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Abstract

The influence of noise on oscillatory motion is a subject of permanent interest, both for fundamental and practical reasons.
Cells respond properly to external stimuli by using noisy systems. We have clarified the effect of intrinsic noise on the
dynamics in the human cancer cells following gamma irradiation. It is shown that the large amplification and increasing
mutual information with delay are due to coherence resonance. Furthermore, frequency domain analysis is used to study
the mechanisms.
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Introduction

How cells process noise is a challenging problem in illuminating

the principle of intracellular motifs [1–3]. Shen-Orr et al. [4] find

that much of a biological network is composed of repeated

appearances of several highly significant motifs. Some network

motifs have been used recently to explore the principle of cellular

systems [4–6]. In two well-studied examples, the p53-Mdm2

regulatory network and the NF-kB signaling pathway, noisy

oscillations in the cells following activation signals were studied in

the experimental [7–12] and theoretical [13–31] aspects. The core

circuit consists of one of the most common network designs, a

negative feedback loop [32,33], where the active transcription

factor promotes the transcription of its own repressor.

Mathematical models have achieved oscillatory dynamics by

introducing ad hoc time delays to reproduce those that a system

incurs when the various molecular components are manufactured

[21,22,24,25,28,30,34–39]. Related works have been performed

on many fields of research, where delays were found to play a

central role. For example, the importance of delay has also

recently been recognized in neuronal dynamics [40–43]. From the

mathematical point of view, the difference between single-cell

experiments and cell population experiments of simple regulatory

networks arises from stochastic events in individual cells that are

averaged out in cell population. As the noise intensity of the

regulating species increases, the noise intensity of the regulated one

also appears to increase. Noise can induce many phenomena in

nonlinear dynamical systems, including stochastic resonance,

coherence resonance, pattern formation and so on. Lots of

original research [44–49] and review [50–52] articles have been

devoted to the stochastic resonance phenomenon. Noise-induced

patterns in semiconductor nanostructures have been recently

investigated by means of theoretical models [53], where random

fluctuations play an essential role. Our presented results are

crucially relying on coherence resonance, which has been recently

studied for temporal systems [54–57] and spatially extended

systems [58–63]. Specifically the relevance of intrinsic noise was

elaborated on periodic calcium waves in coupled cells [64] and

spatial coherence resonance in excitable biochemical media [65]

induced by internal noise. A recent comprehensive review [66] has

been done on the stochastic coherence. The large amplification

results from the existence of coherence resonance with delay and

noise.

In this article, by exploiting a microscopical signal-response

model which was proposed in our previous articles [37,38] for

studying the dynamical mechanism of the oscillatory behaviors for

the activities of p53 and Mdm2 proteins in individual cells, we will

explore the mechanism of noise amplification by considering the

stochastic events in the cells.

Results and Discussion

Noise amplification
We introduce the probability Pr(nP,nM ,t) for the p53 and

Mdm2 populations P(t),M(t)ð Þ~ nP,nMð Þ. Then the master

equation for Pr(nP,nM ,t) is given by

dPr(nP,nM ,t)

dt
~P(nP,nM )Pr(nP,nM ,t)

zaM

X?
mP~0

X?
mM ~0

mN
P

KNzmN
P

(E{1
M {1)

|Pr(nP,nM ,t; mP,mM ,t{t),nP,nM~0 � � �?,

ð1Þ

where t is added to account for the time delay between

the activation of p53 and the induction of Mdm2.
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Pr(nP,nM ,t; mP,mM ,t{t) is the joint probability distribution of

having nP p53 molecules, nM Mdm2 molecules at time t and mP

p53 molecules, mM Mdm2 molecules at time t{t. EP and EM are

the unitary shift operators,

EPPr(nP,nM ,t)~Pr(nPz1,nM ,t),

EMPr(nP,nM ,t)~Pr(nP,nMz1,t),

and

P(nP,nM )~SP(E{1
P {1)

z aPnM (1{cPS(t))zmP½ �(EP{1)nP

zSM (E{1
M {1)zmM (EM{1)nM :

ð2Þ

SP, aP, cP, mP, SM , aM , mM , K , N and S(t) are the parameters

denoting various mechanisms as represented in our previous

papers [37,38].

