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For a century, bacterial viruses called bacteriophages have been exploited as natural
antibacterial agents. However, their medicinal potential has not yet been exploited due to
readily available and effective antibiotics. After years of extensive use, both properly and
improperly, antibiotic-resistant bacteria are becoming more prominent and represent a
worldwide public health threat. Most importantly, new antibiotics are not progressing at
the same rate as the emergence of resistance. The therapeutic modality of bacterio-
phages, called phage therapy, offers a clinical option to combat bacteria associated with
diseases. Here, we discuss traditional phage therapy approaches, as well as how syn-
thetic biology has allowed for the creation of designer phages for new clinical applica-
tions. To implement these technologies, several key aspects and challenges still need to
be addressed, such as narrow spectrum, safety, and bacterial resistance. We will sum-
marize our current understanding of how phage treatment elicits mammalian host
immune responses, as well bacterial phage resistance development, and the potential
impact each will have on phage therapy effectiveness. We conclude by discussing the
need for a paradigm shift on how phage therapy strategies are developed.

Introduction
Bacterial infectious diseases are one of the biggest threats to health and food security worldwide [1–3].
Each year, an estimated 2.5 million people acquire antibiotic-resistant infections that claim at least 50
000 lives across Europe and the USA alone [3]. Most importantly, the drug pipeline to combat these
emerging threats has become scarce [3,4]. Thus, it is vital that new antibacterial agents and strategies
are developed to meet the growing demand for antibacterials [3,5].
Long before the discovery of antibiotics, bacterial viruses called bacteriophages (phages) were used

to treat and prevent infectious disease in humans and animals [6–8]. In the early years, phage therap-
ies resulted in mixed success, in large part due to a poor understanding of the viruses themselves, as
well how they infect and kill bacteria [6,7]. With the discovery of penicillin, phage therapies were
largely superseded with the dawn of the antibiotic era. Now, with the threat of MDR (multi-drug
resistant) infections, there has been a refocusing on the therapeutic use of phages to provide a new
solution to eradicate unwanted bacteria, such as those associated with infectious diseases and gastro-
intestinal microbe dysbiosis [9].
For the past three decades, a considerable amount of knowledge has been gained with regard to the

genetic, structural, functional, and ecological features of phages, for examples [10–12]. Accordingly,
the progression in the development of phage therapies has grown steadily across a wide variety of dis-
eases (Table 1). Recently, advances in genome engineering have led to the design of semisynthetic and
synthetic phages with specialized antibacterial features, drastically broadening the breadth of phage
therapies [13]. This review provides a general overview of phage therapy, both natural and synthetic-
based, and summarizes the current progress in defining the ability of phages to provoke mammalian
host immune responses and bacterial resistance. We also discuss new perspectives that should be satis-
fied for phage therapies to become more effective in treating infectious diseases.
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Modalities of phage therapy
The purpose of phage therapy is to eradicate unwanted bacteria. This can be accomplished with two differing
strategies, using either natural phages (Figure 1) or engineered (i.e. synthetic-based) phages (Figure 2). Both
technologies provide multiple modalities that together can cover a broad range of applications in the treatment
and prevention of infectious diseases (Table 1).

Natural phage therapies
It has been fairly standard practice to use viruses as antibacterial agents that fall into the order Caudovirales,
which are double-stranded DNA viruses with a tail appendage [14]. The main advantage of using tailed phages
is their ease of discovery as they are naturally found everywhere bacteria exists, including in the environment,
and even inside plants, animals, and humans [15]. Another major advantage is their inherent combined bac-
teriostatic and bacteriolytic mode of action (Figure 1). Tailed phages infect bacteria and hijack several cellular
systems to produce progeny virions before being released by rupturing the cell. This can all happen within
minutes after initial contact [11]. By differing in mode of action to static antibiotic drugs, most therapeutic
phages are not only effective against antibiotic-sensitive and antibiotic-resistant bacteria, when co-applied they
are often a synergistic therapy [16]. Further differentiating from static drugs, phages can indefinitely repeat
killing cycles while amplifying in numbers as long as susceptible bacteria are present, thus providing a density-
dependent dose at the site of infection.
Another inherent feature of phages is that each has its own specificity toward bacteria, with some infecting

