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Gastric cancer is the third most common cause of cancer-related death in the world.

Human epidermal growth factor receptor 2 (HER2) positive is an important subtype of

gastric cancer, which can provide significant diagnostic information for gastric cancer

pathologists. However, pathologists usually use a semi-quantitative assessment method

to assign HER2 scores for gastric cancer by repeatedly comparing hematoxylin and

eosin (H&E) whole slide images (WSIs) with their HER2 immunohistochemical WSIs

one by one under the microscope. It is a repetitive, tedious, and highly subjective

process. Additionally, WSIs have billions of pixels in an image, which poses computational

challenges to Computer-Aided Diagnosis (CAD) systems. This study proposed a deep

learning algorithm for HER2 quantification evaluation of gastric cancer. Different from

other studies that use convolutional neural networks for extracting feature maps or

pre-processing on WSIs, we proposed a novel automatic HER2 scoring framework

in this study. In order to accelerate the computational process, we proposed to use

the re-parameterization scheme to separate the training model from the deployment

model, which significantly speedup the inference process. To the best of our knowledge,

this is the first study to provide a deep learning quantification algorithm for HER2

scoring of gastric cancer to assist the pathologist’s diagnosis. Experiment results have

demonstrated the effectiveness of our proposed method with an accuracy of 0.94 for

the HER2 scoring prediction.

Keywords: CNN, deep learning, gastric cancer, HER2 score prediction, re-parameterization

1. INTRODUCTION

China is a high incidence area of gastric cancer, accounting for 46% of new gastric cancer cases in
the world (Alatab et al., 2020). Human epidermal growth factor receptor 2 (HER2) positive gastric
cancer is an important subtype of gastric cancer, and immunotherapy targeting HER2 significantly
improves the prognosis of patients with advanced gastric cancer, which has become the first-line
standard of care for advanced gastric cancer (Qiu, 2016). The Trastuzumab for Gastric Cancer
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(ToGA) study clarified that proper detection and evaluation of
HER2 protein expression and gene amplification status of gastric
cancer are of great significance for the clinical diagnosis and
treatment of gastric cancer (Bang et al., 2010). However, the
HER2 positive rate of gastric cancer in China is only 12–13%
(Qiu, 2016).

Current evaluation of HER2 protein expression on HER2
immunohistochemically (IHC) stained sections is mainly
performed manually, and the IHC method are still the preferred
method for HER2 in gastric cancer (Li et al., 2016). As Table 1
shows, pathologists usually use a semi-quantitative assessment
method to assign HER2 scores for gastric cancer by repeatedly
comparing hematoxylin and eosin (H&E) whole slide images
(WSIs) with their HER2 IHC WSIs one by one under the
microscope, and continuously switching the microscopic field
of view magnification to find suspicious cancerous areas, which
are classified as 0, 1+, 2+, and 3+ according to the percentage
of tumor cell membrane staining and staining intensity score.
IHC3+ cases are directly determined as HER2 positive. IHC1+
and IHC0 cases are directly determined as HER2 negative.
IHC2+ cases are “equivocal” cases, needing further evaluation by
fluorescence in situ hybridization (FISH) to finalize HER2 status.
If there is amplification, they are classified as HER2 positive,
otherwise, the results are negative. In clinical practice, there
are differences in the positive rate between different hospitals.
Furthermore, the inefficient diagnosis can be due to the error
prone and subjectivity of visual judgment. In China, many
laboratories in primary care hospitals are not equipped for
HER2 testing, which results in some HER2 positive patients not
receiving timely and effective targeted therapy.

With the gradual maturation of deep learning, Artificial
Intelligence (AI) has been used in various fields such as
agriculture, military, and transportation. Combining deep
learning with clinical work has also become a research hotspot
in recent years. In addition, intelligent diagnosis based on image
data and treatment prognosis has been successfully applied
in computed tomography (CT), magnetic resonance imaging
(MRI), and X-ray imaging. In recent years, as image acquisition
has been significantly improved, AI-assisted diagnosis of

TABLE 1 | Immunohistochemistry scoring guidelines for interpretation of Human

epidermal growth factor receptor 2 (HER2) protein expression in

gastroesophageal junction adenocarcinoma.

Resection specimen staining

pattern

Score Classification

No reactivity or membranous

reactivity in <10% of cells

0 Negative

Faint/barely perceptible

membranous reactivity in >10%

of tumor cells

1+ Negative

Weak/moderate complete or

basolateral membranous

reactivity in >10% of tumor cells

2+ Equivocal

Moderate/strong complete or

basolateral membranous

reactivity in >10% of tumor cells

3+ Positive

pathological images has also gradually become a research hotspot.
The notable results include the identification of tumor regions
such as skin (Andre et al., 2019), gastrointestinal (Song et al.,
2020), and lung (Coudray et al., 2018), especially breast cancer
pathological images have been extensively studied (Zhou et al.,
2020). Compared to breast pathological images, there are few
studies related to gastric cancer (Ai et al., 2021), especially
the HER2 score evaluation of gastric cancer on IHC images.
Additionally, WSIs have billions of pixels in an image, which
poses computational challenges on Computer-Aided Diagnosis
(CAD) systems. The previously proposed deep learning network
framework requires a large number of computational resources
as the neural network deepens, resulting in a major expenditure
of time in processing images, which is not practicable for
hospital diagnosis.

In this study, we proposed a novel automatic HER2 scoring
framework, which can quantify HER2 assessment metrics and
predict HER2 scores to assist physicians in clinical diagnosis.
Our proposed method consists of two parts, the Tile-level
classification network (TLCN) and the WSI-level HER2 score
prediction network (WHSPN). Overall, our proposed framework
can rate HER2 scores quantitatively, and serve as a reference
for clinical diagnosis to reduce subjective differences in semi-
quantitative ratings by pathologists.

