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Auxin is a major regulator of plant growth and development; its action involves transcriptional activation. The identification of
Auxin-response element (AuxRE) is one of the most important issues to understand the Auxin regulation of gene expression. Over
the past few years, a large number of motif identification tools have been developed. Despite these considerable efforts provided by
computational biologists, building reliable models to predict regulatory elements has still been a difficult challenge. In this context,
we propose in thiswork a data fusion approach for the prediction ofAuxRE.Ourmethod is based on the combined use ofDempster-
Shafer evidence theory and fuzzy theory. To evaluate our model, we have scanning the DORNRÖSCHEN promoter by our model.
All proven AuxRE present in the promoter has been detected. At the 0.9 threshold we have no false positive. The comparison of
the results of our model and some previous motifs finding tools shows that our model can predict AuxRE more successfully than
the other tools and produce less false positive.The comparison of the results before and after combination shows the importance of
Dempster-Shafer combination in the decrease of false positive and to improve the reliability of prediction. For an overall evaluation
we have chosen to present the performance of our approach in comparison with other methods. In fact, the results indicated that
the data fusion method has the highest degree of sensitivity (Sn) and Positive Predictive Value (PPV).

1. Introduction

Plants are genetically very diverse group and are playing a
vital role in nutrition and livelihood in particular for rural
and tribal masses for employment and income generation
In response to various developmental conditions and severe
environmental changes by regulating gene expression. Tran-
scription is at the core of physiological and developmental
processes that requires well-coordinated players. Auxin is a
major regulator of plant growth and development that plays
important roles during all the stages of plant life and their
action involves transcriptional activation. This phytohor-
mone controls multiple fundamental aspects of the plant de-
velopment [1] and environmental responses such as apical
dominance [2], root development [3], phototropism, and gra-
vitropism [4]. Also, Auxin is crucially involved in cell division,
cell elongation, and cell differentiation [5].The action of these
plant hormone centres on the activation of early-response
genes [6] andmicroarray studies has identified a large number

of early Auxin-response genes [7]. Many players are implicat-
ed in the transcriptional mechanism in the regulation of
Auxin target geneexpression.Auxin-response element (AuxRE)
is a key element which is necessary in this process. The first
and second reactions involve recognition of this specific ele-
ment which contains the core sequence TGTCTC [8].

The identification of AuxREs is one of themost important
issues to understand the Auxin regulation of gene expression
at the genome level. Cis-regulatory elements can be eluci-
dated by experimental technologies in vitro such as ChIP-
chip [9], ChIP-seq [10, 11], and ChIP-PET [12]. However,
using laboratory techniques is laborious and the process
requires significant time and resources [13].This is whymany
computational methods have been developed to allow fast
and efficient identification of hormone receptor regulatory
elements [14, 15]. Computational prediction of TFBS motifs
remains a central goal in bioinformatics and intensive efforts
have been dedicated to identifying putative cis-regulatory
elements.
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Several algorithms have been developed for the detection
of consensus sequences. They can be categorized into two
main strategies [16, 17]: enumeration of short words (count-
ing and comparing oligonucleotide frequencies) [18, 19] and
probabilistic methods [20, 21]. Usually, motif finding tool
identifies short DNA sequence ‘motifs’ that are statistically
overrepresented in regulatory regions (promoters) [21, 22]. A
statistically overrepresented motif signify a motif that occurs
more often than one would expect by chance [16].Many com-
putational approaches have been applied such as heuristic,
greedy [23], and stochastic algorithms, some others used, ex-
pectation maximization (EM) [24], Gibbs Sampling algo-
rithms [25], Hidden Markov model (HMM) [13], Bayesian
network [26], Genetic algorithms (GA) [25], and others [16].