only a few strains within a species, while others can infect many strains even across different related species
[17]. This relatively narrow spectrum of individual phages can be assimilated into a tool that can very precisly
remove only unwanted bacteria, in contrast with the blind action of antibiotics that kill many bacteria. The
adverse effects of broad-spectrum antimicrobials have been long-known. For instance, antibiotics most often
rapidly alter gastrointestinal microbiota composition, referred to as dysbiosis, with potential immediate effects
on health [18]. These include diarrhea and selection of MDR opportunistic pathogens that can cause acute
infections. In the long term, dysbiosis can indirectly affect health by removing mutualistic microbes that
provide beneficial physiological processes for the host and can participate in host immune homeostasis [18].
The precision of phage antibacterial activities can help maintain healthy gastrointestinal eubiosis [19,20].
Broad-spectrum antibiotics do allow for the treatment of undiagnosed causative agents with some certainty

of success [1]. Conversely, even phages with the broadest bacterial spectrums still do not come close to those of
broad-spectrum antimicrobials. However, phage narrow host ranges cannot be assumed to exist in nature [17].
For instance, nearly all therapeutic phages have been isolated and continually propagated using a single

Figure 1. The bacteriolytic lifecycle of phages.

(Left) Scanning electron microscopy of a bacterial cell (Acinetobacter baumannii, false color) being lysed by phage

(vB-GEC_Ab-M-G7) [93] infection. (Right) Phages infect bacteria by first attaching (a) to susceptible cells via specific surface

receptors before injecting (b) its viral genome into the cytoplasm. Then, the viral genome hijacks the bacterium whereupon

progeny virions are synthesized and assembled. Most phages employ a viral-encoded cell lysis system where holins perforate

and weaken the cytoplasmic membrane and endolysins degrade the cell wall peptidoglycan, which then causes the bacterium to

violently rupture. Cell lysis can occur within minutes to hours depending on each phage and metabolic status of the bacterium.
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pathogenic strain. Moreover, selection priority is largely given to those phages that rapidly kill this strain,
before screening on an empirical collection of strains in vitro to determine host ranges. Modifying isolation
procedures and growth conditions can favor the isolation of phages with much broader host ranges [17]. For
example, phage Mu is polyvalent, making it able to infect species of Escherichia, Citrobacter, Shigella,
Enterobacter, and Erwinia [17]. Moreover, over 700 strains of Staphylococcus aureus can be lysed by a single
phage [21]. Formulations of phage mixtures (cocktails) may also provide a solution to achieve mid-spectrum

Figure 2. Overview of engineered nonlytic antibacterial phage technologies.

(i) Temperate phage engineered to deliver synthetic gene network (blue) (a), undergo a latent lifecycle after infection, called

lysogeny. Here, the viral genome (red) integrates into the bacterium’s chromosome as a prophage (b) where it can express

antimicrobial proteins (AMPs) that interfere with intracellular processes and cause bacterial death (c). (ii) Phagemids can also

deliver synthetic gene network(s) (blue) on a synthetic plasmid (a) that encode for antibacterial proteins, such encoding a

RNA-guided CRISPR-associated (Cas) nucleases (b) for sequence-specific (orange) nonlytic bacterial death (c) and plasmid

removal (d). Phagemid plasmids can also encode for AMPs (e).

Table 1 Brief compilation of phage therapy experimental and clinical studies
We refer readers to each reference for phage type(s) and therapy outcome.

