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Abstract
Background: The Class I cytokine receptors have a wide range of actions, including a major role
in the development and function of immune and blood cells. However, the evolution of the genes
encoding them remains poorly understood. To address this we have used bioinformatics to analyze
the Class I receptor repertoire in sea squirt (Ciona intestinalis) and zebrafish (Danio rerio).

Results: Only two Class I receptors were identified in sea squirt, one with homology to the
archetypal GP130 receptor, and the other with high conservation with the divergent orphan
receptor CLF-3. In contrast, 36 Class I cytokine receptors were present in zebrafish, including
representative members for each of the five structural groups found in mammals. This allowed the
identification of 27 core receptors belonging to the last common ancestor of teleosts and
mammals.

Conclusion: This study suggests that the majority of diversification of this receptor family
occurred after the divergence of urochordates and vertebrates approximately 794 million years
ago (MYA), but before the divergence of ray-finned from lobe-finned fishes around 476 MYA. Since
then, only relatively limited lineage-specific diversification within the different Class I receptor
structural groups has occurred.

Background
Cytokines are a class of proteins that includes interleukins
(ILs), interferons (IFNs), colony-stimulating factors
(CSFs), and tumor necrosis factors (TNFs). These
polypeptides are produced and secreted by cells in
response to many stimuli and mediate their effects by
binding to specific receptors on the surface of target cells
[1,2]. Class I helical cytokines represent the largest group
of cytokines and utilize a family of cell-surface receptors
that are structurally divergent from those employed by
other cytokines, such as the TNF receptor family and
receptor tyrosine kinases [3]. The receptors for Class I hel-
ical cytokines consist of various receptor chains that asso-
ciate in higher order homo- and heterotypic complexes.

Signaling via these receptors has a myriad of roles, includ-
ing a major influence on immunity and hematopoiesis [4-
6]. There is considerable functional redundancy amongst
Class I helical cytokine receptors. This is partially due to
some cytokines binding to multiple receptor complexes,
multiple cytokines binding to the same receptor complex,
and the sharing of common signal transducing receptor
chains – and so downstream signaling pathways – by dif-
ferent receptor complexes [7].

Class I helical cytokine receptors share little primary
sequence homology [8]. Although individual Class I heli-
cal cytokine receptor chains vary in overall topology, they
all posses a conserved 200 amino acid extracellular region
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that is required for ligand-receptor interactions [9]. This is
known variously as the cytokine receptor homology
domain (CHD), or the D200 [8,10]. The CHD consists of
two tandem fibronectin type III (FBN) folds and contain
distinctive elements that distinguish Class I from the Class
II family [8]. The Class I receptor CHD contains two pairs
of conserved cysteines linked via disulfide bonds and
arranged in a CX-(9–10)-CXWX-(26–32)-CX-(10–15)-C motif
within the first FBN fold. The second FBN fold contains a
highly conserved, although slightly variable such as in
GHR, WSXWS motif at its C-terminus [8,11]. In addition
to the CHD, Class I cytokine receptor chains consist of a
range of other modules, including extracellular immu-
noglobulin (Ig)-like and FBN domains, a transmembrane
domain, and conserved intracellular motifs, including
Box 1 and Box 2 motifs that are associated with Janus
Kinase (Jak) docking [1,2,8].

Class I cytokine receptor complexes have traditionally
been divided into families based on the use of common
signal transducing chains within a receptor complex [3].
However, more recently researchers have placed the indi-
vidual receptor chains into five groups. This is based on
sequence and structural homology of the receptor and its
cytokine ligand (Figure 1), which is potentially more
reflective of evolutionary relationships [10]. Group 1
receptor chains have an extracellular domain that consists
solely of a CHD. This group contains the erythropoietin
receptor (EPOR), thrombopoietin receptor (TPOR), prol-
actin receptor (PRLR), and growth hormone receptor
(GHR) chains that each form homodimers in the presence
of their respective ligands [10,12], as well as an orphan
receptor, CLF-3, of unknown function [10]. Group 2
receptors are the most numerous and are structurally
related to the archetypal glycoprotein 130 (GP130). Typi-

