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Abstract .  To image changes in intraciliary Ca control- 
ling ciliary motility, we microinjected Ca Green dex- 
tran, a visible wavelength fluorescent Ca indicator, 
into eggs or two cell stages of the ctenophore Mnemi- 
opsis leidyi. The embryos developed normally into 
free-swimming, ,xO.5 mm cydippid larvae with cells 
and ciliary comb plates (~100 #m long) loaded with 
the dye. Comb plates of larvae, like those of adult 
ctenophores, undergo spontaneous or electrically 
stimulated reversal of beat direction, triggered by Ca 
influx through voltage-sensitive Ca channels. Comb 
plates of larvae loaded with Ca Green dextran emit 
spontaneous or electrically stimulated fluorescent 
flashes along the entire length of their cilia, correlated 
with ciliary reversal. Fluorescence intensity peaks rap- 
idly (34-50 ms), then slowly falls to resting level in 
,,ol s. Electrically stimulated Ca Green emissions of- 
ten increase in steps to a maximum value near the end 
of the stimulus pulse train, and slowly decline in 1-2 s. 

In both spontaneous and electrically stimulated 
flashes, measurements at multiple sites along a single 
comb plate show that Ca Green fluorescence rises 
within 17 ms (1 video field) and to a similar relative 
extent above resting level from base to tip of the cilia. 
The decline of fluorescence intensity also begins 
simultaneously and proceeds at similar rates along the 
ciliary length. Ca-free sea water reversibly abolishes 
spontaneous and electrically stimulated Ca Green 
ciliary emissions as well as reversed beating. Calcula- 
tions of Ca diffusion from the ciliary base show that 
Ca must enter the comb plate along the entire length 
of the ciliary membranes. The voltage-dependent Ca 
channels mediating changes in beat direction are there- 
fore distributed over the length of the comb plate cilia. 
The observed rapid and virtually instantaneous Ca sig- 
nal throughout the intraciliary space may be necessary 
for reprogramming the pattern of dynein activity 
responsible for reorientation of the ciliary beat cycle. 

~LIEVING often leads to seeing, particularly with the 
advent of new fluorescent probes and optical systems 
for imaging physiological processes inside living 

cells. Here we provide an example dealing with the role of 
Ca in regulation of ciliary motility. 

Knowing the site(s) of Ca entry into cilia is important for 
understanding where and how Ca acts to trigger specific 
types of changes in axonemal motility (Eckert & Brehm 
1979; Otter 1989; Preston & Saimi, 1990). Freeze-etch 
electron microscopy and EM cytochemistry revealed ciliary 
necklace particle arrays and divalent cation binding sites at 
the base of cilia (Gilula & Satir, 1972; Fisher et al., 1976; 
Good et al., 1990), suggesting that all or part of the Ca con- 
duetance may reside at the ciliary base. Previous deciliation/ 
regrowth experiments on Paramecium showed that the 
depolarization-activated Ca channels allowing Ca influx for 
ciliary reversal are located in the ciliary membrane; however 
a direct determination of their distribution was not possible 
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(Ogura and Takahashi, 1976; Dunlap, 1977). Suction elec- 
trode measurements of photo-induced currents causing fla- 
gella-type undulations and backward swimming of Ch/amydo- 
monas indicated that voltage-dependent Ca channels reside 
in the flagellar membrane (Harz and Hegemann, 1991); 
more recent experiments on regenerating flagella showed 
that the Ca channels are evenly distributed along the flagellar 
length (Beck and Uhl, 1994). Direct electrical recording 
from the giant comb plate cilia of ctenophores demonstrated 
that the voltage-dependent Ca conductance controlling 
ciliary reversal is distributed over most of the length of the 
ciliary membranes (Moss and Tamm, 1987). In contrast to 
these findings on Ca regulation of beat direction and wave- 
form, the voltage-sensitive Ca conductance controlling acti- 
vation of beating is apparently restricted to a membranous 
rete at the base of macrocilia in the ctenophore Bero~ 
(Tamm, 1988b). 

We wanted to confirm and extend the electrophysiological 
findings on comb plates by directly visualizing the sites of 
Ca entry, and hence the distribution of voltage-sensitive Ca 
channels along the ciliary membranes. To do this we used 
a developmental strategy to load a visible wavelength fluo- 
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rescent Ca indicator into comb plate cilia of ctenophore lar- 
vae. This allowed us to see for the first time spatial and tem- 
poral changes in intraciliary Ca that regulate ciliary motility. 
A videotape of this work was presented at the ASCB meeting 
in New Orleans, LA, December, 1993. 

Materials and Methods 

Organism 
Sexually mature Mnemiopsis leidyi were dipped from the National Marine 
Fisheries Service granite jetty, Woods Hole, MA, from July to October, 
1992 and 1993. This is the best site for consistently and reliably obtaining 
ctenophores in Woods Hole. Animals were placed in large glass bowls of 
sea water and kept overnight on a light-dark cycle that gave freshly spawned 
fertilized eggs at 9-10 AM the next day. 