A pattern can be represented as a consensus sequence or
a position weight matrix (PWM) [46]. PWMs are frequently
applied for transcription factor binding site prediction [23,
47]. It describes the probability to find the nucleotides
A,C,G,T on each position of a motif [48]. Searching pattern
for matches with a PWM is more accurate than consensus
string matching, but it also produces a large number of false
positives [49, 50].Othermethods use localized distribution as
a supplementary criterion to detect functional elements [51].
Over the past few years, a large number ofmotif identification
tools have been developed, to name a few, MAPPER [52],
AlignACE [21], MEME [53],Weeder [54],MotifSampler [55],
and GAME [56]. Because of this diversity of algorithms and
programs available, many studies present a comprehensive
review of motifs predictors that provide comparison and gui-
dance to researchers such as Stormo [48], Das and Dai [16],
and tompa et al. [57]. These studies show that despite these
considerable efforts provided by computational biologists,
building reliable models to predict regulatory elements was
always a challenge in task. Stormo and Zhao [57] suggested
that themajority of the current approaches are not accurate or
complete and it is necessary to find more accurate prediction
methods with higher specificity and sensitivity. So a new
bioinformatics framework is required. Tompa et al. [57] re-
commended the use of a few complementary tools and follow
up the top motifs by combining information from different
predictions. Hu et al. [58] discussed the limitations of motif
discovery algorithms and developed anewone, named, EMD,
which is more significant for shorter input sequences [59].

In this context, we propose in this work a data fusion ap-
proach for the prediction of Auxin-response elements. Our
method is based on the combined use of Dempster-Shafer
(DS) evidence theory and fuzzy sets. It consists of modelling
detection uncertainty and fusing the features using DS com-
bination rule.

2. Material and Methods

2.1. Training Set (DataCollection). A training set of 64 experi-
mentally verified that hormone response elements were
collected from published data (Table 1). Whole genome data-
set and upstream sequences of Arabidopsis thaliana were
downloaded from TAIR (http://arabidopsis.org/).

Position weight matrix used for comparison tools was
obtained from Ponomarenko and Ponomarenko [60]. Linear
discriminant analysis was performed using SPSS (v. 16.0, Sta-
tistical Package for the Social Sciences, Chicago, IL, USA).

Microarray data of the primary response to Auxin inAra-
bidopsiswas taken fromGenevestigator database (https://gen-
evestigator.com/gv/) [61]. Response in seedlings was selected:
1 𝜇M IAA for 1 h [62].

2.2. Implementation of the Algorithm. The main algorithm
was implemented under the R environment language. All
measurements were performed on a single CPU Intel Core
i3 computer running at 2.8 GHz, with 6 GB main memory.
The source code is available upon request.

2.3. Some Fundamentals of Dempster-Shafer 	eory. TheDe-
mpster-Shafer (DS) evidence theory is amathematical theory
originated from the earlier works of Arthur P. Dempster
in 1967 [63, 64] and extended by Glenn Shafer in 1976
[65]. DS theory can be considered as a generalization of
Bayesian probability theory which uses the notions of impre-
cise, uncertain, and incomplete information. It has been
applied in various domains such as medical diagnosis, image
processing, and expert systems [66, 67]. DS theory can be
used to combine information from different sources. DS
theory uses ‘belief ’ rather than probability. ‘Belief ’ function
is used to represent the uncertainty of the hypothesis. In DS
theory, there is a finite set of N elements called the frame of
discernment Θ = {H1,H2, . . . ,HN}. It is a set of mutually
exclusive and exhaustive propositions.

Information sources can distributemass values on subsets
of the frame of discernment. A numerical measure of uncer-
tainty, termed basic probability masses, may be assigned to
sets of hypotheses as well as individual hypotheses.

The mass functions verify the following constraints:

0 ≤ m (Ai) ≤ 1

m (0) = 0

∑
Ai∈2
𝜃

m (Ai) = 1
(1)

where Ai designates a simple hypothesis Hi or composite
hypotheses (union of simple hypotheses), Ai = 2𝜃.

