.15, 0.18]
Intercept FI2*	0.18 [0.16, 0.20]
Intercept LS1*	3.32 [3.19, 3.44]
Intercept LS2* Fixed effects: Means	3.53 [3.38, 3.68]
Slope LS1*	0.02 [-0.00, 0.05]
Slope LS2* Random Effects: Correlation	-0.02 [-0.03, -0.00]
Intercept FI1 \leftrightarrow Intercept FI2	0.96 [0.93, 0.99]
Intercept FI1 \leftrightarrow Intercept LS1 Intercept FI1 \leftrightarrow Intercept LS2	0.52 [0.30, 0.74] 0.54 [0.37, 0.71]
Intercept FI2 \leftrightarrow Intercept LS1	0.52 [0.33, 0.71]
Intercept FI2 \leftrightarrow Intercept LS2 Intercept LS1 \leftrightarrow Intercept LS2	0.55 [0.40, 0.71] 0.95 [0.84, 1.06]
Autoregressive (FI \rightarrow FI)	
$\frac{\alpha_1}{\alpha_2}$	0.24 [0.04, 0.43] 0.30 [0.04, 0.56]
α_3	0.37 [0.04, 0.70]
α_4	0.18 [-0.20, 0.55] 0.22 [-0.07, 0.51]
$lpha_5$ $lpha_6$	0.19 [-0.08, 0.46]
$lpha_7$ $lpha_8$	-0.09 [-0.34, 0.16] 0.12 [-0.14, 0.38]
α_9	0.38 [0.17, 0.59]
α_{10}	0.09 [-0.18, 0.36] 0.18 [-0.02, 0.38]
$\begin{array}{c} \alpha_{11} \\ \alpha_{12} \end{array}$	0.24 [0.02, 0.46]
α_{13}	$0.48 \ [0.23, \ 0.73]$
Autoregressive (LS \rightarrow LS) β_1	$0.26 \ [-0.01,\ 0.54]$
β_2	0.49 [0.23, 0.76]
β_3 β_4	0.44 [0.07, 0.80] 0.45 [0.12, 0.79]
β_5	0.40 [0.13, 0.66]
$^{eta_6}_{eta_7}$	0.35 [0.11, 0.58] -0.09 [-0.44, 0.26]
β_8	-0.19 [-0.49, 0.11]
$\beta_9 \\ \beta_{10}$	0.05 [-0.39, 0.49] -0.21 [-0.53, 0.11]
β_{11}	-0.24 [-0.53, 0.05]
β_{12} β_{13}	-0.01 [-0.30, 0.29] 0.24 [-0.07, 0.55]
Cross-lagged (LS \rightarrow FI)	
$egin{array}{c} \delta_1 \ \delta_2 \end{array}$	-0.09 [-0.27, 0.10] 0.12 [-0.01, 0.24]
δ_3	0.05 [-0.15, 0.25]
$rac{\delta_4}{\delta_5}$	0.07 [-0.21, 0.34] 0.02 [-0.21, 0.26]
δ_6	-0.06 [-0.34 , 0.22]
$ \delta_7 $ $ \delta_8 $	0.07 [-0.12, 0.26] 0.07 [-0.27, 0.41]
δ_9	-0.01 [-0.23 , 0.22]
$egin{array}{c} \delta_{10} \ \delta_{11} \end{array}$	0.03 [-0.17, 0.23] 0.14 [-0.06, 0.34]
δ ₁₂	-0.01 [-0.17 , 0.15]
δ_{13} Cross-lagged (FI $ ightarrow$ LS)	0.13 [-0.00, 0.25]
γ_1	0.05 [-0.12, 0.22]
$\gamma_2 \\ \gamma_3$	0.19 [-0.02, 0.40] 0.21 [-0.05, 0.46]
γ_4	-0.23 [-0.46, -0.00] 0.07 [-0.18, 0.32]
γ_5 γ_6	0.01 [-0.12, 0.14]
γ_7	0.20 [-0.07, 0.46]
$\frac{\gamma_8}{\gamma_9}$	-0.24 [-0.50, 0.02] 0.04 [-0.23, 0.30]
γ_{10}	0.09 [-0.19, 0.37]
$\gamma_{11} \\ \gamma_{12}$	$\begin{array}{c} 0.09 \ [-0.19,\ 0.37] \\ 0.10 \ [-0.09,\ 0.29] \\ -0.04 \ [-0.30,\ 0.23] \end{array}$
γ_{13} Within-time (FI \leftrightarrow LS)	0.14 [-0.03, 0.31]
λ_1	$0.16 \ [-0.03, \ 0.35]$
λ_2 λ_3	$0.09 [-0.11, 0.29] \\ 0.06 [-0.09, 0.20]$
λ_4	0.20 [-0.15, 0.54]
$\lambda_5^ \lambda_6^-$	$-0.06 \ [-0.28, \ 0.17]$ $0.24 \ [0.06, \ 0.42]$
λ_7	0.14 [-0.09, 0.37]
λ_8 λ_9	$ \begin{array}{cccc} -0.09 & [-0.32, \ 0.14] \\ 0.22 & [-0.03, \ 0.47] \end{array} $
λ_{10}	0.04 [-0.17, 0.25]
λ_{11} λ_{12}	-0.14 [-0.39, 0.10] 0.15 [-0.21, 0.52]
λ_{13}	0.11 [-0.05, 0.26]
λ_{14} Time-varying covariate	0.10 [-0.02, 0.22]
$falls_1 \rightarrow r_fi_1$	0.34 [0.10, 0.59]
$falls_1 \rightarrow r_ucla_1$ $falls_2 \rightarrow r$ fig.	0.01 [-0.07, 0.09] 0.16 [-0.09, 0.41] -0.02 [-0.06, 0.01]
$falls_2 \rightarrow r_ucla_2$	-0.02 [-0.06, 0.01]