Disease Causative species Animal Human

Diarrhea Escherichia coli [20,52]

Shigella sonnei [94]

Endocarditis Pseudomonas aeruginosa [16]

Meningitis E. coli [95]

Osteomyelitis Staphylococcus aureus [96]

Otitis P. aeruginosa [97] [66]

Peritonitis E. coli [33,35,38,98]*

S. aureus [99]*

P. aeruginosa [100]

Respiratory infections P. aeruginosa [101,102]

E. coli [103]

Klebsiella pneumoniae [104]

Skin infections S. aureus [39]*, [53]

K. pneumoniae [105]

Venous leg ulcers P. aeruginosa, S. aureus and E. coli [65]

*Synthetic phage.
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phage therapies. Thus far, there are few guidelines for inclusion of phages in cocktails. Most often formulations
are empirical based on each phages host range in vitro. This often leads to formulations requiring a large
number of phages to provide a theoretically sufficient bacterial spectrum. However, mixing several phages may
significantly complicate GMP (good manufacturing practices) production, while also increasing development
cost and safety regulations. Moreover, the simplistic view that an ideal phage in vitro should work as well in
vivo is biased by experimental models where optimal conditions are tuned in contrast with clinical situations.
Further study is needed for cocktail formulation, from devising proper isolation procedures and growth condi-
tions for therapeutic phages to accounting for the inherent ability of phages to evolve and kill once non-
susceptible bacteria [22–24]. How this can be exploited and controlled for the design of phage cocktails is still
a pending question.

Synthetic phage therapies
Current antibiotic therapies are the result of decades of iterative implementations coupled to experimental and
clinical studies to deliver highly effective treatment dependent on antibiotic type and setting. One major break-
through was the use of synthetic approaches to expand the natural narrow spectrums of small molecule antibio-
tics, such as engineer approaches to bypass or break the permeability of Gram-negative bacteria [25]. Recent
advances in sequencing technologies and genetic engineering have allowed for the design of phages with more
predictable and domesticated therapeutic properties. For instance, recombinant phages can be created to have
hybrid tail fibers from related phages to broaden bacterial host ranges [26,27]. Moreover, added genes can
improve phage diffusion by expressing exopolysaccharide-degrading enzymes specific to target biofilm [26].
Phage capsid surfaces can be decorated with cell-penetrating peptides (a technique called phage display) to
enter mammalian cells and kill intracellularly residing bacteria [28,29].
Natural phage therapies rely on causing bacterial death through rupturing cells [30]. However, rapid

bacterial lysis might result in the release of endotoxin and inflammatory mediators into the surrounding
environment with adverse effects. In contrast, phages can be engineered to be bacteriostatic by deleting genes
responsible for lysis (e.g. endolysin) [31–33]. Some tailed phages, referred to as ‘temperate’, can undergo a
latent lifecycle after infection, called lysogeny, and deliver synthetic gene networks with desirable nonlytic
antimicrobial properties (Figure 2). Here, the viral genome either integrates into the bacterium’s chromosome
as a prophage or remains free in the cytoplasm, which is then replicated alongside the bacterium until
conditions favor reactivation to produce virions. Although temperate phages are generally avoided in natural
phage therapies, they have been used to deliver synthetic gene networks that can disrupt cell–cell communi-
cation between bacteria involved in biofilm formation [34], or to work as adjuvants to antibiotics, such as by
repressing DNA repair mechanisms [35] or overexpressing sensitizing proteins [36]. The drawback of these
approaches is that the temperate phages would be inherently nonlethal, which one can argue would unneces-
sarily complicate treatment over using bacteriolytic phages. Prophage-encoded genes also carry the risk of
providing a variety of benefits for their bacterial hosts. These beneficial genes are often contained within
‘moron’ elements and suggest that temperate phages have a symbiotic relationship with bacteria rather than
being purely parasites as virulent (lytic) phages [37].
Phages can be designed to carry plasmids of known genetic content containing a phage origin of replication