In summary, the contributions of this study are 3-fold
as follows:

1) We proposed a novel HER2 automatic scoring framework in
gastric tumors that enables HER2 classification on patches,
followed by the predictions of HER2 scores on WSIs.

2) To avoid segmentation and manual intervention, an
automatic classification algorithm is proposed, which largely
reduces the complexity of the analysis. Our framework
introduces re-parameterization, which separates the training
model from the deployment model. In addition, our proposed
model can reduce computational costs while achieving
similar performance and better meeting the hospital’s
equipment requirements.

3) Our approach only uses the HER2 stained slides to achieve
quantification of HER2 score, reducing subjective variation in
semi-quantitative interpretation by pathologists and achieving
an accuracy of 94% onWSIs.

The remainder of this article is structured as follows. Section 2
briefly summarizes the study related to gastric histopathology
image analysis, HER2 interpretation, and re-parameterization.
Section 3 describes the methods. Experimental results and
Discussions are presented in Sections 4 and 5.

2. RELATED WORKS

2.1. Gastric Histopathology Image Analysis
Gastric cancer is a common and fatal disease. Due to the scarcity
of pathologists, CAD systems have been gradually introduced
to assist pathologists in interpretation, and GHIA has become
a hot research topic in recent years. Korkmaz and Binol (2018)
used traditional machine learning methods such as ANN, RF,
LBP, and HOG to detect early gastric cancer. Liu et al. (2018b)
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proposed an SVM classifier instead of a nonlinear classifier for
the classification of gastric slices, and the method achieved 95%
classification accuracy. Garcia et al. (2017) designed a nine-layer
DCNN to automatically detect lymphocytes on gastric cancer
IHC images. Nan et al. (2017) proposed a reiterative learning
framework for partial labeled gastric tumor segmentation. Li
et al. (2018) designed two modules, a shallow multiscale and
a deep network, for better feature extraction, and evaluated
the classification of this network based on IHC images of the
public BOT gastric section dataset, which could achieve 97.93%
classification accuracy. Liu et al. (2018a) constructed a 50-
layer residual network to automatically detect tumor regions in
IHC sections of gastric cancer. Wang et al. (2019) designed a
recalibrated multi-instance deep learning method to solve the
gastric cancer WSI classification puzzle. Sun et al. (2019) used
deformable convolution andmulti-scale embedding networks for
accurate gastric cancer segmentation. Zhu et al. (2020) combined
channel attention modules with spatial attention modules to
construct a weakly-supervised balanced attention network for
gastric pathology image localization and classification. Kosaraju
et al. (2020) simultaneously extracted target regions at both high
magnification and low magnification levels for accuracy analysis
and validated its feasibility on well-differentiated, moderately-
differentiated, and poorly-differentiated gastric adenocarcinoma
tissues. Iizuka et al. (2020) used Inception-V3 as the basic
network framework to classify WSI into adenocarcinoma,
adenoma, and non-neoplastic. Sun et al. (2020) proposed a
method for segmentation of gastric tumor regions based on a
hierarchical conditional random field.

2.2. HER2 Pathology Images
Due to the prognostic importance of HER2 scoring, the
highly subjective nature of the pathologists’ diagnosis and
the limitations of fatigue, CAD systems have been gradually
introduced for HER2 interpretation. In breast cancer, the primary
method for quantitative and semi-quantitative assessing HER2
IHC stained response consists of feature extraction followed
by traditional machine learning (Ellis et al., 2005; Masmoudi
et al., 2009). Brügmann et al. (2012) developed software to assess
the IHC stained response of HER2 based on cell membrane
connectivity 2012. Although commercial algorithms have been
allowed to aid HER2 interpretation, commercial software is
not only expensive but also requires manual intervention.
The automated HER2 scoring contest (Contest, 2016) held
in Nottingham in 2016 demonstrated that automated IHC
scoring algorithms can provide quantitative HER2 assessment
of morphological features and the automated methods can beat
the pathologists on their data set. With the development of deep
learning, the feasibility of HER2 interpretation has also been
greatly improved. Vandenberghe et al. (2017) have validated the
feasibility of deep learning in assisting HER2 interpretation with
83% agreement. However, this method relies on the accurate
annotation of various types of cells. Singh and Mukundan (2018)
verified the feasibility by learning texture features and intensity
features of the input images with different saturation levels
and using three architectures for them. Saha and Chakraborty
(2018) proposed a deep learning network containing trapezoidal

long short-term memory named HER2Net to implement HER2
scoring. Both of these works only realized HER2 classification on
patches, lacking the predictions of HER2 scores on whole slides.
Khameneh et al. (2019) achieved cell membrane segmentation
by fine-tuning U-Net for HER2 status assessment. However,
its complex cell membrane labeling is a huge challenge for
pathologists. Qaiser and Rajpoot (2019) proposed a new IHC
scoring attention model to focus on regions of interest in WSIs
through deep reinforcement learning. Cordeiro et al. (2018)
studied the implementation of HER2 interpretation using color
features, and they used a traditional machine learning approach
for feature extraction and classification. However, the method
leads to a major expenditure of time on feature extraction.
Zhang et al. (2020) proposed a HER2 scoring system that can be
integrated into an augmented reality microscope. Their system
can provide results to the pathologists while reading the slide.
However, manual annotation of nuclei and membranes in these
methods is challenging work. Compared to breast cancer, HER2
scoring in gastric cancer is mainly in FISH images (Zakrzewski
et al., 2019; Schmell et al., 2020). Zakrzewski et al. (2019)
developed a detection network called RetinaNet to detect HER2
amplification status based on FISH images. Schmell et al. (2020)
added a VGG-like Nucleus Classifier network (Zakrzewski et al.,
2019) to achieve FISH-based HER2 oncogene amplification
testing. However, the cost of FISH testing is high, and only
2+ cases in the hospital require further evaluation by FISH.
Sharma et al. (2017) explored a deep learning approach on H&E
stained histopathology, but did not achieve HER2 scoring and
can only achieve superficial cancer classification (cancer and
normal) with an accuracy of 0.6990. The staining pattern of the
HER2 IHC section in gastric cancer was not as clear as that in
breast cancer. Therefore, the study of digital pathological sections
of gastric cancer is still limited to superficial segmentation and
classification (cancer and normal), and HER2 interpretation has
not been studied in depth to assist clinical treatment. Although
some progress has been made in the use of CAD systems to assist
HER2 interpretation of breast cancer, segmentation and manual
intervention are required. These methods not only rely on large-
scale manual annotation, but also need a lot of computing
resources for their complex analysis methods.