Human Class I receptor chains and complexesFigure 1
Human Class I receptor chains and complexes. a) Topological representation of the five structural groups of Class I 
receptor chains adapted from Boulay et al, 2003 [10]. Depicted are the Immunoglobulin-like (Ig) domains, Cytokine receptor 
Homology Domains (CHDs), including conserved cysteines (thin bands) and WSXWS motifs (thick band), Fibronectin type III 
(FBN) domains, Transmembrane (TM) regions, and Intracellular Homology Region (IHR) sequences. Full receptor names can 
be found in the list of abbreviations. b) Assembly of Class I receptor chains into functional receptor complexes. Individual 
receptor chains form either homodimers or various heterocomplexes that bind to specific ligands. For receptor complexes 
that bind to multiple cytokines, only one receptor complex is listed. Although constituents of receptor complexes of the IL-2R 
functional family, the IL-2Rα and IL-15Rα receptor chains are not members of the Class I family of receptors, but instead con-
tain distinctive 'sushi domain' structures [55]. The orphan receptor chain CLF-3 was not included as its arrangement into a 
receptor complex is yet to be established.
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cally, Group 2 receptors chains have an N-terminal Ig-
domain and FBN modules between their CHD and trans-
membrane domains [10,13]. Group 3 receptor chains also
generally possess an N-terminal Ig domain in addition to
the CHD, and are either soluble or have short intracellular
regions [10]. Receptor chains from Groups 2 and 3 collec-
tively constitute the large IL-6R family of receptor com-
plexes that often share GP130 as a common signal
transducer [13]. Group 4 receptors typically consist solely
of an extracellular CHD domain and long intracellular
domains, whereas Group 5 receptors often possess extra-
cellular Ig domains in addition to the CHD, and have
short intracellular regions [10]. Group 4 and 5 receptor
chains associate to form receptor complexes of the IL-2R
and IL-3R families, with IL-2Rγc and IL-3Rβc being the
shared chains respectively [3,7,10,11].

The Class I cytokine receptors are collectively responsible
for a great diversity of cytokine-mediated responses. To
further our understanding of the evolution of this com-
plex signaling system, we have explored the repertoire of
Class I receptor chains in sea squirt and zebrafish. This has
revealed a period of massive expansion of Class I receptors
between the divergence of urochordates and vertebrates
around 794 million years ago (MYA), and divergence of
ray-finned and lobe-finned fishes some 476 MYA. In con-
trast, more moderate lineage-specific expansion of these
receptors has occurred since that time.

Results
Identification of putative sea squirt Class I cytokine 
receptor chains
Exhaustive analysis of sea squirt genomic databases
revealed the presence of just two genes encoding putative
Class I cytokine receptor chains. The presence of corre-
sponding ESTs verified expression of both genes (Table 1).
One of these showed broad sequence homology and con-
served topology, including signature CHD motifs, with
the archetypal GP130 of vertebrates and was designated
cigp130-like (Figure 2a). The other receptor chain showed
high conservation with sequences available for the
orphan receptor, CLF-3, which essentially consists of just
a CHD domain (Figure 2b). Phylogenetic analysis of the
respective CHDs confirmed these designations, and
revealed that each was equally divergent from the dome
receptor sequences from Drosophila melanogaster (Figure
2c), despite the topological similarity between the dome
sequences and cigp130-like. Furthermore, the ciclf-3 is
encoded by a single exon, like the CHD of dmdome pro-
teins (Figure 2d). In contrast, cigp130-like has a complex
splice structure resembling that of GP130, that is largely
conserved in other Class I receptors, with the exception of
the vertebrate CLF-3 sequences that have a completely dif-
ferent splice pattern. No CLF-3-related sequences were
found in D. melanogaster or Anopheles gambiae, suggesting

that ciclf-3 was derived from at least a partial duplication
of an ancestral dome-like sequence. There were no con-
served syntenic relationships between either D. mela-
nogaster or C. intestinalis cytokine receptors and their
vertebrate counterparts (Additional file 1).