If we consider two mass distributions m1 and m2 from
two different information sources, m1 and m2 can be com-
bined with Dempster’s orthogonal rule, and a new distribu-
tion𝑚 = 𝑚1 ⊕ 𝑚2 is calculated in the following manner:

m (Ai) = (1 − K)
−1 ∑

Ap∩Aq=Ai

m1 (Ap)m2 (Aq) (2)

where

K = ∑
Ap∩Aq=0

m1 (Ap)m2 (Aq) (3)

K is the conflict between the two sources.

http://arabidopsis.org/
https://genevestigator.com/gv/
https://genevestigator.com/gv/
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Table 1: Datasets.

Cis-regulatory elements abbreviations Numbers References
Auxin-response element AuxRE 16 [27–37]
ABA response element ABRE 12 [38–40]
TATA Box TATA Box 16 [41]
Ypatch Ypatch 11 [41]
drought-responsive element DRE 9 [38, 39]

Dempster-Shafer uses ‘belief ’ rather than probability.
Belief function is used to represent the uncertainty of the
hypothesis.

To evaluate the uncertainty of the hypothesis, two func-
tions can be calculated from a mass distribution: the belief
function (Bel) and the plausibility function (Pls). Belief and
plausibility functions can be considered as lower and upper
estimations of probabilities.

Bel (Ai) = ∑
Aj⊆Ai

m (Aj)

Pls (Ai) = ∑
Aj∩Ai=0

m (Aj)
(4)

Bel(A) = 0 represents lack of evidence about A.

3. Results and Discussion

3.1. Modelling Uncertainty of AuxRE Detection. The objective
of our study is detection of AuxRE. We applied a data fusion
approach which consists of a combination of predictions
coming from two techniques commonly used in pattern find-
ing: overrepresented motifs and linear discriminant analysis.
The idea is to extract, for eachmethod, some features (param-
eters) and combine these parameters using the Dempster-
Shafer (DS) rule, called orthogonal sum.We have applied our
model to the Arabidopsis thaliana genome. The Arabidopsis
genome sequence was obtained from TAIR [68].

Two hypotheses are involved: “this motif is an AuxRE”:
“this motif is not an AuxRE” (i.e., not a motif or a motif other

than AuxRE). In terms of the Dempster-Shafer evidence
theory, we are in the case where the frame of discernment
is constructed of two single hypotheses H1 and H2 and one
composite hypothesis H3= H1 U H2 (union of H1 and H2).
H3 represents in fact the ignorance.

The modelling process is proceeding with six major steps
(Figure 1):

(i) Step 1: extraction of parameters

(ii) Step 2: construction of learning graphs

(iii) Step 3: determination of confidence regions

(iv) Step 4: modelling the doubt on the hypotheses

(v) Step 5: fuzzification of the learning graphs

(vi) Step 6: data fusion methodology

3.1.1. Extraction of Parameters. From the first method (detec-
tion of overrepresented motifs), we have prepared four
parameters which are position P, significance score Sc, occur-
rence O, and density D. The position was located from the
ATG. Significance score obtained from Weeder algorithm
[54]. The occurrence represents the total number of a val-
idated motif sequence in the whole genome of Arabidopsis
thaliana. We have considered the density as the rate of a
validated AuxRE motif sequence in promoter (-1000 bp) of
response gene of Auxin. To prepare density, we have extracted
the 2-fold Auxin-response gene from the microarray data.

D =
Number of a validated motif sequence in the promoters of 2 folds Auxin resonse gene
Total number of a validated motif sequence in all the promoters of arabidosis genes (5)

We used the Z-curve parameters [69] and the GC% as poten-
tially discriminative parameters and we performed a linear
discriminant analysis. The Z-curve is a unique three-dimen-
sional curve representation of a DNA sequence. We used
three Z-curve parameters which are

x1 = (a1 + g1) − (c1 + t1)

y1 = (a1 + c1) − (g1 + t1)

z1 = (a1 + t1) − (g1 + c1)

(6)

3.1.2. Construction of Learning Graphs. In the following
sections, two methods will be presented that use the available
data on a positive and a negative training set to construct
a discriminative prediction model. A training set of 64
experimentally proven hormone response elements were
collected from published data.

