organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,4-Diazoniabicyclo[2.2.2]octane terephthalate

E Yang,^a* Xu-Chun Song^a and Jian-Wei Zhu^b

^aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China Correspondence e-mail: yangeli66@yahoo.com.cn

Received 18 July 2008; accepted 6 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.126; data-to-parameter ratio = 12.6.

In the title compound, $C_6H_{14}N^{2+}\cdot C_8H_4O_4^{2-}$, the protonated 1,4-diazoniabicyclo[2.2.2]octane cations and the deprotonated terephthalate anions are alternately linked by N-H···O hydrogen bonds into chains.

Experimental

Crystal data

 $C_6H_{14}N_2^{2+} \cdot C_8H_4O_4^{2-}$ $M_r = 278.30$ Triclinic, $P\overline{1}$ a = 7.8046 (10) Åb = 9.5482 (2) Å c = 10.8075 (2) Å $\alpha = 65.900 (10)^{\circ}$ $\beta = 78.360 \ (10)^{\circ}$

 $\gamma = 66.800 \ (10)^{\circ}$ V = 672.39(2)Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K $0.23 \times 0.13 \times 0.08 \text{ mm}$

Data collection

Siemens SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.900, T_{\max} = 0.950$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture o
$wR(F^2) = 0.125$	independent and constrained
S = 1.04	refinement
2377 reflections	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
188 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
2 restraints	

7312 measured reflections

 $R_{\rm int} = 0.026$

2377 independent reflections

1779 reflections with $I > 2\sigma(I)$

of

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O2$	0.954 (15)	1.623 (15)	2.5757 (19)	176.8 (17)
$N2 - H2N \cdots O4^{i}$	0.959 (15)	1.600 (15)	2.5589 (19)	177.9 (18)

Symmetry code: (i) x - 2, y + 1, z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff et al., 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors acknowledge the financial support from the Natural Science Foundation of Fujian Province (No. 2006 F3042).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2092).

References

Bergerhoff, G., Berndt, M. & Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol. 101, 221-225.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2008). E64, o1764 [doi:10.1107/S1600536808025312]

1,4-Diazoniabicyclo[2.2.2]octane terephthalate

E. Yang, X.-C. Song and J.-W. Zhu

Comment

The asymmetric unit of the title compound, (I), consists of a protonated 1,4-diazoniabicyclo[2.2.2] octane cation, $C_6H_{14}N^{2+}$, and a deprotonated terephthalate anion, $C_8H_4O_4^{2-}$, (Figure 1). Single N—H···O hydrogen bond was formed between the protonated N end of the cation and the deprotonated carboxylate group of the anion, which generates the hydrogen bonding chains (Table 1 & Figure 2).

Experimental

A mixture of 1,4-diazoniabicyclo[2.2.2]octane (0.072 g), terephthalic acid (0.08 g) and H_2O (10 ml) was sealed in a 25 ml stainless-steel reactor with a Teflon-lined stainless steel reactor and was heated at 373 K for 3 d. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving collorless single crystals suitable for X-ray analysis.

Refinement

The H atoms bonded to C atoms were placed at calculated positions at C—H distances 0.93 and 0.97 Å for the aryl and methylene H-atoms, respectively, and $U_{iso}(H) = 1.2U_{eq}(C)$ using a riding model. The H atoms bonded to N atoms were refined freely.

Figures

Fig. 1. A view of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2. The unit-cell packing of the title compound, showing the hydrogen bonding chains (symmetry code: a = 2 + x, -1 + y, z).

1,4-Diazoniabicyclo[2.2.2]octane terephthalate

Crystal data

$C_6H_{14}N_2^{2+} \cdot C_8H_4O_4^{2-}$	Z = 2
$M_r = 278.30$	$F_{000} = 296$

Triclinic, $P\overline{1}$
Hall symbol: -P 1
<i>a</i> = 7.8046 (10) Å
<i>b</i> = 9.5482 (2) Å
c = 10.8075 (2) Å
$\alpha = 65.990 \ (10)^{\circ}$
$\beta = 78.436 \ (10)^{\circ}$
$\gamma = 66.180 \ (10)^{\circ}$
$V = 672.39 (2) \text{ Å}^3$

Data collection

Siemens SMART 1K CCD area-detector diffractometer	2377 independent reflections
Radiation source: fine-focus sealed tube	1779 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.900, \ T_{\max} = 0.950$	$k = -11 \rightarrow 11$
7312 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.125$	$w = 1/[\sigma^2(F_0^2) + (0.0633P)^2 + 0.1475P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.002$
2377 reflections	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
188 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.023 (4)

 $D_{\rm x} = 1.375 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.1-25.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) KPrism, colorless $0.23 \times 0.13 \times 0.08 \text{ mm}$

