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Dual-specificity tyrosine phosphory-
lation-regulated kinases (DYRKs) 

constitute an evolutionarily conserved 
family of protein kinases with key roles 
in the control of cell proliferation and 
differentiation. Members of the DYRK 
family phosphorylate many substrates, 
including critical regulators of the cell 
cycle. A recent report revealed that 
human DYRK2 acts as a negative regu-
lator of G

1
/S transition by phosphorylat-

ing c-Jun and c-Myc, thereby inducing 
ubiquitination-mediated degradation. 
Other DYRKs also function as cell cycle 
regulators by modulating the turnover 
of their target proteins. DYRK1B can 
induce reversible cell arrest in a quies-
cent G

0
 state by targeting cyclin D1 for 

proteasomal degradation and stabilizing 
p27Kip1. The DYRK2 ortholog of C. ele-
gans, MBK-2, triggers the proteasomal 
destruction of oocyte proteins after 
meiosis to allow the mitotic divisions 
in embryo development. This review 
summarizes the accumulating results 
that provide evidence for a general role 
of DYRKs in the regulation of protein 
stability.

DYRK Family Protein Kinases

Kinases of the DYRK family were discov-
ered as key regulators of cell growth and 
differentiation in genetically tractable 
organisms such as budding yeast (Yak1), 
fission yeast (Pom1), Dictyostelium (YakA) 
and Drosophila (MNB).1,2 Human 
DYRK1A was discovered as the prod-
uct of a gene localized in the Down syn-
drome critical region on chromosome 21.3 
DYRK1A has been most extensively 
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studied among the mammalian DYRKs, 
because its overexpression in trisomy 21 
is believed to contribute to the neuro-
pathological traits of Down syndrome.4,5 
DYRK1A and the closely related DYRK1B 
(also known as MIRK) have also been 
characterized as negative regulators of the 
cell cycle that mediate cell survival and 
promote the switch to a quiescent state 
or differentiation.6-9 DYRK2 can induce 
apoptosis upon genotoxic stress by phos-
phorylating p53.10 Although members of 
the DYRK family are engaged in multiple 
and diverse regulatory processes in dif-
ferent experimental systems, a recurrent 
theme of their functions in mammalian 
cells as well as in yeasts, C. elegans and 
Dictyostelium is their role as key regula-
tors of different checkpoints in the cell 
cycle.

Target Proteins of DYRKs

An increasing number of substrates and 
functions in signal transduction pathways 
is being reported for DYRKs from differ-
ent organisms. Downstream effects medi-
ated by target proteins of DYRKs include 
the increased activity of transcription fac-
tors, the modulation of subcellular protein 
distribution and the regulation of enzyme 
activity. Recent reviews provide an excel-
lent overview of the biochemical proper-
ties and the currently known substrates of 
DYRK1A as well as the other kinases of 
the DYRK family.2,11 One characteristic 
feature of several DYRK kinases is their 
function as priming kinases, meaning that 
the phosphorylation of a given residue by 
a DYRK is prerequisite for the subsequent 
phosphorylation of a different residue by 
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Another target of DYRK2 is the 
transcription factor GLI2, a primary 
downstream effector of the hedgehog 
pathway with a proliferative effect in many 
tumors.16 Phosphorylation by DYRK2 
induces the degradation of GLI2 by the 
UPS.17 A previous study had identified 
a phosphodegron for recognition by the 
SCFβ-TrCP2 E3 ligase and proposed GSK3 
as the relevant kinase.18 However, there 
is no evidence for a priming function of 
DYRK2, and it is also not known whether 
the DYRK2 phosphorylation sites directly 
control binding of an E3 ligase. Further 
research is required to reveal the indi-
vidual or synergistic roles of DYRK2 and 
GSK3 in the regulation of GLI2 turnover.