Assume that the time delay t compared with other characteristic

times of the system is large, so the processes at time t and t{t
are weakly correlated as Pr(nP,nM ,t; mP,t{t)~Pr(nP,nM ,t)
Pr(mP,t{t). Adopting this approximation, we get

dPr(nP,nM ,t)

dt
~P(nP,nM )Pr(nP,nM ,t)

zaMS
PN (t{t)

KNzPN (t{t)
T(E{1

M {1)Pr(nP,nM ,t),nP,nM~0 � � �?:

ð3Þ

The generating function G(s1,s2,t) is defined as

G(s1,s2,t)~
X?

nP ,nM ~0

s
nP
1 s

nM
2 Pr(nP,nM ,t): ð4Þ

We convert the infinite set of ordinary differential equations (3) to

a single partial differential equation for G(s1,s2,t),

LG

Lt
~ s1{1ð Þ SPG(t){aPs2 1{cPS(t)ð Þ L

2G(t)

Ls1Ls2
{mP

LG(t)

Ls1

" #

z s2{1ð Þ SMG(t){mM

LG(t)

Ls2
zaMS

PN (t{t)

KNzPN (t{t)
TG(t)

� �
:

ð5Þ

The moments of the probability distribution can be found by

expanding the generating function near s1,s2ð Þ~ 1,1ð Þ,

LG

Ls1

���� s1~1

s2~1

~
X?

nP,nM ~0

nPs
nP{1

1 s
nM
2 Pr(nP,nM ,t)

��� s1~1

s2~1

~
X?

nP~0

nP Pr(nP,t)~SP(t)T,

ð6Þ

LG

Ls2

���� s1~1

s2~1

~
X?

nP,nM ~0

nM s
nP
1 s

nM {1

2 Pr(nP,nM ,t)
��� s1~1

s2~1

~
X?

nM ~0

nM Pr(nM ,t)~SM(t)T,

ð7Þ

L2G

Ls1Ls2

���� s1~1

s2~1

~
X?

nP ,nM ~0

nPnMs
nP{1

1 s
nM {1

2 Pr(nP,nM ,t)
��� s1~1

s2~1

~
X?

nP ,nM ~0

nPnM Pr(nP,nM ,t)~SP(t)M(t)T, ð8Þ

L2G

L2s1

���� s1~1

s2~1

~
X?

nP ,nM ~0

nP nP{1ð ÞsnP{2

1 s
nM
2 Pr(nP,nM ,t)

��� s1~1

s2~1

~
X?

nP~0

nP nP{1ð ÞPr(nP,t)~SP2(t)T{SP(t)T, ð9Þ

L2G

L2s2

���� s1~1

s2~1

~
X?

nP ,nM ~0

nM nM{1ð ÞsnP
1 s

nM {2

2 Pr(nP,nM ,t)
��� s1~1

s2~1

~
X?

nM ~0

nM nM{1ð ÞPr(nM ,t)~SM2(t)T{SM(t)T:
ð10Þ

Substituting the expansion

G(s1{1,s2{1,t)~1z s1{1ð Þa1(t)z s2{1ð Þa2(t)z
1

2
s1{1ð Þ2

b1(t)z
1

2
s2{1ð Þ2b2(t)z s1{1ð Þ s2{1ð Þ

b12(t)z � � � ð11Þ

into Eq. (5) we obtain

da1

dt
~SP{aP 1{cPS(t)ð Þb12(t){mPa1(t), ð12aÞ

da2

dt
~SMzaMS

PN (t{t)

KNzPN (t{t)
T{mM a2(t), ð12bÞ

where the functions a1(t), a2(t) and b12(t) are Eqs. (6), (7) and (8),

respectively. Above is the presentation of the derivation by help of

generating functions. In fact, it delivers the same moment

equations as the derivation by averaging the master equation.

Both approaches run finally into equivalent approximations and

problems if decoupling the moments. By the comparison between

Eqs. (12) and the corresponding deterministic equations described

in our previous papers [37,38], we find that due to

C(t)~b12(t){a1(t)a2(t), ð13aÞ

H(t{t)~S
PN (t{t)

KNzPN (t{t)
T{

SPN (t{t)T
KNzSPN (t{t)T

, ð13bÞ

the limit cycle of the deterministic description [37,38] changes to a

decaying scheme as shown in Fig. 1.
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From our numerical results, the reason for the decaying can be

considered as dephasing that is mainly caused by differences in the

Hill function PN (t{t)= KNzPN (t{t)ð Þ between the cells. The

reason that Hill functions are different is the different states of the

different cells at time t{t, i.e., some dephasing happened at time

t{t for it to have this impact. The delay further amplifies the

differences between cells, causing further dephasing. but if we take

two cells with identical state space paths, their Hill functions will

also be the same.