Cell parameters from 98 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.2883 (2)	0.8953 (2)	0.60534 (16)	0.0691 (5)
02	0.25555 (18)	0.84559 (17)	0.82616 (14)	0.0489 (4)
O3	1.1805 (2)	0.27977 (19)	0.89737 (15)	0.0629 (5)
O4	1.23265 (18)	0.40326 (18)	0.67751 (14)	0.0519 (4)
N1	-0.0871 (2)	1.03609 (18)	0.77218 (15)	0.0328 (4)
H1N	0.040 (2)	0.964 (2)	0.7898 (18)	0.039*
N2	-0.4239 (2)	1.21700 (18)	0.72154 (14)	0.0317 (4)
H2N	-0.553 (2)	1.285 (2)	0.7069 (18)	0.038*
C1	0.5526 (2)	0.7124 (2)	0.73811 (18)	0.0315 (4)
C2	0.6233 (2)	0.6175 (2)	0.86638 (18)	0.0345 (4)
H2A	0.5455	0.6256	0.9425	0.041*
C3	0.8080 (3)	0.5111 (2)	0.88253 (18)	0.0354 (4)
H3A	0.8524	0.4464	0.9692	0.042*
C4	0.9270 (2)	0.5006 (2)	0.77020 (17)	0.0303 (4)
C5	0.8571 (3)	0.5980 (2)	0.64181 (18)	0.0352 (4)
H5A	0.9362	0.5932	0.5657	0.042*
C6	0.6722 (3)	0.7017 (2)	0.62577 (19)	0.0376 (5)
H6A	0.6273	0.7649	0.5391	0.045*
C7	0.3509 (3)	0.8265 (2)	0.71843 (19)	0.0376 (5)
C8	1.1275 (3)	0.3846 (2)	0.78670 (19)	0.0356 (4)
C9	-0.3943 (3)	1.0480 (2)	0.7369 (2)	0.0389 (5)
H9A	-0.4315	1.0493	0.6559	0.047*
H9B	-0.4709	1.0034	0.8132	0.047*
C10	-0.1869 (3)	0.9399 (2)	0.7601 (2)	0.0407 (5)
H10A	-0.1752	0.8438	0.8422	0.049*
H10B	-0.1322	0.9032	0.6847	0.049*
C11	-0.3778 (3)	1.2165 (3)	0.84800 (19)	0.0419 (5)
H11A	-0.4643	1.1827	0.9213	0.050*
H11B	-0.3897	1.3264	0.8360	0.050*
C12	-0.1769 (3)	1.0977 (2)	0.88353 (18)	0.0377 (5)
H12A	-0.1062	1.1538	0.8965	0.045*
H12B	-0.1781	1.0064	0.9672	0.045*
C13	-0.3010 (3)	1.2820 (2)	0.60835 (19)	0.0404 (5)
H13A	-0.3256	1.3954	0.5939	0.048*
H13B	-0.3262	1.2783	0.5256	0.048*
C14	-0.0959 (3)	1.1773 (2)	0.64345 (19)	0.0411 (5)
H14A	-0.0299	1.1377	0.5711	0.049*
H14B	-0.0356	1.2435	0.6526	0.049*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0381 (9)	0.0919 (13)	0.0523 (10)	0.0164 (8)	-0.0141 (7)	-0.0364 (9)
02	0.0265 (7)	0.0596 (10)	0.0459 (8)	0.0020 (7)	0.0000 (6)	-0.0230 (7)
03	0.0341 (8)	0.0626 (10)	0.0484 (9)	0.0015 (7)	-0.0034 (7)	0.0032 (8)
04	0.0259 (7)	0.0630 (10)	0.0413 (8)	0.0009 (7)	0.0016 (6)	-0.0126 (7)
N1	0.0195 (8)	0.0335 (9)	0.0379 (9)	-0.0030(7)	-0.0017 (6)	-0.0122 (7)
N2	0.0203 (8)	0.0342 (9)	0.0353 (8)	-0.0016 (7)	-0.0034 (6)	-0.0145 (7)
C1	0.0242 (9)	0.0320 (10)	0.0394 (10)	-0.0070 (8)	-0.0002 (8)	-0.0177 (8)
C2	0.0277 (10)	0.0387 (11)	0.0348 (10)	-0.0085 (8)	0.0063 (8)	-0.0181 (8)
C3	0.0316 (10)	0.0363 (10)	0.0305 (9)	-0.0076 (8)	-0.0022 (8)	-0.0091 (8)
C4	0.0248 (9)	0.0272 (9)	0.0360 (10)	-0.0076 (8)	0.0007 (8)	-0.0116 (8)
C5	0.0270 (10)	0.0388 (11)	0.0329 (10)	-0.0059 (8)	0.0043 (8)	-0.0149 (8)
C6	0.0297 (10)	0.0403 (11)	0.0325 (10)	-0.0027 (8)	-0.0048 (8)	-0.0115 (8)
C7	0.0270 (10)	0.0403 (11)	0.0456 (11)	-0.0045 (8)	-0.0033 (9)	-0.0226 (9)
C8	0.0263 (10)	0.0344 (10)	0.0399 (11)	-0.0069 (8)	-0.0030 (8)	-0.0108 (9)
C9	0.0333 (11)	0.0375 (11)	0.0475 (11)	-0.0130 (9)	-0.0045 (9)	-0.0156 (9)
C10	0.0378 (11)	0.0316 (10)	0.0518 (12)	-0.0081 (9)	-0.0050 (9)	-0.0173 (9)
C11	0.0308 (11)	0.0532 (13)	0.0422 (11)	-0.0041 (9)	-0.0019 (8)	-0.0285 (10)
C12	0.0311 (10)	0.0438 (11)	0.0365 (10)	-0.0076 (9)	-0.0059 (8)	-0.0170 (9)
C13	0.0360 (11)	0.0348 (11)	0.0397 (10)	-0.0087 (9)	-0.0027 (8)	-0.0068 (9)
C14	0.0303 (10)	0.0420 (11)	0.0414 (11)	-0.0105 (9)	0.0028 (8)	-0.0104 (9)