It is remarkable that the ortholog of 
DYRK2 in C. elegans, MBK-2, has also a 
critical function in the control of protein 
degradation. Due to the availability of 
both genetic and cell biological methods, 
the role of MBK-2 in C. elegans embryo-
genesis has been characterized in great 
molecular and functional detail. MBK-2 is 
activated in zygotes at meiosis II and phos-
phorylates three proteins, MEI-1, OMA-1 
and OMA-2, promoting their timely deg-
radation to allow oocyte-to-embryo tran-
sition.19-21 MBK-2 acts as priming kinase 
initiating phosphorylation of OMA-1 by 
GSK3 and subsequent recognition by a 
CUL2-based E3 ligase.19,20 MEI-1 is the 
ortholog of mammalian katanin and is 
required in meiotic spindle organization 
but must be inactivated prior to mitosis. 
Phosphorylation by MBK-2 initiates the 
degradation of MEI-1 via APC-dependent 
ubiquitination.22

Roles of DYRK1A and  
DYRK1B in the Regulation  

of Protein Stability

The first results pointing to a role of 
DYRKs in cell cycle control via regulation 
of protein stability have been obtained 
in pioneering studies of DYRK1B.23,24 
DYRK1B destabilizes cyclin D1 by phos-
phorylating a threonine residue close to 
the C terminus.23,25 A recent report sug-
gests that DYRK1A can also catalyze 
this phosphorylation, leading to nuclear 
export and proteasomal degradation of 
cyclin D1.26 The exact site of phosphoryla-
tion (Thr286 or Thr288) is controversial, 

The recent study of Taira et al.12 
reveals interesting details about the 
molecular mechanism by which DYRK2 
regulates the turnover of c-Myc and 
c-Jun. Many tumor cells depend on 
high levels of c-Jun and c-Myc to enter 
S phase. Cellular levels of these onco-
genic transcription factors are controlled 
by proteasomal degradation, which is ini-
tiated upon phosphorylation by GSK3β. 
DYRK2 has now been identified as the 
priming kinase for the phosphorylation 
of c-Jun and c-Myc by GSK3β, meaning 
that phosphorylation of the substrate at 
the P+4 position by DYRK2 is required 
for substrate recognition by GSK3β.12 
The subsequent phosphorylation of the 
P0 residue by GSK3β creates a phospho-
degron required for the binding of an 
SCF E3 ligase complex containing the 
F-box protein Fbw7, eventually resulting 
in the polyubiquitination and ensuing 
proteasomal degradation of c-Jun/c-Myc 
(Fig. 1). DYRK2 was shown to play a 
key role in this chain of events, since the 
knockdown of DYRK2 in human cancer 
cells shortened the G

1
 phase and acceler-

ated cell proliferation due to the escape 
of c-Jun and c-Myc from ubiquitination-
mediated degradation.

DYRK2 has been reported to func-
tion as a scaffold for the assembly of an E3 
ligase complex with a protein composition 
similar to cullin4A-RING E3 ubiquitin 
ligase (CRL4) but lacking the cullin pro-
tein.14 This complex was shown to catalyze 
the phosphorylation and subsequent ubiq-
uitination of katanin p60, a microtubule-
severing enzyme with an important role 
in the mitotic reorganization of spindle 
microtubules. The authors have proposed 
that the catalytic domain of DYRK2 har-
bors a KELCH motif, which is a feature of 
several proteins acting as E3 ligase adap-
tors for specific substrates. Functional 
KELCH motifs allow for many substitu-
tions and cannot unambiguously be iden-
tified by the sequence alone. However, the 
organization as a twisted β-sheet motif 
arranged in a propeller-like structure is 
invariable.15 The existence of a functional 
KELCH repeat at the position suggested 
(amino acid residues 390–433) must be 
excluded, because this region of DYRK2, 
as in all protein kinases, is made up by α 
helices (PDB accession 3KVW).

another protein kinase (GSK3 or PLK).2 
Here we want to call attention to another 
effect common to several members of the 
DYRK family, namely the control of pro-
tein stability. This function of DYRKs 
has been brought into the limelight by a 
new report from Taira et al.,12 who iden-
tified DYRK2 as the kinase controlling 
c-Jun and c-Myc degradation at the G

1
/S 

boundary. This finding adds to accu-
mulating evidence that members of the 
DYRK family from diverse organisms 
modulate the turnover of target proteins 
either by inducing degradation by the 
ubiquitin-proteasome system (UPS), or by 
stabilizing short-lived proteins.