Method 1: Overrepresented Motifs. First, the validated motifs
are studied in feature spaces which make the interpretation
of the link between the selected features (P, SC, O, and D)
and the type of motifs straightforward. We chose to study
separately knowledge from position P and significance score
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Figure 1: Modelling approach.

Sc and those provided by occurrence and density in order
to separate as much as possible AuxRE from other types
of cis-regulatory elements. Two learning graphs have been
created (Figures 2 and 3). Figure 2 represents the distribution
of validated motifs according to their parameters position P
and significance score Sc. We distinguish, at the bottom of
the graph, a region containing only AuxRE; the other part

of the graph corresponds to an area of uncertainty which
contains all types of motifs. This figure shows that only
AuxREs are located relatively far from the translational start
site (start codon). However, it is not a discriminative param-
eter, as many AuxREs were found in -500 bp upstream
regions. Therefore, we have decided to study two other
parameters (occurrence and density) in order to improve the
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Figure 2: Learning graph 1: distribution of different type of motifs in significance score/position feature space.

classification and try to differentiate AuxREs, especially those
found in the mixed region shown in Figure 2.

Figure 3 illustrates the classification of training cis-
elements based on two parameters: the occurrence of the
patterns in the -1000 bp upstream regions and the density.

Method 2: Linear Discriminant Analysis. For the linear dis-
criminant analysis, we have used the Z-curve parameter and
the%GC. Figure 4 shows the first two discriminant functions
which allow a good discrimination of AuXRE from other
motifs exceptYpatch.Thefirst discriminant function explains
59.6%of variability and has the highest correlation with GC%
(-0.88) and Z1 (0.85) while the second function (32% of
variability) is correlated to X1 (0.75).

3.1.3. Confidence Regions. All the previous graphs do not
allow a clear discrimination of AuxRE from other motifs.
Each graph can be subdivided in several ways into different
regions that will be enriched in one or few motifs. Here,
we have chosen to partition the graph into five confidence
regions shown in the Figures 1, 2, and 3 based on the
percentage of AuxRE that belong to this region. The graph
partition is given in Figures 1, 2, and 3 and Tables 2, 3, and 4.

3.1.4. Modelling the Doubt on the Hypotheses. In order to
make the graph partition an automatic process we attributed
a confidence level to any unknown detected motif that would
be located on the graph.

For that purpose, we define a gradual doubt through a set
of four propositions:

(i) P1(Hi,Hj): total ignorance
(ii) P2(Hi,Hj): low preference for the Hi hypothesis but

high doubt between Hi and Hj
(iii) P3(Hi,Hj): strong preference for the Hi hypothesis but

low doubt between Hi and Hj
(iv) P4(Hi): total confidence in the Hi hypothesis, no

doubt

Next, these propositions are translated in terms of masses as
detailed in Table 5.The preference level for a hypothesis from
P1 to P4 is gradually represented by amass value, respectively,
equal to 0, 0.33, 0.67, and 1 [66]. Likewise, the gradual doubt
between hypotheses is modelled by a mass value. In case of
total doubt, the mass value affected equals 0. On the other
hand, the mass value assigned to the total confidence is equal
to 1.
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Table 2: Proportion of false positive and true positive in the regions of the significance score/position feature space and associated proposi-
tions.

Region Rij %AuxRE % non AuxRE Proposition
Z1: R11 7 93 P4(H2)
Z2: R12 25 75 P2(H2)
Z3: R13 0 100 P4(H2)
Z4: R14, R24, R34 0 100 P4(H2)
Z5: R23 80 20 P3(H1)
Z6: R21, R31, R32, R33, R22 100 0 P4(H1)

Finally, a proposition is assigned to each region from the
previous analyses on percentages of AuxRE and other motifs
in each region. The link between the percentages and the
related proposition are presented in Tables 2, 3, and 4.