2.3. Re-parameterization
To accelerate CNNs for efficient inference, many methods have
been proposed. For instance, Hinton et al. (2015) proposed a
knowledge distillation method, which learns useful information
from the knowledge learned by a large model to train a
small model and performs model compression with similar
performance. Although knowledge distillation can effectively
improve the inference speed of the model, the training process is
complicated. A teacher network and a student network need to be
trained, and the degree of teacher network training will directly
affect the student network. In deep learning, it is customary
to use the training network as the deployment network like
knowledge distillation, and re-parameterization is to convert
the training network with a large number of parameters into
a deployment network with a small number of parameters
through parameter fusion, and the deployment network can
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FIGURE 1 | The Whole Framework of Quantification Algorithm for HER2 scoring of gastric cancer.

greatly reduce parameters compared with the training network,
but the accuracy is almost not degraded. Unlike knowledge
distillation, re-parameterization only requires training a network
and then converting it to the corresponding deployment network,
which will greatly reduce the training complexity. In recent
years, reparameterization has been applied in object detection,
image segmentation, and image classification (Ding et al., 2019,
2021a,b). Zhang et al. (2021) designed a very efficient super-
resolution network using re-parameterization. As far as we are
concerned, the re-parameterization module has not been applied
to the medical field.

3. THE PROPOSED METHOD

In this study, we proposed a novel automatic HER2 scoring
framework, which can quantify HER2 assessment metrics and
predict HER2 scores to provide pathologists with clinical
assistance. This framework consists of two parts, the first part
is the TLCN, which is able to obtain the categories of each
patch image, where the re-parameterization is introduced to
accelerate the computational process of intelligent interpretation.
The second part is the WHSPN, which builds a vector based
on the categories obtained from the TLCN and develops the
HER2 scoring rules to predict the HER2 score in WSI-level
autonomously. The whole framework of the quantification
algorithm for HER2 scoring of gastric cancer is shown in
Figure 1.

As shown in Figure 1, first, a slide is cropped into a patch-
level images collection by a sliding window, and then this image
collection is fed into the TLCN to predict the category of each
patch image. Meanwhile, the percentage distribution of 0, 1+,
2+, and 3+ categories in the large WSI tumor region is counted,
and these four category percentages are used to construct a
one-dimensional vector. Finally, the one-dimensional vector is

put into the WHSPN to obtain the final HER interpretation of
the WSI.

3.1. Tile-Level Classification Network
The purpose of this step is to make the network learn the
characteristics of relevant image patches. In this step, the
extracted image patches with a size of 256 * 256 pixels are inputs.
The outputs include six (0, 1+, 2+, 3+, normal, and noise) classes
and a concatenated vector of the probability of 0, 1 +, 2 +, 3+
patches in tumor cells patches. The label of each patch used in
the TLCNmodel was selected out of WSIs with six (0, 1+, 2+, 3+,
normal, and noise) classes by the pathologist.

Whole slide images have billions of pixels in an image, which
poses computational challenges to CAD systems. Processing a
WSI usually takes a significant amount of time with today’s
CAD systems, which is not applicable to hospital diagnosis. In
order to reduce the processing time of WSIs, we first designed a
chain-structured convolutional neural network to accelerate the
computational speed of the network. Second, in order to improve
the learning ability of the network, we introduced the idea of
re-parameterization and proposed an enhanced convolutional
module (ECM) by invoking RepVGG. In the network training
phase, a multi-branch network structure is utilized to improve
the expressiveness of the network. Finally, we introduced two
channel attention mechanisms (CAM), GCT and SE, which
enable the network to generate different degrees of relationships
for different channels and obtain channel features with higher
relevance to further improve the learning ability of themodel.We
named the proposed networks RepVGG-GCT and RepVGG-SE,
respectively, according to the difference in attention mechanism.
Figure 2 shows the training model, the re-parameterization
process, and the deployment model.

As shown in Figure 2A, in the training phase, we replace
each convolution with an enhanced convolution in order
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FIGURE 2 | The whole framework of re-parameterization. (A) Is a training network composed of enhanced revolution modules (ECM). (B) Is the re-parameterization

process 1×1 convolution and skip connections are converted to 3×3 convolutions, and then the three convolutions are combined into one convolution through

element-wise adding operations. (C) Is the deployment network composed of basic modules.

to compensate for the disadvantages of the chain structure.
Enhanced convolution can effectively extract the feature
information of different branches and then fuse the feature
information of different branches to obtain the final feature
information. A channel attention mechanism module is added
to the output of each enhanced convolution with the purpose of
making the network go automatically acquire channel features
with higher relevance, thus improving the accuracy of the model.
Although the multi-branch structure can obtain richer feature
maps and improve the learning ability and expressiveness of
the model, these structures tend to cause higher memory access
costs and, thus, reduce the model running speed. To solve this
problem, the multi-branch structure is merged and reduced
to a common convolution using re-parameterization in the
deployment phase, as shown in Figures 2B,C. In Figure 2C,
the multi-branch structure is all reduced to a basic module
(BM), using the idea of re-parameterization which preserves
the accuracy of the multi-branch structure and exploits the
computational speed of the chain structure, so that the proposed
network can operate efficiently. The enhanced convolution,

re-parameterization, and channel attention mechanisms are
described in detail next.
1) Enhanced Convolution Module (ECM): Although the simple
model structure can operate efficiently, the model is not
expressive enough. To compensate for this, we carefully designed
an enhanced convolution embedding into our network structure.
In order to eliminate the influence of size on the recognition
results, multiple different filter sizes are used at one time to
capture multiple concepts with different ranges, so that the
network can choose the required features by itself.