that can be packaged into replication-incompetent phage particles using a prophage helper system, which is
referred to as a phagemid. A plasmid can be designed to encode antimicrobial peptides and toxin proteins that
can be delivered by a phagemid to cause nonlytic bacterial death [38]. Instead of directly killing bacteria, phage-
mids can be used to enrich, for example with antibiotic-sensitized populations, by delivering a sequence-specific
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system [13,39,40]. CRISPR RNAs can be
programmed to target antibiotic-resistant genes on bacterial born plasmids, which when delivered by phage-
mids can reverse antibiotic resistance and eliminate the transfer of resistance between strains [39–41]. In the
case of the genomically encoded targeted sequences in a single virulent bacterial species, or even an
antibiotic-resistant gene, CRISPR phagemids can cause unrepairable chromosome damage in only targeted bac-
teria [39,42]. Most bacteria have poor non-homologous end-repair systems, so a CRISPR-induced double-
stranded break in the genome can be lethal. Although phagemid therapies may provide a marked benefit over
therapies using lytic and temperate phages, as phagemids lack replication, it will likely translate into requiring
much higher doses compared with self-amplifying natural phages [39].
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Immunological complications with phage therapy
Phage therapy encompasses several modalities, but common to all is the use of a virus that can present
immunological complications for the host. After a century of study, however, there have been no reports of
phage particles causing diseases in humans, animals, and plants, despite being ubiquitous in food, intestinal
microbiomes, and the environment [43]. This would imply that phages are safe and generally well tolerated by
mammals. Nonetheless, it still remains a major concern that phages given as therapeutics will either adversely
affect the patient or be neutralized by the host immune defenses.
Mammalian host defenses consist of innate immunity that acts as the first line of fast-acting defenses against

invaders, which remain active until the second line of long-lasting adaptive (specific) immunity develops. Of these
of two arms, adaptive immunizations toward phages have long been described [44–46]. In fact, use of the ‘filament-
ous’ phage ΦX174 has been described since the 1960s as a method to assess specific antibody responses in patients
with immunodeficiencies [47]. Low numbers of pre-existing serum antiphage antibodies toward tailed phages have
also been demonstrated [46,48,49], which is not surprising with the high frequency of natural contact that humans
have with tailed phages [43]. It has also been demonstrated that antibodies can be generated toward phages given
therapeutically to treat bacterial infection in human [49] and animal [48,50]. Antiphage antibodies have been
found to have an affinity for specific viral structural components, for instance, against the non-essential highly
immunogenic outer capsid (Hoc) protein of T4-like phages [48–50]. In contrast, several studies have shown that
other tailed phages have been unable to stimulate antibody production [20,51,52] or T-cell cytokine responses [53].
However, the level of anti-Hoc antibody responses has been found to be largely influenced by the route of phage
administration (e.g. oral versus intraparietal) and time, taking several weeks of high doses before being produced in
mice [49]. Moreover, phages with Hoc protein analogs are extremely rare in nature [48].
Antiphage antibodies, whether pre-exisiting or developed during treatment, appear not to be a limiting

factor for successful phage therapy [49]. Sulakvelidze et al. [19] also postulated that antibody responses would
not be a significant problem during the treatment of acute infection because phage activity can reduce bacterial
burden more rapidly than the host can produce specific antibodies, which take days to weeks. On the other
hand, generated antiphage antibodies could prevent the reuse of certain phages, as pre-immunization with puri-
fied Hoc protein can reduce the therapeutic efficacy of phage T4 in mice [48]. To remedy this, technologies can
be applied to limit antiphage antibody neutralization, such as covalent binding (conjugation) of non-
immunogenic polyethylene glycol molecules to phage capsid proteins [54] or entrapment of phages in lipo-
somes [55] to evade viral immune sensing.
Host innate immune response toward phages is far from being defined. Innate immune cells sense microbes

through specialized pattern recognition receptors (PRRs) on their cell surface (e.g. Toll-like receptors) [56].
Unlike their bacterial counterparts, phages are incapable of stimulating most PRRs due to their much simpler
biochemical makeup, only having proteomic structures surrounding genetic material. Nonetheless, certain
phages are rapidly cleared from the blood and liver by phagocytes [57,58] or are readily phagocytized by den-
dritic cells in vitro [59]. In humans, patients who received several weeks of phage therapy for staphylococcal
infections, including rhinitis, sinusitis, chronic bronchitis and urinary tract infections, experienced slightly
fewer circulating mature neutrophils with a corresponding increase in neutrophil precursors [60]. This suggests
that bacterial products released after phage killing are eliciting proinflammatory cytokine responses leading to
further recruitment of immature neutrophils [60]. Phage preparations have also been shown to modulate
immune cell function, such as reduce reactive oxygen species production by phagocytes [61], or promote den-
dritic cell maturation and IL-12p40 cytokine production [62]. Although, phagocyte functions appear not to be
adversely affected by phage therapy [63], the mechanisms by which immune cells sense phages remains
unknown. It cannot be ruled out that the weak immune responses elicited by phages are artifacts of the
preparative process in which bacterial debris can contaminate [64]. If and how innate and adaptive immune
systems sense and respond to phages in general or, on an individual basis, still needs thorough investigation.
Tailed phages have so far been very weak- or non-elicitors of host immune responses, which could explain