Loading with Ca Green-I Dextran 
Fertilized eggs (~170/~m in diameter) were pipetted into a microinjection 
wedge chamber. Uncleared eggs or one blastomere of two cell stages were 
injected through the egg envelope, using a pipette with a small droplet of 
mercury in back of the injected solution to provide better control of the pres- 
sure (Hiramoto, 1962). 1 mM Ca Green-1 dextran (10,000 mol wt, 1.3 mol 
Ca Green/reel dextran; Molecular Probes, Eugene, OR) in buffer (100 mM 
potassium glutamate and 10 mM Hepes, pH 7) was injected into the central 
yolky cytoplasm at 0.5-1% of the egg volume. Calcium Green indicator con- 
centration in the whole egg was 6-13/~M, though the cytosolic concentra- 
tion may be up to two times greater because of the volume occupied by yolk. 
After injection, eggs were removed from the chamber and allowed to de- 
velop for 1-2 d into free-swimming ciliated cydippid larvae. 

Microscopic Stimulation and Perfusion Slides 
1-2-d-old cydippid larvae in sea water (from Ca Green-injected or nonin- 
jected eggs) were pipet'ted onto microscope slides and prevented from swim- 
ruing by light pressure of a 22 x 22 mm covet'slip supported by two parallel 
ridges of vaseline. Two Ag/AgC12 or Pt wire electrodes were inserted un- 
der opposite open edges of the coverslip, and connected to a stimulator 
(Grass SD-9). Bipolar pulse trains (30-60 V, 10 Hz, 15 ms) were applied 
to Ca Green-loaded larvae for 2--4 s through the sea water surrounding the 
immobilized larvae. Nonloaded larvae were generally stimulated for longer 
times (',,10-15 s) to obtain longer video records of motor responses (see 
Fig. 2). Test solutions were perfused under the coverslip by adding drops 
to one open edge and withdrawing fluid with a twisted Kim-wipe from the 
opposite side. Complete replacement of solutions under the entire area of 

the coverslip was not immediate, particularly for Ca-free sea water, but re- 
quired at least several perfusions. 

Microscopy and Recording 
Larvae on electrical stimulation slides were imaged with a Zeiss RA micro- 
scope (Carl Zeiss, Inc., Thorn~xxt, NY) using phase contrast or fluores- 
cence (FITC) optics (4010.75 objective) and a SIT (C2400-08; Hamamatsu 
Corp., Bridgewater, NJ) or intensified CCD (C2400-97; Hamaqlatsu Corp.) 
video camera. Images were recorded on.a S-VHS recorder (AG-7355; Pana- 
sonic) with numbered fields (QSI-VFF 6030; QSI Systems, Newton, MA). 
S-VHS tapes were copied onto an optical memory disk recorder (2028F; 
Panasonic) to analyze the data. Video frames were captured using an Image 
1/AT image processor (Universal Imaging, West Chester, PA). The de- 
interlace function was used to extract video fields. The average brightness 
in a 12 x 12 or 16 x 16 pixel square in a comb plate was measured. Average 
resting fluorescence intensity for 0.4 s was used to normalize the data. Data 
were plotted using Kaleidagraph (Synergy Software, Reading, PA) on a 
MacIntosh computer. 

Results 

Description of Cydippid Larvae and Ciliary System 
Free-swimming cydippid larvae of Mnemiopsis resemble 
adult ctenophores of the order Cydippida (i.e., Pleurobra- 
chia). The mouth defines the oral end of the body and a 
prominent statocyst is located at the broader aboral end 
(Figs. 1 and 2). Two tentacles emerge from opposite sides 
of the body, marking the tentacular plane. 1-2-d-old Mnemi- 
opsis larvae are ,v0.5 mm long. 

The ciliary system of cydippid larvae (Figs. 1 and 2) is dis- 
proportionately large relative to body size, compared with 
adult ctenophores. The eight rows of ciliary comb plates are 
arranged in four pairs running in an aboral-oral direction. 
Each comb row contains 5-6 comb plates at this stage. Lar- 
val comb plates are ,'o100/~m long; each plate consists of a 
tapered, blade-shaped group of several hundred cilia that 
beat together as a unit. The cilia of a comb plate arise from 
a ridge of 3-5 elongated epithelial cells. 

Electron microscopy of cydippid larvae shows synapses 
onto comb plate cells (Tamm and Tamm, 1981), indicating 
that ciliary motility in larval stages, as in adults (Moss and 
Tamm, 1986), is under nervous control. 

Figure L Normal beat cycle of comb plates of a non-Ca Green-loaded Mnemiopsis larva immobilized on a sea water slide by gentle pressure 
of the coverslip. Statocyst (s) and mouth (m) mark aboral and oral ends, respectively. A pair of comb rows is seen in profile on each side, 
beating slightly out of phase. The in-focus rows on either side are followed here. (,4) The beat cycle begins with plates at the end of the 
recovery stroke pointing toward the mouth. (B) The plates perform an effective stroke in the aboral direction (arrows), with the plates 
nearest the statocyst beating first. (C and D) The plates unroll toward the mouth during the recovery stroke. Prints show successive video 
fields (l/60-s intervals) using strobe illumination synchronized with a Newvicon video camera. Preceding fields persist as faint "ghosts" 
due to camera tube lag. Digital fields were photographed on Kodak Tech Pan (2415) film. Bar, 50/zm. 
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Figure 2. Reversed beat cycle of the same larva elicited by bipolar pulse train stimulation applied to the sea water bath. (A) The beat cycle 
begins with plates at the end of the effective stroke pointing toward the mouth. (B) The plates unroll toward the statocyst during the recovery 
stroke. (C and D) the effective stroke is reversed 180 ° toward the mouth (arrows). Prints show successive video fields as in Fig. 1. Bar, 
50 ~m. 