We first chose a 3×3 convolution to ensure the most basic
performance. Second, in order to learn features with multiple
receptive fields, we added a 1×1 convolution branch to increase
the expressiveness of the model. Normal convolution can be
denoted as:

F = K ∗ X + Bs, (1)

where X, F, K, and Bs are the input feature maps, output feature
maps, and the weights and biases of normal convolution.
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Based on the success of ResNet (He et al., 2016), residual
connectivity can effectively mitigate gradient disappearance,
increase feature reuse, and improve the expressiveness of the
model. Therefore, we also incorporated residual connectivity in
our network. Note, that each convolution layer is followed by a
BN layer. The BN can be expressed as:

Bn(X) = (X − µ)
γ

σ
+ β , (2)

Where X, Bn(X) and {µ, σ , γ , β} as the input feature maps,
output feature maps and accumulated mean, standard deviation,
learned scaling factor, bias of the BN layer.
2) Re-parameterization: Since the targeted optimization of
3×3 convolutions in mainstream computing platforms, such
as NVIDIA’s GPU and Intel’s CPU. In the model inference
stage, all the networks are converted to 3×3 convolutions
using a fusion strategy, which facilitates the deployment and
acceleration of implementing the model. A re-parameterization
operation is accomplished for the ECM. The first step performs
the convolutional layer and the BN fusion. This operation is
performed in the infer phase of many deep learning frameworks.
The convolution layer and the BN fusion formula is as follows:

Bn(F) = (K ∗ X + Bs − µ)
γ

σ
+ β

= X ∗ K
γ

σ
+ (

(Bs − µ)γ

σ
+ β)

(3)

At this point, we can convert the convolution layer and BN into

a vector with bias. Denote by { K
′

, B
′

s } as the { weight, bias } of
convolution after fusion.

K
′

= K
γ

σ
, (4)

B
′

s =
(Bs − µ)γ

σ
+ β , (5)

Therefore, it can be derived to verify that,

Bn(F) = K
′

∗ X + B
′

s, (6)

Because the whole ECM contains 1×1 convolution and identity,
we convert the two branches to 3×3 convolutions. For the 1×1
convolution branch, the whole conversion process is to replace
the 1×1 convolution kernel with the 3×3 convolution kernel by
moving the value in the 1×1 convolution kernel to the central
point of the 3×3 convolution kernel. For the identity branch,
the branch does not change the value of the input feature maps.
Therefore, we can set up a 3×3 convolution kernel with the
central point of 1 value and the other points with 0 value.
When the 1×1 convolution and identity are converted to 3×3
convolutions, the final three branches are all 3×3 convolutions.

Finally, the weights and biases of all branches are combined
to obtain a fused 3×3 convolution layer through element-
wise adding operations. Since the three branches are 3×3

convolutions, the fusion of convolution kernels can be achieved
by element-wise adding. In the inference stage, a single normal
convolution can be used to obtain the output features.
3) Gated Channel Transformation (GCT): To ensure the size
and quality of the model, we chose the lightweight channel
attention mechanism called GCT (Yang et al., 2020) as our
attention mechanism, and the overall structure of GCT is shown
in Figure 3. The module is divided into three parts. First, the
global information of the input feature map is calculated using
the l2 parametrization, and trainable parameters α are introduced
to control the weights of each channel. During the training
process, the model can automatically learn the weights of each
channel. Second, the channel normalization process is performed
using the l2 parametrization, which is beneficial for the training
convergence. Finally, β and γ are introduced to establish the
competition or cooperation between channels. When the feature
weight β of a channel is activated positively, GCT will promote
the features of this channel to “competition” with the features of
other channels. When a channel’s feature weight β is negatively
activated, GCT promotes “cooperation” between the channel’s
features and other channels’ features. When the channel features
are in a “competition” relationship, the distinction between
channels is large, which will motivate the model to pay more
attention to the channel that it is interested in, thus improving
the performance of the model.
4) SE block: The SE block is shown in Figure 4. In order to use
the global spatial features of each channel as the representation
of that channel, the global pooling is first used to generate the
statistics of each channel, followed by the use of convolution
and activation layers to extract the global spatial features of
the channel. Finally, the Sigmoid activation function is used
to map the global features of the channel to the range of 0–
1 to obtain the final global spatial features. SE block improves
the representation capability of the network by modeling the
dependencies of each channel and adjusting features channel by
channel so that the network can learn to selectively strengthen
the features containing useful information and suppress useless
features through global information.

3.2. WSI-Level HER2 Score Prediction
Network
The purpose of this step is to predict HER2 scores in a WSI
based on the TLCN stage. The input of the WHSPN model
is a concatenated vector of the TLCN’s output, which includes
the predicted probabilities of image patches in a WSI. The
output of the WHSPN model is the HER2 score of a WSI.
Four classes including 0, 1+, 2+, 3+ were diagnosed for each
WSI by pathologists, and the labels used in the WHSPN model
are the whole slide HER2 scores that were derived from the
clinical information.