3.1.5. Fuzzification of the Learning Graphs. In the previous
section we used discrete representation to define regions,
which is not very objective because it can allocate confidence
significantly different, for two near motifs from either side
of boundaries. Moreover, the boundaries between regions
are not well defined, and the transition from one region
of the graph to another is not abrupt but a smooth one.
Thus, In order to have a fuzzy, gradual continuous transition,
we introduce the fuzzy logic theory. Therefore, we define

fuzzy sets for each measured feature to predict its member-
ship degrees to different possible feature families. For the
parameter significance score four sets were defined (small,
average, high, and very high). For the parameter position,
three sets were described (core, proximal, and distal). For the
parameters occurrence and density, three sets were defined
(small, average, and high) for each of them.

3.1.6. Data Fusion Methodology. The process of data fusion
consists of fusing a number of learning graphs based on the
definition of the so-called masses.

For each detectedmotifs, threemasses are calculated, cor-
responding to the three learning graphs. They are given, re-
spectively, by
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Table 3: Proportion of false positive and true positive in the regions of the occurrence/density feature space and associated propositions.

Region Dij % AuxRE % non AuxRE Proposition
Z7: D11 43 57 P1
Z8: D12 13 87 P3(H2)
Z9: D22 91 9 P3(H1)
Z10: D41 100 0 P4(H1)
Z11: D21, D31 0 100 P4(H2)
Z12: D13, D23, D32, D33, D42, D43, 0 100 P4(H2)

𝑚 (𝑂 ∈ 𝑆/𝑆𝑐&𝑃) =
𝑖=4,𝑗=3

∑
𝑖=1,𝑗=1

𝜇𝑆𝑐(𝑖) (𝑥) ∗ 𝜇𝑝(𝑗) (𝑦)

∗ 𝑚𝑅𝑖𝑗 (𝑂 ∈ 𝑆/𝑆𝑐&𝑃)

𝑚 (𝑂 ∈ 𝑆/𝑂&𝑀) =
𝑖=3,𝑗=3

∑
𝑖=1,𝑗=1

𝜇𝑂(𝑖) (𝑥) ∗ 𝜇𝑀(𝑗) (𝑦)

∗ 𝑚𝑅𝑖𝑗 (𝑂 ∈ 𝑆/𝑂&𝑀)

𝑚 (𝑂 ∈ 𝑆/𝑓1&𝑓2) =
𝑖=3,𝑗=3

∑
𝑖=1,𝑗=1

𝜇𝑓1(𝑖) (𝑥) ∗ 𝜇𝑓2(𝑗) (𝑦)

∗ 𝑚𝑅𝑖𝑗 (𝑂 ∈ 𝑆/𝑓1&𝑓2)

(7)

where S represents any subset of the hypotheses and 𝑚(𝑂 ∈
𝑆/𝑆𝑐&𝑃), 𝑚𝑅𝑖𝑗(𝑂 ∈ 𝑆/𝑂&𝑀), 𝑚𝑅𝑖𝑗(𝑂 ∈ 𝑆/𝑓1&𝑓2) designate
the mass corresponding to the region Rij of, respectively, the
significance score/position graph, occurrence/density graph,
and f1/f2 graph.

First, we have to fuse the two masses of method 1; this
masse 𝑚1(𝑂 ∈ 𝑆) is obtained by combination of the two
masses from the two feature spaces ofmethod 1 throughusing
the orthogonal sum of Dempster:

𝑚1 (𝑂 ∈ 𝑆) = 𝑚𝑅𝑖𝑗 (𝑂 ∈ 𝑆/𝑆𝑐&𝑃)

⊕ 𝑚𝑅𝑖𝑗 (𝑂 ∈ 𝑆/𝑂&𝑀)
(8)
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Table 4: Proportion of false positive and true positive in the regions of the f1/f2 feature space and associated propositions.