Ciliary Activity and Ion-stimulated Ciliary Reversal 
Comb plates do not beat unless stimulated, mechanically or 
electrically (Tamm 1982; Moss and Tamm, 1986). At rest, 
plates are bent at the base and point orally, lying close to the 
body surface. The normal beat cycle begins with a rapid 
swing of the plate in the aboral direction (effective stroke; 
Fig. 1 B), propelling the animal mouth foremost. The plates 
then unroll in the oral direction by propagating a bend dis- 
tally (recovery stroke; Fig. 1, C and D). Comb plates beat 
in a metachronal sequence, starting with the aboralmost 
plate and proceeding orally along the comb row (Fig. 1; 
Tamm, 1982). 

Previous ion substitution experiments showed that high 
KCI (50-100 mM) sea water causes Pleurobrachia larvae to 
swim backward due to 180 ° reversal in beat direction of the 
comb plates (Tamm and Tamm, 1981). Reversed beating oc- 
curs at high frequency (20-25 Hz) and begins with unrolling 
of the plates in the aboral direction (reversed recovery 
stroke), followed by a rapid swing toward the mouth (re- 
versed effective stroke) (Tamm and Tamm, 1981). Ciliary 
reversal of Mnemiopsis larvae is not triggered by high KCI 
sea water, but by elevated Ca levels (Tamm and Tamm, 
1981). The reason for this difference between larvae of 
Pleurobrachia and Mnemiopsis in ion dependence of ciliary 
reversal is not known. 

Ion-stimulated ciliary reversal in Pleurobrachia and 
Mnemiopsis larvae is Ca-dependent, being inhibited by Ca- 
free ASW or inorganic Ca blockers (Tamm and Tamm, 
1981). We previously used detergent-extracted ATP-reacti- 
vated models of comb plates from Mnemiopsis larvae to 
show that Ca at/~M levels directly causes reversed beating 
of the cilia (Nakamura and Tamm, 1985). 

Electrical Stimulation of Ciliary Reversal 
For the present work we needed a faster way to switch ciliary 
reversal on and off than changing ion concentrations by per- 
fusion. In our previous work on comb plates of adult cydippid 
ctenophores (Pleurobrachia) we found that trains of bipolar 
pulses delivered by a suction electrode attached to a tentacle 
or the adjacent body surface triggered synaptically driven 

volleys of Ca-dependent ciliary action potentials and reversed 
beating of comb plates (Moss and Tamm, 1986, 1987). 

We adapted this method to slide preparations of Mnemiop- 
sis larvae. We found that similar pulse train stimuli applied 
by Ag/AgCl2 or Pt wires to the sea water bathing nouloaded 
larvae elicited brief muscular retractions of the comb rows, 
followed by high frequency (15-20 Hz) reversed beating of 
all comb plates for the duration of the stimulus (Fig. 2) (and 
backward swimming if the larvae were not immobilized by 
the coverslip). Ciliary reversal was accompanied by muscu- 
lar bending and opening of the mouth. The beat pattern and 
frequency of electrically stimulated ciliary reversal (Fig. 2) 
is similar to that of KC1 or Ca-induced ciliary reversal of 
Pleurobrachia or Mnemiopsis larvae (Tamm and Tamm, 
1981). 

Immobilized Mnemiopsis larvae sometimes underwent 
brief episodes of ciliary reversal and muscular contractions 
without electrical stimulation. These spontaneous motor re- 
sponses are probably triggered by synaptic excitation due to 
mechanical stimulation of the tentacles and/or body surface 
by the coverslip. Mechanical stimulation of the tentacles of 
adult cydippid ctenophores elicits nervously mediated ciliary 
reversal and backward swimming (Tamm, 1982). The pre- 
sumed sensory receptors are ectodermal cells boring actin- 
filled projections and onion root cilia (Tamm and Tamm, 
1991). Such cells are also present on the body surface of 
Mnemiopsis larvae (Tamm, S. L., unpublished observations). 

Electrically Stimulated Ciliary Reversal 
Requires Ca Influx 
To test whether electrically stimulated ciliary responses of 
Mnemiopsis larvae depend on Ca influx, we tested the effects 
of Ca-free sea water and inorganic Ca blockers. Perfusion of 
larvae with Ca-free sea water, with or without 1 mM EGTA, 
blocked reversal responses to pulse train stimulation within 
5-10 min of perfusion. The delay in blockage probably 
reflects the time required to wash out most of the Ca from 
the bath, and possibly to exchange sea water trapped be- 
tween the closely packed cilia within each comb plate. The 
larvae responded instead to electrical stimuli by high fre- 
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quency beating (12-20 Hz) in the normal direction. Treat- 
ment with Ca-free sea water also weakened and reduced 
muscular responses to electrical stimulation, particularly the 
initial retraction of rows at the onset of the pulse train. Ca- 
free sea water effects on larvae were reversible: after return 
to normal sea water electrical stimuli caused the usual ciliary 
reversal and muscular responses. 