Tile-level classification network can effectively predict the
image category of each patch, and then count the percentage
distribution of 0, 1+, 2+, and 3+ in the WSI tumor region, which
has a certain influence on the final WSI prediction. To explore
this effect, two models, Support Vector Machines (SVM) and
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FIGURE 3 | The overall structure of Gated Channel Transformation (GCT).

FIGURE 4 | The overall structure of SE.

Multilayer Perceptron (MLP), were used to explore the effect of
category occupancy on the final results of WSI.
1) Support Vector Machines (SVM): Considering the small
sample size of our training data, it is not effective to train using
a large model. Due to the optimization algorithm problem of
SVM, its training complexity will be highly prominent on a large
dataset, while for a small dataset its model is more powerful and
effective. Therefore, we used the SVM as the first scheme. The
“kernel,” “gamma,” and “C” are important parameters that affect
the performance of the model. The kernel function is chosen
to be useful for the nonlinear hyperplane “poly.” High gamma
values will try to exactly match each training dataset, which may
lead to generalization errors and cause overfitting problems. Due
to our small sample size, gamma = 10 was chosen. The penalty
parameter C for the error term was defined as 2, which also
controls the smoothing of the decision boundary and the correct
balance between the classification training points.
2) Multilayer Perceptron (MLP): Since the data output from
TLCN is linear indistinguishable data, we need to develop
HER2 scoring criteria. The traditional way of defining the
scoring criteria directly sets thresholds, which leads to subjective
errors. MLP is a generalization of the perceptron to overcome

the weakness that the perceptron cannot recognize linear
indistinguishable data. Our second scheme is designed with four
fully connected layers. Each layer is followed by ReLU to make it
converge better.

4. EXPERIMENTS

4.1. Datasets
Our proposed method was evaluated on the HER2 image
dataset of Fujian Cancer Hospital. The dataset involves WSIs,
including H&E and HER2 stained slides. The examples of H&E
and HER2 stained slides are shown in Figure 5. H&E and
HER2 stained slides are used in routine diagnostic practice for
gastric cancer. The pathologist first uses H&E stained images to
identify the tumor area and then determines the HER2 scores
by HER2 stained slides. Our method uses only HER2 stained
slides without H&E stained slides to obtain HER2 scores. A
total of 183 HER2 stained WSIs from Fujian Cancer Hospital
were collected, of which 75 WSIs for WHSPN training, 8
WSIs for WHSPN validation, and the remaining 100 WSIs for
WHSPN testing. Ground truth (GT) is the clinical diagnosis
of HER2 interpretation based on WSIs from the pathologists
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FIGURE 5 | Example of corresponding sections in (A) Human epidermal growth factor receptor 2 (HER2) and (B) hematoxylin and eosin (H&E) stains.

TABLE 2 | Demographics of the dataset used for Tile-level classification network

(TLCN).

TLCN Data Set Number of Patches(256*256pixel)

HER2 Score (Ground Truth) Train Val Test

0 5,446 673 615

1+ 4,216 520 470

2+ 3,902 482 437

3+ 3,880 479 326

Total 17,444 2,154 1,848

of Fujian Cancer Hospital. We randomly extracted 20 WSIs
from the training dataset of WHSPN as the TLCN dataset
and sliced these 20 WSIs into 256*256 pixels patches. In this
way, we collected 17,444 patches of 0, 1+, 2+, and 3+ for
training. The GT of each patch used in the TLCN model
was labeled by pathologists according to its staining pattern
and degree. For example, if the patch was sampled from the
1+ region, the “1+” label was given. Similarly, if the patch
was sampled from the 3+ region, it will be given the label
“3+.” Note that a patch’s label is not necessarily equivalent
to a WSI’s label, because a WSI may contain patches with
different labels at the same time. All patches extracted from
the 20 WSIs were mixed together and the patches were divided
into a training dataset, validation dataset, and test dataset
in the ratio of 8:1:1. Table 2 shows the data distribution
of TLCN. Table 3 shows the data distribution of WHSPN.
These HER2 stained slides were obtained by UNIC PRECICE
600 scanning instrument at 40× optical magnification (0.12
µm/pixel). HER2 scoring criteria were based on Li et al. (2016),
and the tumor tissues of selected cases were IHC stained for
HER2 protein expression status assessment. Table 1 shows the
assessment criteria.

Our experiments include two parts of data. The first
part is the training and validation data of TLCN. Figure 6A

TABLE 3 | Demographics of the dataset used for WSI-level HER2 score

prediction network (WHSPN).

WHSPN Data Set Number of WSIs

HER2 Score(Ground Truth) Train Val Test

0 22 2 25

1+ 17 2 25

2+ 21 2 28

3+ 15 2 22

Total 75 8 100

shows samples of the TLCN dataset, which is composed of
256*256 pixels patches cropped from WSI. The second part
is the training and validation data of WHSPN. Figure 6B

shows samples of the WHSPN dataset, which is consisted
of WSIs with billions of pixels. Table 2 shows the data
distribution of TLCN. Table 3 shows the data distribution
of WHSPN.

4.2. Implementation Details
All models in this experiment were trained on an Ubuntu
system with Nvidia RTX 2080TI GPUs. The experiments were
performed with SGD as the optimizer, CrossEntropyLoss as the
loss, initial learning rate set to 0.1, weight decay set to 0.001, and
batch size set to 256. Two hundred epochs were performed for
all experiments.

4.3. Evaluation Metrics
Although Accuracy is the most common and basic evaluation
metric, its reference value is not high in the case of data
imbalance. Therefore, in addition to the most commonly used
accuracy, we also describe the performance of classifiers by
precision, recall, specificity, and F1-score. Evaluation metrics are
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FIGURE 6 | Examples of data of Tile-level classification network (TLCN) and WSI-level HER2 score prediction network (WHSPN). (A) Samples of the TLCN dataset,

which is composed of 256*256 pixels patches cropped from Whole slide images (WSIs). (B) Samples of the WHSPN dataset, which is consisted of WSI with billions of

pixels.

calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (7)

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

specificity =
TN

FP + TN
, (10)

F1− score =
2

1
Precision +

1
Recall

, (11)

where TP, FP, TN, and FN denote true positive, false positive, true
negative, and false negative.