This initial difference between the particle numbers of chemical

species in different cells, which causes the difference in Hill

function at later time, is entirely caused by the intrinsic noise. In

fact, any oscillating chemical system, with or without delayed

dynamics, will demonstrate dephasing between different realiza-

tions, and it isn’t an artifact of the delayed dynamics themselves,

although this will undoubtedly cause further decorrelation of

different realizations at later time, which causes the damped

behavior at the population level (which can be thought of as simply

taking a large number of realizations of the same stochastic

system). Essentially, the value which the cell population converges

to is simply approximately the mean of the invariant distribution of

the chemical species for one cell, multiplied by the number of cells

in the population of interest. This can be shown more rigorously

for large populations using the ergodic property of the system.

Fig. 2 shows the average power spectrum SP(v) for P(t) time

series as a function of frequency v. We also plot the spectrum of

the corresponding deterministic model, with delay (e.g., time delay

td~100 min in Fig. 2) but without noise, to compare its spectrum

with stochastic ones. It can be clearly seen that SP(v) without

noise is much smaller than those with noise. Significantly, for the

cases with large t (especially, t is larger than the Hopf bifurcation

point tc), there are obvious peaks appearing in SP(v) for P(t) at

v=0. This tells us that there is a very large amplification of

intrinsic noise due to the resonant effects. This characteristic

phenomenon may be termed as coherence resonance with delay

and noise, for distinguishing from the ‘‘ stochastic resonance’’ in

common sense.

The peak frequency corresponds to the characteristic frequency

of the solution of Eqs. (12), which represents the mean frequency

of Fourier transform F P(t)½ �. It is very intriguing that the width of

SP(v) represents the dephasing effects, which gives the damping

strength on the amplitude of vP(t)w. In order to analyze this

resonant oscillation more transparently, we phenomenologically fit

SP(v) for the cases with large t (twtc) shown in Fig. 2 by a

formula

SP(v)~
azbv2

v2{V2
� �2

zC2v2
, ð14Þ

where the parameters a, b, V and C are t-dependent. Note that

Eq. (14) can be analytically derived with the chemical Langevin

equations corresponding to Eqs. (1) under the linearization

approximation.

The resultant V and C are shown in the inset picture of Fig. 2. It

is obvious that the mean frequency V decreases against t, which is

consistent with the conclusion described in our previous article

[37]. This is particularly important in biology because in general

the low frequency is much more significant than higher frequency

in biological systems. C also decreases as t increasing, which

means that the oscillation may dominate the evolution of vP(t)w
and lasts for rather longer time for very large t. This phenomenon

is very intriguing from the biological point of view because it may

tell us that the time delay induced by the underlying multistage

reactions may weaken the effects of stochasticity and strengthen

the oscillation of the relevant molecules.

Mutual information (MI) is meaningful to discuss resonant

phenomena [67], so we give the mutual information between the

two components p53 and Mdm2 in the nonlinear delayed-

feedback network motif. MI is a measure of the amount of

information that one random variable interacts with another. It is

the reduction in the uncertainty of one random variable due to the

Figure 1. Normalized phase plot ðP(t),M(t)Þ in 3 individual
MCF7 cells following gamma irradiation, deterministic (Deter.)
solutions P(t),M(t)ð Þ, and average (Ave.) populations
SP(t)T,SM(t)Tð Þ in population of cells obtained with the exact

DSSA (Ave.) and fourth-order Runge-Kutta (RK4) solutions of
Eqs. (12) where the numerical values of C(t) and H(t{t) are
obtained with the exact DSSA. The parameters are chosen as
SP~0:5 min{1 , aP~1:8 min{1, cP~0:996, mP~2:5|10{4 min{1 ,
SM~2:35|10{3 min{1 , aM~0:1 min{1 , mM~0:05 min{1 , K~120,
N~10, t~100 min and tthw4000 min.
doi:10.1371/journal.pone.0022487.g001