Ca-free sea water also blocks KCl-induced ciliary reversal 
of Pleurobrachia larvae, but blocks an increase in beat fre- 
quency as well (Tamm and Tamm, 1981). However, raising 
the Mg concentration of high KC1 sea water blocks ciliary 
reversal of Pleurobrachia larvae without preventing high fre- 
quency normal beating (Tamm and Tamm, 1981), similar to 
the effects of Ca-free sea water on electrically stimulated re- 
sponses of Mnemiopsis larvae. 

The uncoupling of directional and frequency responses of 
comb plates in certain cases indicates that these two param- 
eters of ciliary activity may have different thresholds and/or 
sensitivities to Ca. However, the previous ionic experiments 
on Pleurobrachia larvae could not distinguish between roles 
of Ca in axonemal responses vs. synaptic triggering of these 
responses. 

Since Ca-free treatment of Mnemiopsis larvae permits an 
increase in beat frequency in the normal direction during 
pulse train stimulation, ciliary activity is still nervously con- 
trolled under these conditions. Electrically stimulated ciliary 
reversal therefore requires influx of Ca, presumably into the 
comb plate cilia, independent of synaptic triggering of the re- 
sponse. 

Ca Green Dextran-loaded Larvae 

Because a ctenophore comb plate arises from many cells, 
making microinjection impracticable, and the cells do not 
load with AM esters of Ca indicators (Tamm, S. L., unpub- 
lished observations), we used a different strategy for dye 
loading. We injected a dextran conjugate of Ca Green-l, a 
visible wavelength (FITC) fluorescent Ca indicator, into one 
or two cell stage ctenophore embryos. The dextran conjugate 
is preferable to the free acid form which compartmentalizes 
or leaks out of ceils over a period of a few hours. 

Ca Green dextran-injected eggs developed into normal 
free-swimming cydippid larvae with cells and comb plate 
cilia faintly fluorescent under resting conditions, indicating 
successful loading and retention of the indicator. Injection of 
Ca Green dextran into one blastomere of a two cell stage 
produced larvae with cells and cilia of one sagittal half 
fluorescent (Fig. 3). The boundary between the loaded and 
nonloaded sagittal halves was so sharp that it bisected the 
cup-shaped epithelial floor of the aboral statocyst. This is 
consistent with earlier embryological evidence that the first 
cleavage plane defines the future sagittal plane of the cteno- 
phore (Chun, 1892). 

Ca Green dextran-loaded, unrestrained comb plates un- 
derwent both spontaneous and electrically stimulated re- 
versed beating at high frequency for the duration of the pulse 
train, showing that Ca buffering by the dye has no apparent 
effect on Ca-dependent ciliary motor responses. 

Spontaneous Ciliary Flashes 

Since relative changes in fluorescence could not be deter- 
mined in rapidly moving cilia, we examined plates which 

Figure 3. Ca green dextran labeling of a Mnemiopsis larva that was 
injected at the two cell stage. (A) Phase contrast; (B) fluorescence 
(FITC). The larva is immobilized under a coverslip in the tentacular 
plane (contracted tentacles emerge from either side), with the 
aboral statocyst facing up and the mouth down. Focus is midway 
through the body; two pairs of flattened comb rows are visible run- 
ning over the tentacle pouches. Basal fluorescence of the resting 
larva (B) shows that only the right sagittal half is loaded with Ca 
Green dextran (fluorescence of comb plates is too faint to detect 
at this magnification and focus). Digital frames photographed on 
Kodak Tech Pan (2415) film. Bar, 50 t~m. 

were restricted or prevented from beating by contact with the 
coverslip. 

Immobilized comb plates sometimes emitted spontaneous 
volleys of brief increases in fluorescence intensity along their 
entire length. Typically, 4-6 fluorescent flashes, each about 
1 s in duration, were emitted over 10 s. These spontaneous 
flashes arose from all comb plates in a row, as well as from 
the ridge of cell bodies at the base of each comb plate. If the 
comb plates were not completely immobilized, they made 
brief quivering movements at the time of the fluorescent 
flashes. 

Intensity measurements at a site midway along a comb 
plate typically showed a rapid rise of fluorescence emission 
to a maximum value within 2-3 video fields (34-50 ms), fol- 
lowed by a slower decline to resting level in •1 sec (Fig. 4 
A). However, fluorescence intensity sometimes rose in sev- 
eral steps which summed, reaching a plateau which was 
maintained for several seconds before slowly declining to 
baseline (Fig. 4 B). Spontaneous emissions averaged 64% 
above resting level (n = 8, SD = 23%). 