This review summarizes the current 
knowledge that DYRKs function in the 
regulation of protein stability. Emphasis 
is placed on proteins involved in cell 
cycle control, and the scope is limited to 
the members of the DYRK subfamily. 
It should be noticed, however, that the 
closely related homeodomain-interact-
ing protein kinase 2 (HIPK2) has also 
been reported to regulate the turnover of 
some target proteins. Exemplary data for 
HIPK2 are included in Table 1, which 
lists the published evidence for the regu-
lation of protein turnover by the DYRK 
family.

DYRK2 Initiates Protein  
Degradation via the UPS

Two major types of E3 ubiquitin ligase 
complexes catalyze the phase-specific 
ubiquitination of proteins in the cell cycle, 
the anaphase-promoting complex (APC) 
multisubunit E3 ligase and the SCF form 
of E3 ligases. SCF E3 ligases belong to the 
major group of cullin-based E3 ligases, 
which consist of four kinds of protein sub-
units: an adaptor protein (Skp1 in SCF), 
a scaffold protein termed a cullin (CUL1 
in SCF), an E2-recruiting subunit (Roc1/
Rbx1/Hrt1) and a substrate receptor (one 
of about 70 F-box proteins in SCF).13 
Phosphorylation-dependent protein deg-
radation is a common mechanism for 
regulating protein stability in a cell cycle-
dependent or stimulus-dependent man-
ner. Kinases create phosphodegron motifs 
in the substrate proteins, which are then 
recognized by F-box proteins and ubiqui-
tinated by E3 ligase complexes.
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Table 1. evidence for a role of DYrKs as regulators of protein stability

Kinase
Protein  

(phosphorylation sites)
GSK3 

priming
Function Comments Ref.

Protein degradation

DYrK2 c-Jun (S239) yes regulation of S-phase entry
DYrK2 /GSK3 initiate ubiquitination via Fbw7 e3 

ligase
12

DYrK2 c-Myc (S62) yes regulation of S-phase entry
DYrK2 /GSK3 initiate ubiquitination via Fbw7 e3 

ligase
12

DYrK2 GLi2 (S385, S1011) effector of hedgehog pathway DYrK2 reduces GLi2 levels, MG132 inhibitable 17

DYrK2
katanin p60

(S42, S109, t133)
control of mitotic transition DYrK2 serves as a scaffold for eDvP e3 ligase 14

MBK-2 Mei-1 (katanin) oocyte-to-embryo transition MBK-2 initiates APC dependent degradation 21,22

MBK-2 OMA-1 (t239), OMA-2 yes oocyte-to-embryo transition
MBK-2/GSK3 initiate ubiquitination by CUL2-based 

e3 ligase
19,20

DYrK1B

DYrK1A

cyclin D1

(t286 or t288)
no regulation of S-phase entry

phosphorylation initiates SCFFbx4/αB-crystallin-mediated 
degradation

23,
26

DYrK1A reSt neuronal differentiation
no direct evidence for phospho-degron; degraded 

via SCFβ-trCP 35

DYrK1A CrY2 (S557) yes component of circadian clock SCFFbxl3-independent, MG132 sensitive 54