Figure 2. A plot of the average power spectrum
SP(v)~v F P(t)½ �j j2w as a function of frequency v with
(t~0,� � �,100 min) and without (td~100 min) noise, where
F P(t)½ � is Fourier transform of p53 dynamics from the time to
the frequency domain, and the p53 dynamics P(t) is obtained
with the DSSA. Inset: V and C fitted with Eq. (14) vs. t. The other
parameters are as in Fig. 1.
doi:10.1371/journal.pone.0022487.g002
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knowledge of the other [68]. MI between variables P and M can

be represented as

MI(P,M)~H(P)zH(M){H(P,M), ð15Þ

where the Shannon entropy, H(P), H(M), and the joint entropy

H(P,M) are defined as

H(P)~{

ð
Pr(nP)log Pr(nP)dnP, ð16aÞ

H(M)~{

ð
Pr(nM )log Pr(nM )dnM , ð16bÞ

H(P,M)~{

ð ð
Pr(nP,nM )log Pr(nP,nM )dnPnM , ð16cÞ

where Pr(nP) and Pr(nM ) are margin distribution functions and

Pr(nP,nM ) is the joint distribution function. Thus the MI can be

represented as

MI(P,M)~

ð ð
Pr(nP,nM )log

Pr(nP,nM )

Pr(nP)Pr(nM )
dnPnM : ð17Þ

MI is zero if and only if the two random variables are strictly

independent [69]. Numerically calculating the mutual information

between trajectories is in general a formidable task [70], since the

joint distribution of continuous variable is smoothly obtained only

for large scale stochastic simulation. Intensive work has been done

on estimating the mutual information. Khan et al. [71] reviewed

three MI estimators: Kernel density estimators, k-nearest neighbor

method and Edgeworth expansion. Recently, Suzuki et al. [72]

proposed a novel MI estimator called Least-Squares Mutual

Information, and discussed the characteristics of the three existing

approaches. However, it is accessible here due to the discreteness

of the system with the exact delay stochastic simulation algorithm

(DSSA) [73]. Information theory [74] provides a natural

framework for many problems in biological information process-

ing. The Shannon mutual information has been applied to study

the stochastic resonance (SR) [67,75,76], instead of the signal-to-

noise ratio (SNR). It can be seen from Fig. 3 that when the DNA is

damaged, the phosphorylation of p53 modifies its binding

properties to Mdm2, so MI is small; But when the signal is

completely resolved, e.g., after tth~1750 min, MI is large because

the amount of p53 is kept low and tightly regulated by the genetic

network of Mdm2 and p53 itself. Fig. 4 shows that MI in steady

state increases with the increase of time delay due to the coherence

resonance.

Fourier analysis
To describe the nonlinear dynamics more clearly, we use

frequency domain analysis method to study the mechanisms of the

p53 network motif. Our model can be described by a set of

chemical Langevin equations corresponding to Eqs. (1),

dP(t)

dt
~SP{aPM(t)P(t)(1{cPS(t))

{mPP(t)zg1(t),

ð18aÞ

dM(t)

dt
~SMzaMC(t){mMM(t)zg2(t), ð18bÞ

where g1(t) and g2(t) are Gaussian white noise, Sgi(t)T~0,

Sgi(t)gj(t
0)T~SgigjTd(t{t0), i,j~1,2f g [77].

In order to analyze our model in the frequency domain, we first

replace P(t) and M(t) in Eqs. (18) by

P(t)~P�zp(t),M(t)~M�zm(t), ð19Þ

where P� and M� represent the stationary solutions of the

deterministic equations of Eqs. (18) with t~0, which satisfy the

equations

SP{aPM�P�(1{cP){mPP�~0, ð20aÞ

SMzaMC(P�){mM M�~0: ð20bÞ

Since we are discussing the solution in the oscillatory scheme, here

the signal S(t) is set to be 1. If one hopes to discuss the case of the

Figure 3. Evolution of Mutual information (MI) with
tth~1750 min and S(t)~1. The other parameters are as in Fig. 1.
doi:10.1371/journal.pone.0022487.g003

Figure 4. Mutual information (MI) in steady state as a function
of time delay t, where MIs~ lim

t??
MI(P,M ,t). The fit function and its

adjusted R-Square are indicated. The parameters are as in Fig. 1.
doi:10.1371/journal.pone.0022487.g004
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stationary solution in t??, he can simply set the parameter

cP?0 mathematically, because at t??, the damage can be

supposed to be completely resolved as S(t??)~0, i.e., the signal

S(t) is first set to 1, later cP is removed because S(t) is becoming 0
if time tends to infinity. Then Eqs. (18) can be rewritten as

dp

dt
~Ap(t)zBm(t)zDp(t)m(t)zg1(t), ð21aÞ

dm

dt
~{mMm(t)zCp(t{t)zEp2(t{t)zg2(t), ð21bÞ

where

A~{aP 1{cPð ÞM�{mP, ð22aÞ

B~{aP 1{cPð ÞP�, ð22bÞ

C~aMC’(P�), ð22cÞ

D~{aP 1{cPð Þ, ð22dÞ

E~aMC’’(P�)=2, ð22eÞ

and the nonlinear term is kept up to the second order in p(t{t).