4.4. TLCN Results
First, we compared our methods with many state-of-the-art
(SOTA) methods. Table 4 shows the experimental comparison
results of TLCN, in terms of experimental evaluation metrics
and model parameters. We used Monte-Carlo Cross-Validation
experiments to get more convincing results than a single
validation. Each time, the data set is randomly divided into
training and validation sets. In this way, multiple models training
were carried out. Finally, the average performance value with a
standard deviation of these results was used as the final results
of this model. Obviously, the two proposed networks, RepVGG-
GCT and RepVGG-SE, have more accurate performance in
HER2 patch-level classification and can achieve higher accuracy
with fewer parameters. The two networks we proposed are
improved on VGGNet (Simonyan and Zisserman, 2014). The
Params has dropped from 138.358M to about 7M, and the Flops

has dropped from the original more than 20 G to 1.78 G. In
addition, the Accuracy, Precision, Recall, Specificity, F1 − score,
and speed has been improved with fewer parameters. Note that
the time in the table means the time required for the network to
infer a patch.

Comparing our two networks with some more advanced
lightweight networks such as Mobilenent (Howard et al.,
2019) and ShuffleNet (Ma et al., 2018), the model parameters
of our proposed networks are only a little larger than
these two networks, but the accuracy has been effectively
improved. Furthermore, the speed is faster than these two
lightweight networks. In MobileNetV3, the author continues
to use the depthwise separable convolution. In theory, the
depthwise separable convolution requires less computation.
However, because the operation intensity of depthwise separable
convolution (the ratio of Flops to memory access) is too low,
it is difficult to make effective use of hardware. As a result,
MobileNetV3 has a smaller number of parameters but is slower
compared to our models. Additionally, in the layer structure
of depthwise separable convolution, each depthconv has no
cross-channel information, and even if it is compensated by
pointconv afterward, pointconv again lacks spatial association
information, which results in a more accurate TLCN model than
MobileNetV3.

We further analyzed the performance of our methods in each
category separately. From Table 5, we can find that the Precision,
Recall, Specificity, and F1 − scores of 2+ and 3+ have achieved
good results, and the categories of 0 and 1+ are easy to be
confused. However, in the daily diagnosis of doctors, 0 and 1+
are determined to be negative. Therefore, we combined 0 and
1+ into one category, which is negative. It is determined that 2+
is equivocal and 3+ is positive. According to the experimental
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TABLE 4 | Classification performance of our RepVGG-SE model and RepVGG-GCT model and several recently published classification approaches on the TLCN

datasets.

Methods Accuracy Precision Recall Specificity F1 Params/M Flops/G Time/ms

VGGNet (Simonyan and

Zisserman, 2014)

92.89 ± 0.35 90.44 ± 0.48 90.26 ± 0.51 98.25 ± 0.09 90.35 ± 0.48 138.358 20.21 7.853

Inception-v3 (Szegedy

et al., 2016)

92.33 ± 0.54 89.95 ± 0.63 89.50 ± 0.87 98.09 ± 0.16 89.73 ± 0.71 23.835 3.86 13.64

ResNet-50 (He et al., 2016) 92.59 ± 0.28 90.66 ± 0.25 89.37 ± 0.61 98.08 ± 0.07 90.01 ± 0.39 25.557 5.38 7.432

DenseNet-169 (Huang

et al., 2017)

92.88 ± 0.16 90.58 ± 0.34 89.96 ± 0.34 98.25 ± 0.05 90.27 ± 0.18 14.149 4.46 22.63

ShufleNet-v2 (Ma et al.,

2018)

92.39 ± 0.14 90.17 ± 0.19 89.33 ± 0.41 98.07 ± 0.07 89.75 ± 0.22 3.504 0.396 6.653

MobileNetV3 (Howard

et al., 2019)

92.10 ± 0.32 89.79 ± 0.58 89.11 ± 1.02 98.05 ± 0.16 89.44 ± 0.49 5.483 0.296 6.557

EfficientNet-B3 (Tan and

Le, 2019)

92.87 ± 0.28 90.77 ± 0.22 89.86 ± 0.53 98.20 ± 0.10 90.31 ± 0.37 12.233 1.29 13.87

RepVGG-SE(ours) 93.03 ± 0.35 90.91 ± 0.58 90.30 ± 0.51 98.26 ± 0.10 90.60 ± 0.47 7.316 1.78 5.283

RepVGG-GCT(ours) 93.16 ± 0.10 90.92 ± 0.19 90.48 ± 0.34 98.31 ± 0.07 90.70 ± 0.19 7.049 1.78 5.185

The bold values mean the Best results.

TABLE 5 | Classification performance of our RepVGG-GCT model and RepVGG-SE model in four classes and three classes.

FOUR CLASSES THREE CLASSES

Methods 0 1+ 2+ 3+ 0/1+ (Negative) 2+ (Equivocal) 3+ (Positive)

RepVGG-GCT

Precision 85.2 82 90.2 99.5 93.1 90.3 99.6

Recall 84.6 71.9 90.8 99.5 91.5 94.4 99.2

Specificity 98 98.4 99.1 1 98.1 99 1

F1 84.9 76.6 90.5 99.5 92.3 92.3 99.4

RepVGG-SE

Precision 83.7 82.6 90.4 98.9 92.7 92.1 99.2

Recall 88.8 77.7 90.4 99.5 90.3 92.5 99.4

Specificity 97.7 98.4 99.1 99.9 98.1 99.3 99.9

F1 86.2 80.1 90.4 99.2 91.5 92.3 99.3

results, all indicators have been significantly improved compared
with the previous studies.