Electrically Stimulated Ciliary Flashes 

Bipolar pulse trains of 2--4-s duration elicited an increase in 
fluorescence along comb plates and in the cell bodies. The 
initial rise of fluorescence emission was as rapid as in spon- 
taneous flashes, but intensity typically increased in steps (as 
in some spontaneous flashes), reaching a maximum value 
near the end of the stimulus train (Fig. 4 C). Upon termina- 
tion of the pulse train, fluorescence declined slowly to rest- 
ing level in 1-2 s. In some cases stimulated emission rose 
directly to a maximum value (Fig. 4 D). Maximum intensity 
of stimulated flashes averaged 77 % above resting level (n = 
10, SD = 26%). The similar kinetics of spontaneous and 
electrically stimulated fluorescence emissions confirms that 
bipolar pulse trains act via nervous pathways, not by opening 
ciliary Ca channels directly. 
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Figure 4. Time course of spontaneous and electrically stimulated 
changes in intraciliary free Ca concentration. Average Ca Green 
dextran fluorescence intensity was measured in a small area halfway 
along the length of a comb plate, normalized to the resting fluores- 
cence level, and is plotted at 17-ms intervals (every video field). (,4) 
Spontaneous flash. Note spike-like rise and slower decay to resting 
level over 1.5 s. (B) Spontaneous flash with a stepwisc increase to 
a value that is maintained for 2 s and then declines to resting level. 
(C and D) Electrically stimulated flashes. Stimulus onset (t0 s) 
and termination (arrow) were recorded on audio track. (C) Stair- 
case increase in fluorescence. (D) Direct rise to maximum in- 
tensity. 

In partially restrained comb plates, electrically evoked 
fluorescence was accompanied by rapid vibration of the cilia 
in the reverse direction. These attempts at reversed beating 
began within two video fields (34 ms) after the rise of 

fluorescence and lasted for the duration of the flash. The de- 
cline in ciliary free Ca thus occurs well after the onset of the 
motor response, ruling out binding of Ca to the axonemal Ca 
sensor as the basis for the fluorescence decline. 

Pulse trains of longer duration (more than 5 s) often 
elicited periodic flashes in the cilia and cell bodies, accom- 
panied by brief movements of partially restrained plates, 
similar to spontaneous volleys. Higher voltage pulses in- 
duced brighter Ca Green emissions from both cilia and cell 
bodies. 

Multiple Site Recordings 

We next measured Ca Green fluorescence changes at three 
or four sites along a single comb plate (Fig. 5). Resting inten- 
sity levels are greater near the base and smaller near the tip 
of the cilia (Fig. 5). Since Ca Green is not a ratiometric dye, 
this proximal-distal gradient in fluorescence intensity does 
not represent an intraciliary Ca gradient. Rather, the resting 
fluorescence gradient undoubtedly reflects the decreasing 
number of cilia from base to tip of the tapered comb plate. 
We plan to confirm this by loading comb plates with rhoda- 
mine dextran as well as Ca Green dextran in order to relate 
total ciliary volume to comb plate length; this will allow us 
to normalize absolute Ca Green intensity at different sites 
along the comb plate. 

In both spontaneous (n = 4) and stimulated (n = 4) 
flashes, fluorescence rises within 17 ms (1 video field) and 
to a similar relative extent above resting level from near the 
base to near the tip of the cilia (Fig. 5, C and D). The total 
relative increase in Ca Green intensity within a given comb 
plate ranges from 120 to 135%, and is complete within 50 
ms at all locations. We could not detect any lag in the onset 
of Ca Green emission at different sites along a comb plate 
(Fig. 5 E). The decline of fluorescence after a spontaneous 
flash begins within 17 ms and proceeds at similar rates from 
base to tip of the cilia (Fig. 5, C and D). 

In rare cases where fluorescence in the cell bodies was not 
saturating, emission increased a smaller percentage (relative 
to preflash levels) than in the cilia, peaked 34-50 ms after 
the cilia, and then decayed at a slower rate than did ciliary 
fluorescence. However, fluorescence of both cell bodies and 
cilia returned to resting levels at about the same time. 

Effects of Ca-free Sea Water on Ca Green Flashes 

In Ca-free sea water, no spontaneous or electrically stimu- 
lated Ca Green emissions occurred in cilia or in their cell 
bodies. As in nonloaded larva (above), free comb plates un- 
derwent high frequency beating in the normal direction in re- 
sponse to electrical stimulation. The effects of Ca-free sea 
water were reversible: upon return to normal sea water, both 
spontaneous and stimulated Ca Green flashes from cilia and 
cell bodies reappeared, as did reversed beating of free comb 
plates. 

Discussion 

Strategies 

Our success in visualizing Ca transients in cilia for the first 
time depended on the choice of biological material. The 
large size, compound nature, and rapid development of cili- 
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Figure 5. Intraciliary calcium measurements at four sites along the 
length of a comb plate during a spontaneous flash. (A) Fluorescence 
image of comb plates. (B) Tracing showing location and size of sites 
along one comb plate where average fluorescence intensity was 
measured by an image processor. The comb plate is 77/~m long; 
measurements were made in a 12 × 12 pixel box at the indicated 
locations. (C) Average Ca Green dextran fluorescence intensity 
plotted against time (at 17-ms intervals) at the four sites along the 
cilia: 11 (cross), 26 (diamond), 40 (square), and 57/~m (dot) from 
the base. (D) Same data but normalized to the average fluorescence 
intensity during the 0.4 s before the increase in order to compare 
the percent increases in intensity at the different sites. (E) Expanded 
time scale for D to show that the increase in fluorescence starts at 
the same video field at all four locations along the comb plate. This 
sequence was imaged with an intensified CCD camera. Bar, 10 ttm. 

ary comb plates in ctenophores provide unique experimental 
advantages for this and other studies on cilia (Tamm, 1982). 
By microinjecting ctenophore eggs with Ca Green-1 dextran 
and letting the embryos develop for 1-2 d into free-swim- 
ming cydippid larvae, we successfully loaded comb plate 
cilia with the Ca indicator, thereby avoiding the technical 
problems associated with introducing the dye into differen- 
tiated ciliated ceils. Dextran conjugates of Ca indicators, un- 
like free acid forms, are retained in the cytoplasm without 
compartmentalization or leaking out of the cells. To our 
knowledge this is the first time that this developmental 
strategy has been used to load Ca indicators into target cells 
(and organelles) to study Ca physiology. 