The Fourier transformations of Eqs. (18) take the form

ivp(v)~Ap(v)zBm(v)z
Dffiffiffiffiffiffi
2p
p F (v)zg1(v), ð23aÞ

ivm(v)~{mMm(v)zCe{ivtp(v)z
Ee{ivtffiffiffiffiffiffi

2p
p G(v)zg2(v),ð23bÞ

where

F (v)~

ð?
{?

p(v{v0)m(v0)dv0, ð24aÞ

G(v)~

ð?
{?

p(v{v0)p(v0)dv0: ð24bÞ

Since Eqs. (23) are integral equations, they can be solved by

interpolation method and truncated at a specific order, the

following calculation includes convolutions in the spectral

presentation replacing the nonlinear items in the temporal one

and truncating them, e.g., we can first solve the linear equation

ivp(v)~Ap(v)zBm(v)zg1(v), ð25aÞ

ivm(v)~{mMm(v)zCe{ivtp(v)zg2(v), ð25bÞ

substitute the solutions p(v) and m(v) of Eqs. (25) into Eqs. (24),

and then F (v) and G(v) are functions of v. Under the

approximations of weak noise and weak negative feedback

mechanism, in this paper, the solutions of both p(v) and m(v)
are retained up to the second order of g1(v) and g2(v), because

for Gaussian noise, the terms of higher order can be omitted in Ito-

Wiener approximation. The validation of such approximations

will be discussed with our numerical simulation later. We define

f1(v)~ivzmM , ð26aÞ

f2(v)~Ce{ivt, ð26bÞ

f3(v)~iv{A{
Bf2(v)

f1(v)
, ð26cÞ

g1(v)~
1

f3(v)
, ð27aÞ

g2(v)~
B

f1(v)f3(v)
, ð27bÞ

g3(v)~
1ffiffiffiffiffiffi

2p
p

f3(v)
, ð27cÞ

g4(v)~
Df2(v)

f1(v)
, ð27dÞ

g5(v)~
D

f1(v)
, ð27eÞ

g6(v)~
BEe{ivt

f1(v)
, ð27fÞ

g7(v)~
Ee{ivtf3(v)

f2(v)
, ð27gÞ

and then it can be derived from Eqs. (23) that

p(v)~g1(v)g1(v)zg2(v)g2(v)zg3(v) DF (v)zg6(v)G(v)ð Þ,
ð28aÞ

m(v)~
f2(v)

f1(v)
g1(v)g1(v)z

f2(v)g2(v)z1

f1(v)
g2(v)

zg3(v) g4(v)F(v)z
f2(v)

f1(v)
z

1ffiffiffiffiffiffi
2p
p

Bg3(v)

� 	
g6(v)G(v)

� �
:

ð28bÞ

By defining the intermediate variables,

I1(v,v0)~ g4(v0)zg6(v)ð Þg1(v{v0)g1(v0), ð29aÞ

I2(v,v0)~ g2(v0)g4(v0)zg5(v0)zg2(v0)g6(v)ð Þg1(v{v0),ð29bÞ

I3(v,v0)~ g4(v0)zg6(v)ð Þg2(v{v0)g1(v0), ð29cÞ

I4(v,v0)~ g2(v0)g4(v0)zg5(v0)zg2(v0)g6(v)ð Þg2(v{v0),ð29dÞ

I1
0
(v,v0)~I1(v,v0)zg7(v)g1(v{v0)g1(v0), ð30aÞ

I2
0
(v,v0)~I2(v,v0)zg7(v)g1(v{v0)g2(v0), ð30bÞ

I3
0
(v,v0)~I3(v,v0)zg7(v)g2(v{v0)g1(v0), ð30cÞ

I4
0
(v,v0)~I4(v,v0)zg7(v)g2(v{v0)g2(v0), ð30dÞ

Eqs. (28) can be written as

Noise Amplification in Human Tumor Suppression
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p(v)~g1(v)g1(v)zg2(v)g2(v)

zg3(v)

ð?
{?

I1(v,v0)g1(v{v0)g1(v0)dv0

�

z

ð?
{?