4.5. WHSPN Results
We combined the two methods proposed on TLCN with the
two methods proposed on WHSPN. WHSPN creates a vector
according to the proportion of 0, 1+, 2+, 3+ categories output by
TLCN, so as to get the final HER2 score of WSI. Since the HER2
score only evaluates the tumor cells, noise and normal are not
input to the second network. Similar to the TLCN experiment,
the experiments were performed by splitting and combining 0
and 1+, respectively, and the experimental accuracy is shown in
Table 6.

When comparing the developed methods, the method of
RepVGG-GCT+MLP was found to obtain the best accuracy.
Since the patches of the final test WSIs do not appear in the
training set, its significantly high accuracy indicates that the
modified model has a good learning ability for HER2 scores. In
addition, we hope to use the existing data as much as possible
to train a network with better generalization performance with
a small amount of data, because of the scarcity of gastric cancer

TABLE 6 | Final HER2 evaluation results for the combination of TLCN and

WHSPN.

Accuracy on WSI-level of WHSPN-HER2 scoring (in %)

Classification FOUR CLASSES THREE CLASSES

Methods MLP SVM MLP SVM

RepVGG-GCT 86 84 94 92

RepVGG-SE 83 83 90 91

The bold values mean the Best results.

HER2 data. We only used 83WSIs in total to train the TLCN and
WHSPN networks, and finally verified the feasibility of 100WSIs.
Figure 7 shows the final validation results. It shows a confusion
matrix of four classes and three classes using the RepVGG-
GCT+MLPmethod. Through the confusionmatrix, it can be seen
that the categories of 0 and 1+ are more likely to be confused,
but this does not affect the doctor’s daily diagnosis since both of
them are negative. Figure 7D lists the number of image patches of
100 WSIs used for verification in this experiment, which reflects
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FIGURE 7 | WHSPN dataset validation results. (A) Ground-Truth. (B) Confusion matrix diagram of four classes. (C) Confusion matrix diagram of three classes. (D)

Distribution of the number of tiles per case. (E) Ages distribution of the cases used in this experiment.

the variety in WSI sizes. Figure 7E shows the age distribution of
these 100 patients. The results demonstrate the feasibility of our
proposed network in the prediction of HER2 scores.

4.6. Ablation Study
To verify the effectiveness of the proposed module and
the feasibility of model re-parameterization, we performed
ablation experiments. Table 7 shows the effect of ECM,
GCT, and re-parameterization. Similarly, we used Monte-Carlo
Cross-Validation in our ablation experiments to evaluate the
performance of each module.

4.6.1. Effect of the Enhanced Convolution Module

When ECM is not added, we can see that the speed of the model
is very fast and the amount of parameters is small. However, it
hardly has the ability to learn with simple structure. After adding
ECM, the Accuracy of the model is improved from 56.11% to
92.61% by 36.5%. Precision is improved from 9.35% to 90.38%%
by 81.03%. The recall is improved from 16.67% to 89.67% by 73%.
Specificity is improved from 83.33% to 98.16% by 14.83%, and the
F1− score is improved from 11.98% to 90.02% by 78.04%.

4.6.2. Effect of the Channel Attention Module

After adding GCT, the Accuracy of the model is improved from
92.61% to 93.16% by 0.55%. Precision is improved from 90.38%
to 90.92% by 0.54%. The recall is improved from 89.67% to
90.48% by 0.81%. Specificity is improved from 98.16% to 98.31%
by 0.15%, and F1 − score is improved from 90.02% to 90.70% by
0.68%.

4.6.3. Effect of the Re-parameterization

Since the basic module cannot be re-parameterized, the ablation
experiment of re-parameterized was just performed using ECM.
In order to verify the effectiveness of the deployed networks
after re-parameterization, we compared the network with and
without re-parameterization. It can be seen that the parameters
of the re-parameterized model decreased, and the speed is
improved without any loss of precision. Compared with the
“baseline+ECM" without re-parameterization, the model after
re-parameterization has no loss in Accuracy, Precision, Recall,
Specificity, and F1− score. At the same time, Params has dropped
from 7.836 to 7.036M. Flops has dropped from 1.99 to 1.78 G, and
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TABLE 7 | Results of selecting block.

Block ECM GCT Re-parameterization Accuracy Precision Recall Specificity F1 Params/M Flops/G Time

Baseline 56.11 ± 0 9.35 ± 0 16.67 ± 0 83.33 ± 0 11.98 ± 0 7.031 1.78 1.479

X 56.11 ± 0 9.35 ± 0 16.67 ± 0 83.33 ± 0 11.98 ± 0 7.045 1.78 5.232

X 92.61 ± 0.17 90.38 ± 0.50 89.67 ± 0.25 98.16 ± 0.06 90.02 ± 0.24 7.836 1.99 6.449

X X 92.61 ± 0.17 90.38 ± 0.50 89.67 ± 0.25 98.16 ± 0.06 90.02 ± 0.24 7.036 1.78 1.691

X X 93.16 ± 0.10 90.92 ± 0.19 90.48 ± 0.34 98.31 ± 0.07 90.70 ± 0.19 7.849 1.99 10.243

X X X 93.16 ± 0.10 90.92 ± 0.19 90.48 ± 0.34 98.31 ± 0.07 90.70 ± 0.19 7.049 1.78 5.185

The bold values mean the Best results.

Time has dropped from 6.449 to 1.691 ms. Compared with the
“baseline+ECM+GCT" without re-parameterization, the model
after re-parameterization has no loss in Accuracy, Precision,
Recall, Specificity, and F1 − score. At the same time, Params has
dropped from 7.849 to 7.049 M. Flops has dropped from 1.99 to
1.78 G, and Time has dropped from 10.243 to 5.185 ms.