An additional requirement for our work was a method for 
rapidly switching ciliary motor responses on and off while 
imaging Ca transients by video microscopy. Fortunately, ex- 
tracellular electrical stimuli that trigger nervously mediated 
reversed beating of comb plates in adult cydippid cteno- 
phores (Moss and Tamm, 1986) also excite ciliary reversal 
of cydippid larvae when applied under a coverslip. This is the 
first physiological evidence that cydippid larvae of cteno- 
phores and adult ctenophores of the order Cydippida share 
a similar nervous control of their comb plates, and demon- 
strates a functional as well as morphological resemblance 
between these larval and adult forms. 

Source of  Ca for Ciliary Ca Transients 

The role of Ca in regulation of ciliary and flagellar motility 
is well-established (Eckert and Brehm, 1979; Otter, 1989; 
Preston and Saimi, 1990). Previous experiments showed that 
ciliary reversal in ctenophores and protozoa requires influx 
of extracellular Ca through voltage-gated Ca channels (Eck- 
err and Brehm, 1979; Nakamura and Tamm, 1985; Moss 
and Tamm, 1986, 1987). In the absence of external Ca or in 

• the presence of Ca channel blockers, ciliary reversal cannot 
be elicited. Moreover, defects in Ca channel function prevent 
ciliary reversal in Paramecium (Preston and Saimi, 1990) 
and inward Ca current has been recorded directly from comb 
plate ciliary membranes of Pleurobrachia (Moss and Tamm, 
1987). 

Although cilia and flagella contain no membrane-bound 
compartments that could serve as internal Ca stores, it has 
been suggested that calmodulin or other calcium-binding 
proteins present in cilia and flagella (Maihle et ai., 1981; Ot- 
ter 1989; Stommel et al., 1982) could act to bind and release 
Ca (Suarez et al., 1993). Hyperosmolality-dependent initia- 
tion of motility of teleost sperm is mediated by a rise in intra- 
cellular Ca which evidently is released from internal stores 
located somewhere in whole sperm (Oda and Morisawa, 
1993). 

It was therefore important for us to confirm by Ca-free sea 
water experiments that the electrically stimulated Ca Green 
flashes we observed in comb plates requires influx of Ca 
from the sea water. This Ca influx probably does not trigger 
release of additional Ca from internal stores (see below). 

Ciliary Ca Flashes 

The time course of the rise and fall of single Ca Green flashes 
in comb plates is similar to the kinetics of depolarization- 
evoked Ca transients in other cells (Cannell et al., 1987; 
Ahmed and Connor, 1988; Becker et al, 1989; Berlin and 
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Konlshi, 1993). The precise shape of Ca transients depends 
on a number of factors, including relative contributions of 
Ca influx vs. release from internal stores (i.e., Ca-induced 
Ca release), the effects of fixed and diffusible Ca buffers (in- 
cluding Ca-measuring dyes and physiological Ca sensors), 
and the mechanisms of Ca removal (i.e., surface and/or in- 
tracellular pumps, sequestration, binding) (see Nowycky 
and Pinter, 1993 for models). The single rapid rise of Ca 
Green emission in many spontaneous ciliary flashes, to- 
gether with absence of Ca Green signals in Ca-free sea water, 
indicates that Ca influx through voltage-gated channels is the 
sole source of the ciliary Ca transient. 

The stepwise increase in ciliary fluorescence observed 
during some spontaneous and stimulated flashes may be due 
to variations between cells of the same comb plate in the tim- 
ing and amplitude of the regenerative responses of their cilia, 
as found by intracellular recording from comb plates of adult 
Pleurobrachia (Moss and Tamm, 1986). This would result 
in progressive recruitment of Ca emissions from different 
groups of cilia within a single comb plate. So far we have 
not been able to test this possibility by seeing whether the 
fluorescent steps are correlated with emissions from discrete 
"slivers" within a plate. Since the cilia within a comb plate 
are mechanically coupled to one another (Tamm, 1984), the 
beat pattern of the plate probably reflects the activity of the 
majority of its cilia. Alternatively, the staircase emission 
profiles may reflect facilitation and the graded nature of the 
Ca response (Moss and Tamm, 1986) over the entire comb 
plate. 