I2(v,v0)g1(v{v0)g2(v0)dv0

z

ð?
{?

I3(v,v0)g2(v{v0)g1(v0)dv0

z

ð?
{?

I4(v,v0)g2(v{v0)g2(v0)dv0

	
,

ð31aÞ

m(v)~
f2(v)

f1(v)
g1(v)g1(v)z

f2(v)g2(v)z1

f1(v)
g2(v)

z
f2(v)

f1(v)
g3(v)

ð?
{?

I1
0
(v,v0)g1(v{v0)g1(v0)dv0

�

z

ð?
{?

I2
0
(v,v0)g1(v{v0)g2(v0)dv0

z

ð?
{?

I3
0
(v,v0)g2(v{v0)g1(v0)dv0

z

ð?
{?

I4
0
(v,v0)g2(v{v0)g2(v0)dv0

	
:

ð31bÞ

Let

Jk~

ð?
0

Ik(0,v0)dv0, ð32aÞ

Jm,n(v)~

ð?
{?

Im(v,v0)I�n (v,v0)dv0, ð32bÞ

Lm,n(v)~

ð?
{?

Im(v,v0)I�n (v{v0,v0)dv0, ð32cÞ

J
0
k~

ð?
0

I
0
k(0,v0)dv0, ð33aÞ

J
0
m,n(v)~

ð?
{?

I
0
m(v,v0)I

0�
n (v,v0)dv0, ð33bÞ

L
0
m,n(v)~

ð?
{?

I
0
m(v,v0)I

0�
n (v{v0,v0)dv0, ð33cÞ

where k,m,n~1,2,3,4f g. Then the correlation functions of p(v)
and m(v) can be expressed as

Sp(v)~Sp(v)p�(v’)T

~a1Sg2
1Tza2Sg1g2Tza3Sg2

2T

za4Sg2
1T

2za5Sg2
2T

2za6Sg1g2T
2

za7Sg2
1TSg1g2Tza8Sg1g2TSg2

2T,

ð34aÞ

Sm(v)~Sm(v)m�(v’)T

~b1Sg2
1Tzb2Sg1g2Tzb3Sg2

2T

zb4Sg2
1T

2zb5Sg2
2T

2zb6Sg1g2T
2

zb7Sg2
1TSg1g2Tzb8Sg1g2TSg2

2T:

ð34bÞ

The parameters a1, b1, a2, b2, � � �, a8, b8 represent the

contributions of Sg2
1T, Sg1g2T, � � �, Sg1g2TSg2

2T to the correlation

functions Sp(v) and Sm(v), respectively. With the aid of the

intermediate variables, those parameters can be expressed as

a1(v)~ g1(v)j j2, ð35Þ

a2(v)~2 Re g1(v)g�2(v)

 �

, ð36Þ

a3(v)~ g2(v)j j2, ð37Þ

a4(v)~4 g3(0)j j2J2
1 d(v)z g3(v)j j2 J1,1(v)zL1,1(v)ð Þ, ð38Þ

a5(v)~4 g3(0)j j2J2
4 d(v)z g3(v)j j2 J4,4(v)zL4,4(v)ð Þ, ð39Þ

a6(v)~4 g3(0)j j2 J2
2zJ2

3 z2 J1J4zJ2J3ð Þ

 �

d(v)z g3(v)j j2

J1,4(v)zJ4,1(v)zJ2,3(v)zJ3,2(v)zJ2,2(v)zJ3,3(v)ð

zL1,4(v)zL4,1(v)zL2,3(v)zL3,2(v)zL2,2(v)zL3,3(v)Þ,
ð40Þ

a7(v)~8 g3(0)j j2 J1J2zJ1J3ð Þd(v)z g3(v)j j2 J1,2(v)zJ2,1(v)ð

zJ1,3(v)zJ3,1(v)zL1,2(v)zL2,1(v)zL1,3(v)zL3,1(v)Þ,

ð41Þ

a8(v)~8 g3(0)j j2 J2J4zJ3J4ð Þd(v)z g3(v)j j2 J2,4(v)zJ4,2(v)ð

zJ3,4(v)zJ4,3(v)zL2,4(v)zL4,2(v)zL3,4(v)zL4,3(v)Þ,

ð42Þ

b1(v)~
f2(v)

f1(v)

����
����
2

a1(v), ð43Þ

b2(v)~
f2(v)

f1(v)