Region Qij %AuxRE % non AuxRE Proposition
Z11:Q11, Q21, R12 0 100 P4(H2)
Z12: Q22 70 30 P3(H1)
Z13: Q13, Q23, Q33 0 100 P4(H2)
Z14: Q31, Q32 10 90 P3(H2)
Z15: Q41, Q42, Q43 0 100 P4(H2)

Table 5: Association of propositions with mass values.

Proposition m(H1) (AuxRE) m(H2) (Pas AuxRE) m(H1 UH2) (ignorance)
P1(H1,H2) 0 0 1
P2(H1,H2) 0,33 0 0,67
P3(H1,H2) 0,67 0 0,33
P4(H1) 1 0 0
P2(H2,H1) 0 0,33 0,67
P3(H2,H1) 0 0,67 0,33
P4(H2) 0 1 0

The final mass function is then calculated by fusing the two
masses 𝑚1(𝑂 ∈ 𝑆) and 𝑚𝑅𝑖𝑗(𝑂 ∈ 𝑆/𝑓1&𝑓2); the orthogonal
sum of Dempster is

𝑚𝑓𝑢𝑠𝑖𝑜𝑛 (𝑂 ∈ 𝑆) = 𝑚1 (𝑂 ∈ 𝑆) ⊕ 𝑚𝑅𝑖𝑗 (𝑂 ∈ 𝑆/𝑓1&𝑓2) (9)

3.2. Scan of the Auxin Responsive DRN Promoter.
DORNRÖSCHEN (DRN) promoter is one of the most stud-
ied Auxin responsive promoters which have an essential
role in Auxin transport and perception in the Arabidopsis
embryogenesis [70]. Two AuxREs that are not used in train-
ing have been experimentally identified in this promoter. To
verify the reliability of the prediction, we tested ourmethod to
the DRN promoter. At a threshold of 0.9, the scanning of the
DRN promoter by the model has detected the two validated
AuxREs and at the same time we have not detected a false
positive. Among 1200 motifs, we considered the two proven
AuxREs as a true positive and the others as false positives
(Figure 5).

3.3. Comparison between Method 1, Method 2, and Fusion. In
order to study the influence of the data fusion by Dempster-
Shafer combination, we have presented in Figure 6 the ration
between true and false positive before and after combination.
Figure 6 shows that, based on method 1 and method 2 sepa-
rately, we have a large number of false positives.Their percen-
tage exceeds 90% in both cases. After combination, it appears
that the number of false positive significantly decreases to the
point of cancelled when the credibility value equals 0.9. The
reliability of detection is improved by data fusion. In parallel,
the comparing of Tree ROC curves as shown in Figure 7
confirms the higher predictive reliability of the model after
fusion compared with that based on only one method, when
we scan DRN promoter.

3.4. Scan of DRN Promoter by Other Methods. To evaluate
ourmethod, we have scanned the DRNpromoter by previous

tools: Consensus [71], MEME [20], Gibbs Sampler [25],
MDScan [72], and Weeder [54]. On the analysis platform
MELINA II [73], the result indicates that the four motifs
finding tools do not detect any AuxRE. These basic tools are
unable to detect specific hormone responsive elements, but
they detect cis-elements in general. We have also compared
our model to the PWM method. PWM detects the two
AuxREs but in return it produces a high frequency of false
positive predictions. In fact, four false positives have been de-
tected at a threshold equal to 0.9. For example, PWM detects
the motif TTGTCAAA as an AuxRE with a score equal to
0.93 because this motif sequence is similar to the AuxRE
sequence and, on the other hand, the PWM is based only
on the composition. Conversely, this motif was not detected
with our method since the prediction depends on several
parameters. Likewise, the Plant Promoter Database (PPDB)
has not detected these two validated AuxRE present in the
DRN promoter. In this database, cis-regulatory elements
are identified by the Local Distribution of Short Sequences
(LDSS) and a prediction method based on microarray data
methods (RARf-based approach)[74].

3.5. Scan of RD29B Promoter. The promoter of RD29B gene
contains noAuxRE according to the literature. Several studies
have shown the presence of other types of cis-regulatory
elements such as ABA and DRE. The scan of this promoter
by our model did not detect any false positives.