Several reports of intracellular Ca increases associated 
with sperm motility have recently appeared. Oda and Mori- 
sawa (1993) used quin-2 loaded puffer (teleost) sperm to 
show that hyperosmolality-induced initiation of motility is 
mediated by a rise of intracellular Ca, as measured spec- 
trophotometrically in suspensions of whole sperm. Intracel- 
lular Ca increased under Ca-free conditions, suggesting that 
Ca was released from internal stores. Suarez et al. (1993) 
used indo-1 loaded hamster sperm, together with strobe fluo- 
rescence of individual moving sperm, to show that intracel- 
lular Ca levels increased in head and midpiece regions (the 
principal piece or sperm tail proper could not be measured) 
in hyperactivated vs. activated sperm. Ca oscillations, par- 
ticularly in the proximal midpiece region, were coupled to 
flagellar beat frequency. However, the Ca oscillations evi- 
dently are the result of flageliar bending rather than the 
cause, and may not be physiologically significant. 

Since these studies did not follow possible Ca transients 
within the flagellar space itself or at different sites along the 
flagellum, they could not report spatial or temporal patterns 
of Ca increase along the flagellum. 

Ca Measurements along the Comb Plate 

We found no detectable lag, with a time resolution of 17 ms 
(1 video field), in onset of Ca Green emission at different 
sites from near the base to near the tip (up to about 75 % of 
the length) of the comb plate. Can these results be explained 
by diffusion of Ca from channels located exclusively near the 
base of the cilia? We can model this problem using macro- 
scopic theory of diffusion of an initial sharp rise in solute 
concentration at one end of a ~100 /~m long pipe with 
reflecting boundaries (sides) (Berg, 1983). The diffusion 

coefficient (D) of Ca in cytoplasm, like that of most solutes 
in water (Crank, 1956), is reported to increase with concen- 
tration, reaching a maximum value to 2 x 10 -~ cm2s -1, or 
200 #m 2 s -t at more than 100 #M free Ca (Connor et al., 
1981; AUbritton et al., 1992). For Ca in cytoplasm, the 
concentration-dependence of its D is largely due to binding 
(Allbritton et al., 1992). Assuming a constant D of Ca of 200 
#m 2 s -~ (see also Nowycky and Pinter, 1992), and using a 
numerical solution (Berg, 1983), computation shows that 
,,o10 s are required to relax an initial step gradient of Ca con- 
centration, yo, occupying 30% of the length of a 100/zm 
long pipe, to an almost uniform concentration, 0.3 y, that 
spans the full length of the pipe (or cilium) (Berg, 1983, Ap- 
pendix B, Fig. B.3). Of course, if Ca entry sites are restricted 
to less than the proximal 30% of the comb plate cilia, then 
the time required to reach a more-or-less uniform concentra- 
tion along the cilia would be considerably longer than 10 s. 
These estimates also ignore bound Ca-binding proteins in 
the axoneme (e.g., calmodulin; Otter, 1989) that would be 
expected to further slow Ca diffusion along the cilia. 

Therefore, our findings cannot be explained by diffusive 
transport of Ca from entry sites near the base of the comb 
plate. Instead, our results indicate that Ca enters along the 
entire length of the ciliary membranes. The similar relative 
increase above resting level in Ca Green intensity at different 
sites along the comb plate indicates that the Ca channels are 
evenly distributed over the length of the cilia. 

Our direct visualization of Ca fluxes into larval comb 
plates largely confirms electrical recordings from adult 
comb plates showing that a voltage-dependent Ca conduc- 
tance is distributed over most of the length of the cilia (Moss 
and Tamm, 1987). The failure to record Ca action potentials 
near the base of adult comb plates may therefore not be due 
to absence of Ca channels in the proximal ciliary membrane, 
but to masking and/or shunting of the inward current in this 
region (Moss and Tamm, 1987). 

In adult comb plates the duration of the ciliary action 
potential is about 20 ms, and its propagation velocity is ~27 
mm/s. The region of inward Ca current therefore occupies 
almost half the length of the 1 mm long cilia (Moss and 
Tamm, 1987). If larval comb plates have similar membrane 
properties, their shorter length (,,o100 #m) and the poorer 
time resolution of video recording (17 ms) explains why we 
did not detect a propagated Ca Green fluorescent signal 
along the cilia. 

With regard to the mechanism(s) for reducing intraciliary 
Ca following an influx, the virtually synchronous fall and 
similar rate of decline of Ca Green fluorescence at different 
sites along a comb plate are too uniform and too fast for Ca 
to be removed solely by diffusion from the cilia into the cell 
bodies. Instead, Ca efflux must occur along the entire cilia, 
presumably by Ca pumps distributed over the length of the 
ciliary membranes. However, Ca-ATPase activities with 
properties similar to those of known Ca pumps in other cells 
have not yet been detected in ciliary membranes of Parame- 
cium (Wright and Van Houton, 1990; Wright et al., 1993). 
The possibility that a Na÷/Ca 2+ exchanger contributes to 
removal of ciliary Ca following depolarization seems un- 
likely, since the Na÷/Ca 2+ exchanger is electrogenic and 
would serve to drive Ca into the cilia rather than remove it 
when the membrane is depolarized (Miller, 1988; Lagnado 
and McNaughton, 1990; Kargacin and Fay, 1991). 
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The Ca signal in the cell bodies of comb plates peaked 
slightly after the cilia and decayed at a slower rate. Cell body 
Ca transients require extraceUular Ca and probably depend 
on Ca-induced Ca release from internal stores. The initial 
rise in cell body Ca could result from influx of extracellular 
Ca and/or leakage from the proximal part of the cilia. The 
subsequent decline in cell body Ca may reflect extrusion 
and/or sequestration mechanisms that are different from 
those effecting Ca removal from the cilia. 