Geometric parameters (Å, °)

O1—C7	1.221 (2)	C4—C8	1.503 (2)
O2—C7	1.288 (2)	C5—C6	1.378 (3)
O3—C8	1.222 (2)	С5—Н5А	0.9300
O4—C8	1.287 (2)	С6—Н6А	0.9300
N1-C10	1.478 (2)	C9—C10	1.533 (3)
N1-C12	1.480 (2)	С9—Н9А	0.9700
N1-C14	1.482 (2)	С9—Н9В	0.9700
N1—H1N	0.954 (15)	C10—H10A	0.9700
N2—C9	1.477 (2)	C10—H10B	0.9700
N2—C11	1.479 (2)	C11—C12	1.531 (3)
N2—C13	1.481 (2)	C11—H11A	0.9700
N2—H2N	0.959 (15)	C11—H11B	0.9700
C1—C6	1.388 (2)	C12—H12A	0.9700
C1—C2	1.388 (3)	C12—H12B	0.9700
C1—C7	1.507 (2)	C13—C14	1.532 (3)
C2—C3	1.383 (3)	C13—H13A	0.9700
C2—H2A	0.9300	C13—H13B	0.9700
C3—C4	1.385 (2)	C14—H14A	0.9700
С3—НЗА	0.9300	C14—H14B	0.9700
C4—C5	1.390 (2)		
C10—N1—C12	109.46 (14)	N2—C9—C10	109.63 (14)

C10—N1—C14	109.60 (14)	N2—C9—H9A	109.7
C12—N1—C14	109.29 (14)	С10—С9—Н9А	109.7
C10—N1—H1N	106.8 (11)	N2—C9—H9B	109.7
C12—N1—H1N	111.5 (11)	С10—С9—Н9В	109.7
C14—N1—H1N	110.1 (11)	Н9А—С9—Н9В	108.2
C9—N2—C11	109.82 (14)	N1-C10-C9	109.09 (14)
C9—N2—C13	109.48 (14)	N1-C10-H10A	109.9
C11—N2—C13	109.17 (15)	C9—C10—H10A	109.9
C9—N2—H2N	109.9 (11)	N1-C10-H10B	109.9
C11—N2—H2N	106.9 (11)	C9—C10—H10B	109.9
C13—N2—H2N	111.5 (11)	H10A—C10—H10B	108.3
C6—C1—C2	118.69 (16)	N2-C11-C12	109.40 (14)
C6—C1—C7	119.60 (16)	N2—C11—H11A	109.8
C2—C1—C7	121.71 (16)	C12-C11-H11A	109.8
C3—C2—C1	120.90 (16)	N2-C11-H11B	109.8
C3—C2—H2A	119.6	C12—C11—H11B	109.8
C1—C2—H2A	119.6	H11A—C11—H11B	108.2
C2—C3—C4	120.26 (17)	N1-C12-C11	109.31 (14)
С2—С3—НЗА	119.9	N1—C12—H12A	109.8
С4—С3—НЗА	119.9	C11—C12—H12A	109.8
C3—C4—C5	118.80 (16)	N1—C12—H12B	109.8
C3—C4—C8	120.66 (16)	C11—C12—H12B	109.8
C5—C4—C8	120.54 (16)	H12A—C12—H12B	108.3
C6—C5—C4	120.92 (16)	N2-C13-C14	108.99 (15)
С6—С5—Н5А	119.5	N2—C13—H13A	109.9
С4—С5—Н5А	119.5	C14—C13—H13A	109.9
C5—C6—C1	120.40 (17)	N2—C13—H13B	109.9
С5—С6—Н6А	119.8	C14—C13—H13B	109.9
С1—С6—Н6А	119.8	H13A—C13—H13B	108.3
O1—C7—O2	124.21 (17)	N1—C14—C13	109.66 (14)
O1—C7—C1	120.01 (17)	N1—C14—H14A	109.7
O2—C7—C1	115.77 (16)	C13—C14—H14A	109.7
O3—C8—O4	124.30 (17)	N1—C14—H14B	109.7
O3—C8—C4	120.41 (17)	C13—C14—H14B	109.7
O4—C8—C4	115.28 (16)	H14A—C14—H14B	108.2

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
N1—H1N····O2	0.954 (15)	1.623 (15)	2.5757 (19)	176.8 (17)
N2—H2N····O4 ⁱ	0.959 (15)	1.600 (15)	2.5589 (19)	177.9 (18)
Symmetry codes: (i) $x-2$, $y+1$, z .				

Fig. 2