3.6. Validation of the Results. Because of the limited number
of confirmed Auxin responsive elements, there is not enough
data to divide it into training and validation sets. So, we
have performed the Gold Standard [75] test to evaluate our
model. A library of random DNA sequences (100 sequences)
was generated using Unipro UGENE software version 1.26.1.
(http://ugene.unipro.ru/) [76]. A set of 14 AuxRE was pre-
pared. In each randomly generated DNA sequence only
one AuxRE from preparing set was inserted at a random

http://ugene.unipro.ru/
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position using SeqKit toolkit [77]. A TSV file which contains
a list of the sequences of inserted AuxRE and their positions
of insertion was generated using csvtk (https://github.com/
shenwei356/csvtk).

In the next step, to further investigate the prediction
performance and to choose the optimum cutoff, we applied
our predictionmethod andwe look at the variation of Positive
Predictive Value (PPV). The results showed that we achieve
maximal PPV for a cutoff value of 0.9 (Figure 8).

For an overall evaluation we have chosen to present
the performance of our approach in comparison with other
methods. The chosen methods are the five individual TFBS
prediction tools evaluated by Jayaram et al. [78].

We do this by first summing true/false positives and
negatives, and then statistical parameters were calculated
in order to illustrate the best predictive approach. Table 6
presented the obtained results. Our method is based on the
joint using of Dempster-Shafer (DS) evidence theory and
fuzzy sets and has the high degree of sensitivity (Sn) and
Positive Predictive Value (PPV) with a value of 79 and 48.17,
respectively, compared to the best previous methods. Even
the Youden index (YI) and the Χ2 test parameters generated
higher value than the other reference tools. Moreover, Table 6
shows that our approach (Data fusion) followed by the
Clover computer program implemented by Frith et al. [42]
are the best performing transcription factor binding sites

https://github.com/shenwei356/csvtk
https://github.com/shenwei356/csvtk
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Table 6: Comparison between our method and the other published methods.

Sn Sp PPV NPV FPR FNR YI QCY Χ2 Ref
Data fusion 79 99.91 48.17 99.98 51.83 0.02 0.79 1 36490.3
Clover 69 99.92 47.9 99.97 52.08 0.03 0.69 1 31702.8 [42]
Matrix-Scan 51 99.94 46.36 99.95 53.64 0.05 0.51 1 22661.6 [43]
Patser 63.64 99.92 43.45 99.96 56.55 0.04 0.64 1 27285.9 [43]
FIMO 22 99.97 42.31 99.92 57.69 0.08 0.22 1 8911.9 [44]
PoSSuMsearch 56.41 83.84 40.74 90.71 59.26 9.29 0.4 0.74 30 [45]
Average sensitivities (Sn). Specificity (Sp). Positive Predictive Value (PPV). Negative Predictive Value (NPV). False Positive Rate (FPR). False Negative Rate
(FNR). Youden index (YI). Q coefficient of Yule (QCY) and Χ2 test value (Χ2). The best-performing tools. Data fusion and Clover are highlighted in bold.

(TFBS) prediction tools for individual sites. On the other side,
Table 6 shows that the Find Individual Motif Occurrences
(FIMO) method described by Grant et al. [44] has the worst
sensitivity (Sn=22) on all the six presented tools. Besides,
position specific scoringmatrices (PoSSuMsearch) developed
by Beckstette et al. [45] and FIMO tool have lower Positive
Predictive Value (PPV) than the other previous methods,
with a value of 40.74 and 42.31, respectively.

Our method strikes a good balance between sensitivity
and PPV.

4. Conclusion

In this study, we applied a data fusion approach for the pre-
diction of Auxin-response elements. Our method is based on
the combined use of Dempster-Shafer (DS) evidence theory
and fuzzy theory. We have tested our model to the DRN
promoter and we have compared the prediction to previous
tools. The results show that false positives are significantly
decreased.
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