Conclusions 
Ciliary reversal, the Ca-dependent motor response studied 
here, is a 180 ° reorientation of the entire beat cycle. The nor- 
mal asymmetric form of ciliary beat is presumed to be due 
to a specific pattern of asynchronous activity of dynein cross- 
bridges (and hence active sliding) that is coordinated from 
base to tip of the axoneme as well as around its circumfer- 
ence (Sugino and Naitoh, 1982; Satir, 1985). The uniform 
ciliary Ca transient we observed, reflecting an even distribu- 
tion of voltage-sensitive Ca channels over the comb plate 
cilia, indicates that reorientation of the pattern of dynein ac- 
tivity requires a rapid and simultaneous Ca signal through- 
out the intraciliary space. 

These findings are consistent with recent work on the Ca- 
dependent axonemal motor response of Chlamydomonas. 
Strong light induces a Ca-mediated switch from ciliary beat- 
ing to flagellar-like undulations propagated from base to tip 
of both flagella. Electrophysiological assay of photo-stimu- 
lated flagellar Ca currents during flagellar regeneration of 
Ch/amydomonas indicates that the voltage-sensitive Ca chan- 
nels are evenly distributed over the total length of the flagella 
(Beck and Uhl, 1994). As in comb plates, a uniform Ca con- 
ductance would provide a virtually instantaneous Ca tran- 
sient throughout the flagella for reprogramming the pattern 
of active sliding. 

In this regard, calmodulin, the likely axonemal Ca sensor 
(Reed et al., 1982; Otter et al., 1984; Stommel, 1984; 
Brokaw and Nagayama, 1985; Izumi and Nakaoka, 1987), 
is distributed along the entire length of Paramecium and 
Tetrahymena cilia (Maihle et al., 1981; Ohnishi et al., 1982). 
These protozoan cilia also undergo Ca-dependent ciliary 
reversal. The second messengers, Ca and cAMP, are thought 
to regulate axonemal motility by phosphorylation/dephos- 
phorylation of ciliary proteins, particularly dynein subunits 
(Brokaw, 1987; Bonini et al., 1991; Hamasaki et al., 1991; 
Stephens and Prior, 1992; Salathe et al., 1993; Walczak and 
Nelson, 1994). The molecular mechanisms of Ca or cAMP 
control are still unknown. 

An interesting exception to the findings on comb plate cilia 
and Chlamydomonas flagella is macrocilia of the ctenophore 
Bero~. Macrocilia are finger-shaped organeUes, 25-30/~m 
or 80-100 #m long, with a common fused membrane sur- 
rounding a shaft of hundreds or thousands of axonemes, de- 
pending on the species (Tamm and Tamm, 1993). However, 
a rete of unfused, individual ciliary membranes is present at 
the base of all macrocilia (Tamm, 1988b). Depolarization- 
gated Ca influx activates rapid beating of usually quiescent 
macrocilia without altering beat direction (Tamm, 1988a). 
Local iontophoretic application of Ca at different sites along 
Ca-permeable macrocilia of heat-dissociated cells showed 
that Ca does not enter along the entire ciliary shaft (as in 

comb plates), but only at the base of the macrocilium where 
the membranous rete is located (Tamm, 1988b). Similar Ca 
iontophoresis experiments on demembranated ATP-reacti- 
vated macrocilia showed, surprisingly, that Ca-sensitivity 
for activating bending is not restricted to the base of the axo- 
nemes but occurs along their entire length (Tamm and 
Tamm, 1989). 

Does Ca normally enter macrocilia only at the base, and 
act there to trigger beating? If so, activation of beating may 
require a different distribution of axonemal Ca sensors than 
does change in beat orientation. Or does Ca diffuse from the 
rete to the tip of the macrocilium to induce beating, thereby 
explaining the base-to-tip Ca sensitivity of reactivated mac- 
rocilia? Or does Ca influx occur along the entire length of 
stimulated macrocilia on cells of the intact tissue? Further 
studies on macrocilia using our Ca-Green dextran method 
should resolve these questions. Nevertheless, these findings 
suggest that the spatial distribution of ciliary membrane Ca 
channels and axonemal Ca sensors need not coincide to elicit 
a motor response. 

Finally, it should be noted that increases in beat frequency 
of vertebrate tracheal and oviduct cilia in response to me- 
chanical, hormonal or transmitter stimulation are mediated 
by release of Ca from intracellular stores (Verdugo, 1980; 
Sanderson et al., 1990; Boitano et al., 1992). Voltage- 
dependent ciliary Ca channels are apparently lacking in 
these cells. However, given the short length of the cilia (~6 
/~m) and their slow response time (Sanderson and Dirksen, 
1986), a second messenger-mediated increase in cytosolic 
Ca apparently delivers sufficient Ca to the cilia to augment 
beat frequency without the need for rapid Ca influx across 
the ciliary membrane. 
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