����
����
2

a2(v)z
2 Re f2(v)g1(v)½ �

f1(v)j j2
, ð44Þ

b3(v)~
f2(v)

f1(v)

����
����
2

a3(v)z
2 Re f2(v)g2(v)½ �z1

f1(v)j j2
, ð45Þ

b4(v)~
f2(v)g3(v)

f1(v)

����
����
2

4J
02
1 d(v)zJ

0
1,1(v)zL

0
1,1(v)

� 

, ð46Þ

b5(v)~
f2(v)g3(v)

f1(v)

����
����
2

4J
02
4 d(v)zJ

0
4,4(v)zL

0
4,4(v)

� 

, ð47Þ

b6(v)~
f2(v)g3(v)

f1(v)

����
����
2

4 J
02
2 zJ

02
3 z2 J

0
1J
0
4zJ

0
2J
0
3

� 
h i
d(v)

n

zJ
0
1,4(v)zJ

0
4,1(v)zJ

0
2,3(v)zJ

0
3,2(v)zJ

0
2,2(v)zJ

0
3,3(v)

zL
0
1,4(v)zL

0
4,1(v)zL

0
2,3(v)zL

0
3,2(v)zL

0
2,2(v)zL

0
3,3(v)

o
,

ð48Þ
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b7(v)~
f2(v)g3(v)

f1(v)

����
����
2

8 J
0
1J
0
2zJ

0
1J
0
3

� 

d(v)zJ

0
1,2(v)

h

zJ
0
2,1(v)zJ

0
1,3(v)zJ

0
3,1(v)zL

0
1,2(v)zL

0
2,1(v)

zL
0
1,3(v)zL

0
3,1(v)

i
, ð49Þ

b8(v)~
f2(v)g3(v)

f1(v)

����
����
2

8 J
0
2J
0
4zJ

0
3J
0
4

� 

d(v)zJ

0
2,4(v)zJ

0
4,2(v)

h

zJ
0
3,4(v)zJ

0
4,3(v)zL

0
2,4(v)zL

0
4,2(v)zL

0
3,4(v)zL

0
4,3(v)

i
:

ð50Þ
With respect to

p(v)~
1ffiffiffiffiffiffi
2p
p

ð?
{?

P(t){P�ð Þe{ivtdt

~P(v){
ffiffiffiffiffiffi
2p
p

P�d(v),

ð51aÞ

p�(v’)~P�(v’){
ffiffiffiffiffiffi
2p
p

P�d�(v’), ð51bÞ

Eqs. (34) can be read as

Sp(v)~SP(v)P�(v’)Tz
ffiffiffiffiffiffi
2p
p

P�2d(v)d�(v’)

{
ffiffiffiffiffiffi
2p
p

P� SP(v)Td�(v’)zSP�(v’)Td(v)½ �,
ð52aÞ

Sm(v)~SM(v)M�(v’)Tz
ffiffiffiffiffiffi
2p
p

M�2d(v)d�(v’)

{
ffiffiffiffiffiffi
2p
p

M� SM(v)Td�(v’)zSM�(v’)Td(v)½ �, ð52bÞ

so the power spectra of P(v) and M(v) can be expanded from

Eqs. (52) as

SP(v)~SP(v)P�(v0)T~Sp(v){
ffiffiffiffiffiffi
2p
p

P�d(v)d�(v0) P�{g3(v)f

Sg2
1T
ð?

{?
I1(v,v0)dv0zSg2

2T
ð?

{?
I4(v,v0)dv0

�

zSg1g2T
ð?

{?
I2(v,v0)zI3(v,v0)ð Þdv0

�
{g�3(v0)

Sg2
1T
ð?

{?
I�1 (v0,v0)dv0zSg2

2T
ð?

{?
I�4 (v0,v0)dv0

�

zSg1g2T
ð?

{?
I�2 (v0,v0)zI�3 (v0,v0)
� �

dv0

��
, ð53Þ

SM (v)~SM(v)M�(v0)T~Sm(v){
ffiffiffiffiffiffi
2p
p

M�d(v)d�(v0)fM�

{
f2(v)

f1(v)
g3(v) Sg2

1T
ð?

{?
I
0
1(v,v0)dv0zSg2

2T
�

ð?
{?

I
0
4(v,v0)dv0zSg1g2T

ð?
{?

I
0
2(v,v0)zI

0
3(v,v0)

� 

dv0

�

{
f �2 (v0)

f �1 (v0)
g�3(v0) Sg2

1T
ð?