HiPK2 CtBP (S422)
transcriptional

co-repressor
HiPK2 is required for the Uv-induced decrease in 

CtBP
55

HiPK2
ZBtB4

(t783, t795, t797)
regulator of p21 expression

HiPK2 is required for the Uv-induced decrease in 
ZBtB4

56

HiPK2 ΔNp63 (t397) prosurvival factor
HiPK2 is required for DNA damage-induced degra-

dation of ΔNp63
57

HiPK2 β catenin (S33,S37) no effector of Wnt pathway
phosphorylation initiates SCFβ-trCP-mediated degra-

dation
58

HiPK2
Siah2

(S26,S28,S36)
no

e3 ligase involved in hypoxic 
regulation

phosphorylation reduces the half-life of Siah2 59

Yak1 cyclin B2 regulatory subunit of CDK
genetic evidence for enhanced APC-dependent 

degradation of cyclin B2
50

Protein stabilization

DYrK1B

HiPK2

p27Kip1

(S10)
CDK inhibitor

phosphorylation enhances stability of p27 (by pre-
venting nuclear export)

24,47

DYrK1A
HPv16e7

(thr5, thr7)
viral oncoprotein phosphorylation enhances stability 48

DYrK1A
Presenilin 1

(t354)
component of gamma secretase 

complex
phosphorylation enhances stability 60

DYrK1A rCAN1 (t192)
inhibition of NFAt activation by 

calcineurin
phosphorylation enhances stability 61

Protein interaction

DYrK1A/B

HiPK2
DCAF7( = WDr68)

putative substrate receptor of 
CUL4-type e3 ligases

scaffold of HiPK2 complexes; DYrK1A recruits DCAF7 
to the nucleus

40,41

DYrK1A CUL9 ( = PArC) atypical e3 ligase identified in interaction screen 43

DYrK1A rNF216 e3 ligase identified in interaction screen 43

DYrK2 DCAF1 ( = vprBP)
substrate receptor of CUL4-type 

e3 ligases
identified by tandem affinity purification 14

Yak1 Hrt1 ( = rOC1) e2 recruiting subunit of SCF identified in interaction screen 41

the table lists the DYrK substrates that are either destabilized or stabilized by phosphorylation and DYrK interacting proteins related to ubiquitin e3 
ligases. the table includes proteins that are not related to cell cycle control as well as target proteins of HiPK2 that are not further discussed in the text
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an E3 ligase. Another protein interacting 
with DYRK1A is cullin 9,43 which seems 
to be part of an atypical cullin-based 
E3 ligase complex and regulates p53.44

Stabilization of Target Proteins  
by DYRK1A and DYRK1B

In addition to targeting specific proteins 
for proteasomal degradation, DYRK1A 
or DYRK1B can stabilize other proteins 
by phosphorylation. The most pertinent 
example in this context is the phosphory-
lation by DYRK1B of p27Kip1 on Ser10 
during the G

0
 phase of the cell cycle.24 

p27 is a CDK inhibitor that controls the 
transition from the G

1
 into the S phase of 

the cell cycle. Phosphorylation on Ser10 
stabilizes p27 in quiescent cells by main-
taining the protein within the nucleus, 
where it inhibits CDK2.45 The physi-
ological importance of Ser10 phosphory-
lation was shown in lymphocytes from 
p27S10A/ S10A-knock-in mice, where protein 
turnover of p27 in G

0
 phase, but not in S 

phase, was markedly enhanced compared 
with wild-type cells. Phosphorylation 
of Ser10 in G

1
 phase or upon mitogenic 

stimulation is catalyzed by other kinases 
and has different functional consequences 
as compared with G

0
.46 Recently, HIPK2 

has also been shown to phosphorylate 
Ser10 and stabilize p27 in asynchronously 
growing cell lines.47 Further work will 
be necessary to uncover the contribu-
tion of the individual kinases in different 
cell types and different phases of the cell 
cycle.