why all clinical trials have all reported tailed phages were well tolerated by patients [20,52,65,66]. Recently,
Smith et al. [47] conducted a retrospective study of the systemic administration of phage ΦX174, a known
elicitor of humoral responses, after patients had received primary, secondary, and tertiary phage immunizations.
The study found that no adverse effects were reported by most patients, with only a few reporting mild effects
such as rash, headache, and fever [47]. This suggests that phage treatments should be safe in the majority of
settings, but further study is needed to outline side effects across all clinical settings.
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Phage resistance
Phage therapies are not without the risk of bacteria acquiring resistance [67,68]. Phage resistance most com-
monly develops through the down-regulation, shielding, or modification of bacterial cell surface receptors
required for viral attachment [69,70]. To ensure survival, evolved phages tend to bind to highly conserved
surface receptors, such as those required for virulence [71–73]. Bacteria can also evolve or be acquired through
lateral transfer, a diverse array of antiviral so-called immune mechanisms. These include forms of innate
restriction–modification, toxin–antitoxin, and altruistic bacterial abortive infection defenses, as well as
CRISPR-Cas systems that serve as a form of adaptive immunity [67]. Despite our growing understanding of
phage resistance mechanisms, it is too early to accurately predict their impact on phage therapy.
Phage resistance is expected to not have sustainably negative effects as seen with antibiotic resistance. Phages

outnumber bacteria 10-fold with enormous diversity [15]. Therefore, new effective phages are principally
unlimited against most pathogenic bacteria [3,74]. In addition, phage resistance is not always detrimental to
treatment, because in many cases acquired resistance is costly for the bacterium (e.g. loss of virulence toward
their hosts, lower growth rate, decreased lifespan, or loss of the ability to attach or invade to mammalian cells)
[70,71,73,75]. In addition, acquiring phage resistance can cause bacteria to become more antibiotic-sensitive
[76,77]. However, there are examples where no observable cost to the bacterium was associated with gained
phage resistance [78]. Importantly, antiphage immunity has not been implicated in antibiotic resistance [69].
Phages can evolve or acquire counter-systems to circumvent bacterial immunity [79]. For example, some
phages have produced their own methyltransferases to defend against bacterial restriction–modification systems
[80], whereas other phages encode for anti-CRISPR-Cas systems [79,81].
Like with antibiotic therapy, bacteria ‘persisters’ within a predominately susceptible population can exhibit

‘phenotypic tolerance’ to phages without acquiring new mutations or immunity systems [68]. Although not well
understood, this very small fraction of non- or slow-growing persisters emerges stochastically in response to envir-
onmental queues or from errors in metabolism [82]. They are genetically identical with susceptible cells but
evade phage attack, which when phages are cleared from the host may revert to a growing state causing post-
treatment relapses [68,83]. Although phenotypic tolerance is non-inheritable, it may provide a time window for
otherwise susceptible bacteria to acquire genetic resistance. It is anticipated that periodic dosing and timing
control is intrinsic with the proper therapy design, which could be determined by the dynamics of persisters.