$falls_3 \rightarrow r_fi_3$ $falls_2 \rightarrow r$ uclas	-0.04 [-0.08 , -0.00] -0.11 [-0.22 , 0.00]
$falls_4 \rightarrow r_fi_4$	-0.11 [-0.22, 0.00] 0.09 [-0.12, 0.31] -0.11 [-0.30, 0.08] -0.04 [-0.11, 0.03]
$falls_4 \rightarrow r_ucla_4$ $falls_5 \rightarrow r$ fi_5	-0.11 [-0.30, 0.08] -0.04 [-0.11, 0.03]
$falls_5 \rightarrow r_ucla_5$	
$falls_6 \rightarrow r_fi_6$ $falls_6 \rightarrow r_cli_6$	$\begin{array}{c} -0.02 \ [-0.04, -0.00] \\ 0.08 \ [-0.01, 0.18] \\ 0.00 \ [-0.14, 0.14] \\ 0.02 \ [-0.15, 0.19] \end{array}$
$falls_7 \rightarrow r_fi_7$	0.02 [-0.15, 0.19]
Fine-varying covariate falls1 \rightarrow r_mcla1 falls2 \rightarrow r_mcla1 falls2 \rightarrow r_mcla2 falls2 \rightarrow r_mcla2 falls3 \rightarrow r_mcla3 falls3 \rightarrow r_mcla3 falls4 \rightarrow r_mcla4 falls5 \rightarrow r_mcla5 falls6 \rightarrow r_mcla5 falls6 \rightarrow r_mcla5 falls6 \rightarrow r_mcla6 falls7 \rightarrow r_mcla6 falls7 \rightarrow r_mcla7 falls8 \rightarrow r_mcla7 falls8 \rightarrow r_mcla7 falls8 \rightarrow r_mcla7 falls9 \rightarrow r_mcla7 falls9 \rightarrow r_mcla8 falls9 \rightarrow r_mcla9 falls9 \rightarrow r_mcla9 falls9 \rightarrow r_mcla9 falls9 \rightarrow r_mcla9 falls10 \rightarrow r_mcla9	0.05 [0.00 0.00]
falls8 → r_ucla8	0.13 [-0.06, 0.33] -0.02 [-0.14, 0.09] 0.29 [-0.09, 0.67] -0.03 [-0.09, 0.02] 0.04 [-0.14, 0.23]
$fallsg \rightarrow r_fig$ $fallsg \rightarrow r_uclag$	0.29 [-0.09, 0.67] -0.03 [-0.09, 0.02]
$falls_{10} \rightarrow r_fi_{10}$	0.04 [-0.14, 0.23]
$falls_{10} \rightarrow r_ucla_{10}$ $falls_{11} \rightarrow r$	-0.09 [-0.17 , -0.00] 0.07 [-0.03 , 0.17]
$rais_{11} \rightarrow r_ucia_{11}$	-0.00 [-0.03, 0.02]
$falls_{12} \rightarrow r_fi_{12}$ $falls_{12} \rightarrow r_ucla_{12}$	0.12 [-0.03, 0.28] -0.02 [-0.07, 0.02]
£_11 £	0.15 [-0.01, 0.31]
$falls_{13} \rightarrow r_il_{13}$ $falls_{13} \rightarrow r_il_{14}$ $falls_{14} \rightarrow r_il_{14}$	-0.08 [-0.19, 0.03] 0.05 [0.03, 0.07]
$falls_{14} \rightarrow r_ucla_{14}$	0.07 [0.03, 0.11]
Note. We report standardized parameter es	timates and 95.00 % CI

Note. We report standardized parameter estimates and 95.00 % CI intervals for all variables, except for the means of fixed/random effects; here, we report unstandardized estimates, as indicated by *. Model fit: χ^2 (688) = 1035.99 p <.001; robust TLI = 0.947; robust CFI = 0.953; SRMR = 0.070; robust RMSEA [90% CI] = 0.052 [0.044, 0.059].

Supplementary References

- Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of between-person and within-person components of individual change over time: A latent curve model with structured residuals. *Journal of consulting and clinical psychology*, 82(5), 879. https://doi.org/10.1037/a0035297
- McNeish, D., & Matta, T. (2018). Differentiating between mixed-effects and latent-curve approaches to growth modeling. Behavior research methods, 50, 1398-1414. https://doi.org/10.3758/s13428-017-0976-5
- Stolz, E. (2024). FRequent health Assessment In Later life (FRAIL70+) (SUF edition). https://doi.org/10.11587/DJNOHX