{?
I
0�
1 (v0,v0)dv0zSg2

2T
�

ð?
{?

I
0�
4 (v0,v0)dv0zSg1g2T

ð?
{?

I
0�
2 (v0,v0)zI

0�
3 (v0,v0)

� 

dv0

�
g:

ð54Þ

If we remove the nonlinear terms in Eqs. (21), Eqs. (34) become

Sp(v)~
v2zm2

M

� �
Sg2

1Tz2BmMSg1g2TzB2Sg2
2T

v2zAmMzBC cos vtð Þ2z v mM{Að ÞzBC sin vt½ �2
,

ð55aÞ

Sm(v)~
C2Sg2

1T{2C v sin vtzA cos vtð ÞSg1g2Tz v2zA2
� �

Sg2
2T

v2zAmMzBC cos vtð Þ2z v mM{Að ÞzBC sin vt½ �2
:

ð55bÞ

When t is small, an approximation can be made,

sin vt&vt, ð56aÞ

cos vt&1{
vtð Þ2

2
, ð56bÞ

and then Eqs. (55) become

Sf (v)~S f (v)j j2T~
af zbf v2

v2zV2
� �2

zC2v2
, f ~p,mf g, ð57Þ

where

V~
AmMzBC

t2BC=2{1

� 	2

, ð58Þ

C~
mM{AztBC

1{t2BC=2
: ð59Þ

For Sp(v),

ap~
m2

MSg2
1Tz2BmMSg1g2TzB2Sg2

2T
1{t2BC=2

, ð60aÞ

bp~
Sg2

1T

1{t2BC=2ð Þ2
: ð60bÞ

For Sm(v),

am~
C2Sg2

1T{2ACSg1g2TzA2Sg2
2T

1{t2BC=2ð Þ2
, ð61aÞ

bm~
tC At{2ð ÞSg1g2TzSg2

2T

1{t2BC=2ð Þ2
: ð61bÞ

It is worthwhile to mention that a module, which consists of two

components, has been discussed recently [78]. They studied a set

of coupled Langevin equations for the interacting species. It is very

interesting that in the absence of delay and nonlinearity, i.e., a

special case of the spectrum as t~0 in Eqs. (55), Eqs. (34) can be
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reduced as

Sp(v)~
m2

Mzv2
� �

Sg2
1Tz2BmMSg1g2TzB2Sg2

2T

AmMzBCð Þ2z A2z2BCzm2
M

� �
v2zv4

, ð62aÞ

Sm(v)~
C2Sg2

1T{2ACSg1g2Tz A2zv2
� �

Sg2
2T

AmMzBCð Þ2z A2z2BCzm2
M

� �
v2zv4

, ð62bÞ

which are consistent with the results presented in the previous

paper [78].

Another characteristic feature of Eqs. (34) is that when Sg1g2T is

assumed to be zero, which means that g1 and g2 are uncorrelated,

both Sp(v) and Sm(v) can be written as a sum of two

contributions which is the so-called spectral addition rule as

derived in the previous paper [78]. Even in this case, the

coefficients in our results still include the effects coming from the

time delay and negative feedback mechanism.

In our numerical calculation, we use the fourth-order stochastic

Runge-Kutta method for integrating the chemical Langevin

equations (18), and Gaussian integration method to calculate the

integrations in Eqs. (34). The numerical results have shown that

the correlation functions Sp(v) and Sm(v) for p(t) and m(t) are

precisely consistent between the ones with chemical Langevin

equations (18) and the ones with Eqs. (34), which verifies our

truncation method in Eqs. (23). The Fourier transforms of p53 and

Mdm2 dynamics show that the number of the resonant peaks

would increase as time delay increases, which is consistent with the

experimental results [12]. The general finding of our analysis is

that an increase of delay between activation and induction induces

an oscillatory behavior with frequency which corresponds nearly

to the delay time. The spectral analysis as well as the mutual

information supports this finding. The general finding is in good

agreement with our previous work [37].

Bioscience and nanoscience provide pretty examples of

nonequilibrium and nonlinear dynamics in which noise can be

expected to have unavoidable effects. The methods developed over

years to deal with the effects in physical systems will help us to

further our understanding of the mechanisms ascribed to

nonlinearity and noise.

Methods

The stochastic p53 circuit was characterized by a Monte Carlo

method called the exact DSSA. Numerical integration of the

equations was carried out using Matlab software.
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