Clinical status of phage therapies
Phage therapy is currently not used medicinally in the Western world; apart from Poland and the Eastern
countries Georgia and Russia, which have continued to use phages when antibiotic therapies proved ineffective
[7,8,19]. Although treatment protocols in these countries were not developed among western standard clinical
studies, their practical use does provide some guidance for future clinical development.
Only a few human clinical trials have evaluated therapy using natural phages. Completed phase I trials on treat-

ing chronic venous leg ulcers caused by Pseudomonas aeruginosa, S. aureus, or Escherichia coli [65] and chronic
rhinosinusitis caused by S. aureus (ampliphibio.com) indicated that overall phages were well tolerated. All patients
in the latter study experienced either a reduction or complete eradication of S. aureus infection in their sinuses.
Similarly, a phase I/II trial on treating chronic otitis caused by P. aeruginosa with phages also reported no adverse
effects and that bacterial burden was significantly lower in treated patients [66]. In contrast, a recently completed
phase II trial using phages to treat acute diarrhea caused by E. coli in children found no improvement over
current standards of care by oral rehydration/zinc treatment [20]. However, E. coli numbers were found to be low
and mixed infections were found to be frequent, which raised the questions on the causative agent of diarrhea
that may explain treatment failure [20]. The first large-scale European Union-funded randomized phase I/II
single-blind trial is currently being conducted in 11 hospitals in France, Switzerland, and Belgium, using phage
therapy to treat burn wounds infected with P. aeruginosa (phagoburn.eu); results are expected mid-2017.
Compared with antibiotics, which development by the pharmaceutical industry follows a clear regulatory path,

there is currently no phage products that have satisfied the current regulatory framework [84]. This issue has
been acknowledged by the European Medicine Agency, calling for more clinical trials before initiating any adapta-
tion of the regulatory framework [85,86]. Development cost is also another topic that differentiates antibiotics to
phages. Isolation of phage is rather straightforward [87] and needs only standard microbiology technologies.
Production costs are difficult to anticipate as they are strongly linked to the regulatory path toward which phage
products will make their way to patients, and might not be as affordable as expected from laboratory settings.
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Conclusion
Phage therapy has several modalities that when combined could have a high impact on infectious disease treatment
as an alternative to antibiotics [5,88]. The overall potential has been predicated on access to POC (point-of-care)
diagnostics and operational capacity to devise phage cocktails, given that phages may only provide narrow-
spectrum therapies [88]. However, the emphasis on care is currently shifting from curative medicine to where
practices and interventions are tailored to the individual patient needs. Accordingly, POC diagnostics will likely
become readily available to allow for more precise and routine therapies with narrower spectrum, whether with
phages or drugs, that minimizes adverse health effects [89]. Then, the use of a phage cocktail, which has been
unanimously implemented as the preferred strategy for dealing with the narrow host range of phages, may
change toward a more tailored approach [90]. Indeed, some individual phages can provide mid-spectrum
coverage depending on the target pathogen (e.g. S. aureus). On the other hand, it is unclear if broad-spectrum
therapies are always necessary, as some diseases are linked to small sub-group of strains (e.g. Shigella) [8].
There is also a growing interest to manipulate the gut microbiota for preventative and therapeutic purpose for
which a specific set of phages could represent an ultimate precision solution [9].
Nevertheless, the right path to bring effective and reliable phage therapies to patients remains to be eluci-

dated. We have highlighted three main areas of improving phage selection protocols and criteria, defining
mammalian immune responses toward phages, and defining the impact of resistance, which are currently limit-
ing the development of phage therapies. Synthetic solutions, as well as POC diagnostics, will also help narrow
choices. We should substantially increase basic research and clinical trials to build on knowledge that will bring
phage therapy to patients. Conducting clinical trials, however, with the established regulatory paradigms that
are intended to evaluate static broad-spectrum drugs, will not be equipped to evaluate clinical complexity of
employing replicative phages for treating infectious disease [86,91,92]. Thus, future experimental and clinical
studies will require multi-dimensional outcome profiling to advance toward using phages for more precision
medicine tailored to the specific disease and status of the patient [86].

Summary
• Natural- and synthetic-based phage therapies can be used to prevent a wide variety of bacter-

ial diseases in humans and animals.

• Host immune response to phages and risk of bacterial resistance during treatment must be
considered but are of minimal risk to phage therapy.

• Human clinical trials are ongoing.

• Using a multi-component integrated strategy will help phage therapies to be more effective in
the future.
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