5. DISCUSSION

The current interpretation of HER2 is only semi-quantitative by
pathologists and requires artificial intelligence for quantitative
HER2 analysis in particular. We proposed a novel automatic
HER2 scoring framework in this study. It can not only give the
prediction results of HER2 score at theWSIs level but also obtain
specific quantitative results to assist doctors in interpretation.
Avoiding the tedious process of comparing H&E stained slides
and HER2 stained slides and the subjective difference of semi-
quantitative scores, an automatic method is of far-reaching
significance in assisting the interpretation of HER2 in gastric
cancer. The proposed method can achieve high accuracy by
using a network with fewer parameters, and it can diagnose
in real time. Comparing the previously advanced networks
on the same dataset, our proposed network has better HER2
classification results. In addition, the advantages of our model
in parameters and inference time show its superiority in HER2
interpretation. For instance, pruning and quantization can also
allow reducing memory footprint or increasing speed. Pruning
reduces the number of parameters by removing redundant,
unimportant connections that are not sensitive to performance.
The disadvantage is that pruning is slightly effective compared
to directly modifying the model structure. Quantification can
significantly narrow the size of a deep neural network by reducing
the number of bits used. The disadvantage is that quantized
weights make it harder for the neural network to converge, which
may result in a loss of accuracy. The idea of re-parameterization
can be understood as re-modifying the structure of the model
to reduce the size of the whole model, thus saving computation
time. Additionally, this change does not bring any decrease
in accuracy.

Another strength of our strategy is that in order to
avoid segmentation and manual intervention, only automatic
classification algorithms are used, reducing the complexity
of the analysis. The current mainstream approach for HER2
interpretation is to perform feature extraction, cell membrane,
and nucleus segmentation or detection, followed by classification.
Due to its complex process, it usually relies on extensive and

accurate annotations (Vandenberghe et al., 2017; Khameneh
et al., 2019) or manual intervention (Masmoudi et al., 2009;
Brügmann et al., 2012). However, manually labeling of cell
membrane and nucleus is time-consuming and challenging work.
For example, a WSI usually has thousands of nuclei and cell
membranes. In addition, in some studies, HER2 interpretation
was simply implemented on the region-of-interest (ROI) or
patch and did not realize the HER2 interpretation on a WSI
(Saha and Chakraborty, 2018; Singh and Mukundan, 2018). We
try to optimize this workflow using the proposed classification
method to reduce the annotation difficulty for pathologists,
which also largely reduces the complexity of the analysis. The
results demonstrated that our strategy can work well on this task.
Table 8 summarizes the comparison of other state-of-the-art
methods with ours. Our annotation is relatively simple and finally
achieved HER2 interpretation onWSIs. Note that the accuracy of
the Remarks part inTable 8 corresponds to its final interpretation
result. For example, if the HER2 score calculation on WSIs is
not implemented, the result represents the classification accuracy
of patches.

Our study also has some limitations. The purpose of this
study is to obtain HER2 intelligent quantitative score only by
using HER2 stained slides without H&E stained slides. However,
HER2 stained slides are expensive and the production process is
complex. Future study will continue to explore whether HER2
score can be interpreted from H&E stained slides only, without
HER2 stained slides. Another limitation is that the images we
used were all from the same scanner and do not provide good
evidence of the generalizability of our models. Although there
are differences in the results of stained slides from one lab to
another, these differences are slowly diminishing due to enhanced
technology. We hope that the proposed method can be evaluated
using images from different hospitals in the future. However, due
to the paucity of images, we have not yet done the validation.
In addition, we analyzed our results and found that our method
interprets higher on slices with better imaging than slices with
poor imaging (e.g., folding, squeezing).

Due to the particularity of the medical field, the success of the
artificial intelligence model largely depends on the trust of the
pathologist in the results of AI. However, if pathologists rely too
heavily on software, it may change their initial diagnostic intent.
Sometimes pathologists will trust their own interpretations more
than the data derived from the AI. In addition to improving
the accuracy of the models, visualization (e.g., Quantitative
indicators are given by outputting a matrix of the proportion of
each category in tumor cells) should be added to increase the trust
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TABLE 8 | Summary of HER2 scoring methods.

Cancer type Comparison Methodology

used

Nuclei/

membrane

Annotation

Classfication

Annotation

HER2 score

calculation

on WSIs

Image type Dataset Patch size Remarks

Breast cancer

(Masmoudi et al., 2009) Conventinal

techniques

Yes Yes No

IHC

77 WSIs ROI 81%-83%

agreement

(Brügmann et al., 2012) Yes Yes No 253 WSIs ROI 92.3%

agreement

(Cordeiro et al., 2018) No Yes Yes 86 WSIs 250x250 90% accuracy

(Vandenberghe et al.,

2017)

Deep learining Yes Yes Yes 74 WSIs 44x44 83%

concordance

(Singh and Mukundan,

2018)

Yes Yes No 52 WSIs 512x512 91.1%

accuracy

(Saha and

Chakraborty, 2018)

Yes Yes No 79 WSIs 251x251 98.33%

accuracy

(Qaiser and Rajpoot,

2019)

Yes Yes Yes 86 WSIs 2048x2048 79.4%

accuracy

(Khameneh et al.,

2019)

Yes Yes Yes 127 WSIs 512x512 87% accuracy

(Zhang et al., 2020) Yes Yes Yes 285 WSIs 2048x2048 95% accuracy

Gastric cancer
(Sharma et al., 2017) No Yes No H&E 11 WSIs 512x512 69.90

accuracy

ours No Yes Yes IHC 183 WSIs 256x256 94% accuracy

of pathologists in AI. Despite these limitations, this study appears
to the potential of deep learning in HER2 interpretation as an
automated screening tool to provide a clinical aid to physicians.
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