The E7 oncoprotein of human papil-
loma virus type 16 (HPV16E7) is another 
substrate of DYRK1A and has been 
reported to be stabilized by phosphory-
lation on Thr5 and Thr7.48 HPV16E7 
induces the degradation of retinoblas-
toma family of proteins (pRb, p107 
and p130) and promotes S phase entry. 
Phosphorylation by DYRK1A increased 
the half-life of HPV16E7 and enhanced 
the transforming potential of HPV16-
infected cells. This effect is in striking 
contrast to the antiproliferative effects of 
DYRK1A or DYRK1B that result from 
phosphorylation of cyclin D1 or p27. 
Thus, the viral oncoprotein virtually 
hijacks and reprograms a cellular pathway 
that normally inhibits cell division.

effects of DYRK1A in Down syndrome 
may in part be due its effect on REST, 
since DYRK1A overexpression reduces 
REST protein levels through facilitating 
ubiquitination and subsequent degrada-
tion.35 REST is regulated by phosphory-
lation and subsequent ubiquitin-mediated 
proteolysis in a SCFβ-TRCP E3 ligase-depen-
dent manner,36 but it remains to be shown 
whether DYRK1A acts on this pathway. 
Reduced REST levels due to DYRK1A 
overexpression were documented from 
undifferentiated embryonic stem cells to 
adult brain and are predicted to favor cell 
cycle exit and differentiation of neural 
progenitor cells.37

Another strong indication that 
DYRK1A and DYRK1B are functionally 
linked with E3 ubiquitin ligases is the 
fact that both of them, as well as HIPK2 
(but not DYRK2), have repeatedly 
been shown to interact with DDB1 and 
CUL4-associated factor 7 (DCAF7, also 
called WDR68 or Han11).38-41 DCAFs 
are a family of more than 50 proteins 
that function as adaptor proteins of the 
CUL4-DDB1 ubiquitin ligases to medi-
ate substrate specificity.42 The specific 
function of DCAF7 as a receptor subunit 
of E3 ligase complexes is unknown, but 
one might speculate that it mediates the 
interaction either between the kinase and 
its substrate or between the kinase and 

but it is clear that in this case, DYRK1A 
and DYRK1B do not act as priming 
kinases for GSK3. Phosphorylation on 
Thr286 by GSK3 in S phase is known to 
induce the cytoplasmic ubiquitination of 
cyclin D1 catalyzed by SCFFbx4/αB-crystallin 
E3 ligase.27 DYRK1B rather appears to 
act in G

0
/G

1
 to maintain cells in growth 

arrest and quiescence by depleting 
cyclin D1.22 In neurons, DYRK1A over-
expression leads to the nuclear export and 
degradation of cyclin D1.28 Importantly, 
cyclin D1 also plays a role in p27Kip1 pro-
teolysis, in the sense that loss of cyclin D1 
causes accumulation of p27 (see below).29 
The importance of cyclin D1 proteoly-
sis for normal cell homeostasis is high-
lighted by the fact that mutations in 
the cyclin D1 phosphodegron have been 
observed in human tumors.30 It is worth 
mentioning that cyclin D2 and cyclin D3 
are also phosphorylated on correspond-
ing C-terminal threonines (Thr280 
and Thr283, respectively) to trigger 
their UPS-dependent degradation.31-33 
It remains to be determined whether 
DYRK1A and/or DYRK1B also phos-
phorylate these cyclins.

The RE1-silencing transcription factor 
(REST) is expressed in dividing neural pro-
genitors and acts as a repressor of neuronal 
differentiation and positive regulator of 
proliferation.34 The neurodevelopmental 

Figure 1. DYrK2 targets c-Myc for ubiquitination and destruction. Phosphorylation of Ser62 by 
DYrK2 primes c-Myc for phosphorylation at thr58 by GSK3β. the resulting phosphodegron motif 
is recognized by Fbw7, which acts as the substrate receptor of an SCF complex (SKP1/cullin1/
Fbw7/rbx), initiating ubiquitination by the e2 ligase and subsequent proteasomal degradation. 
Likewise, c-Jun is ubiquitinated after sequential phosphorylation at thr239 and Ser243 by DYrK2 
and GSK3β.12
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