Identification of zebrafish genes encoding class I cytokine 
receptor chains
A total of 36 genes encoding putative Class I cytokine
receptors chains were identified in zebrafish, including at
least one representative from each structural group (Table
1, Figures 3 and 4). To both confirm that these genes were
transcribed, as well as to commence their functional char-
acterization, RT-PCR was performed on total RNA
extracted from whole zebrafish embryos 24 hpf and 72
hpf using primers specific for each. This yielded appropri-
ately sized products at one or both time points for all but
three contigs. The presence of an EST corresponding to the
putative gene provided alternate confirmation of expres-
sion for two of these, dril-3rβc and dril-12rβ2.b. The pres-
ence of equivalent open reading frames in Takifugu
rubripes or T. nigroviridis for the majority of zebrafish
receptors provided additional support for this assertion
(data not shown). Combined with the presence of long
open reading frames in the contigs, this represented com-
pelling evidence that the vast majority of contigs identi-
fied were coding genes and not pseudogenes. Only dril-
21rα.b lacked any supporting evidence of expression,
although a T. nigroviridis orthologue was present (data not
shown).

Each of the Group 1 receptor chains found in mammals
was represented at least once in zebrafish as determined
by sequence, topology, and synteny conservation (Table
1), and confirmed by phylogenetic analysis (Figure 3a,
Additional file 4). There were single zebrafish orthologues
for CLF-3 EPOR, and TPOR. In contrast, the GHR and
PRLR subfamily was expanded in zebrafish, with two clear
homologues for PRLR (prlr.a, prlr.b), a single GHR, and
an additional somatolactin receptor (slr) (Additional file
2). Furthermore an additional receptor was identified as
belonging to the GHR and PRLR subfamily. Phylogenic
analysis of the CHD domain grouped this receptor with
GHR, it also has the presence of a typical WSXWS motif
seen in the CHD of PRLR, but not GHR and SLR. Due to
the lack of comparable tetrapod sequences it was named
after the T. nigroviridis receptor, CRFA4, and is possibly a
teleost specific receptor.

Of the ten mammalian Group 2 receptors, potential
orthologues for eight were found in zebrafish (Table 1).
This included one for the archetypal member of the
group, GP130, which is the common shared component
of many IL-6R family receptors. Interestingly, the
zebrafish gp130 sequences did not form a distinct clade
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Sea squirt Class I receptor chainsFigure 2
Sea squirt Class I receptor chains. a-b) Sequence alignments. Shown are alignments of the CHD of human (hs) and seas-
quirt (ci) GP130 (a) and CLF-3 (b) related sequences, with key residues annotated. c) Phylogenetic analysis of sea squirt recep-
tors with representative sequences from each structural group of mammalian receptors and the two fruit fly dome receptors, 
using the Neighbourhood-Joining algorithm. Bootstrap values are indicated on branches as a percentage of 1000 replicates. d) 
Splice-site analysis. Schematic representation of the splice structure for the CHD of the above sequences in comparison to the 
fruit fly (dm) dome. Exons indicated with thick lines and introns with thin connecting lines. Specific residues indicated by stand-
ard one letter code.
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)Table 1: Homology and expression analysis of Class I cytokine receptor genes from sea squirt and zebrafish1

Related tetraodon sequence Putative human homology Expression

Receptor Sequence Accession Number RT-PCR

Receptor Sequence Accession Number Most similar Percent Similarity (Identity) Topology Synteny 24 hpf 72 hpf EST coverage of coding sequence (aa)

Sea Squrit clf-3 BN000968 tnCRFA2 AAR25665 clf-3 30.5 clf-3 N/A N/A N/A 1–463
gp130-like BN000969 tnCRFA26 AAR25689 gp130 28.0 gp130 N/A N/A N/A 662–1124

Zebrafish Group 1 clf-3 AM233512 tnCRFA2 AAR25665 CLF-3 66.4 CLF-3 CLF-3 + + 1–444
epor BN000857 tnCRFA9 AAR25672 EPOR 25.3 EPOR EPOR + + 353–464
tpor BN000861 tnCRFA22 AAR25685 TPOR 17.5 TPOR - - + 67–244
ghr.a BN000777 tnCRFA5 AAR25668 GHR 29.0 GHR GHR + + 1–554
ghr.b BN000776 tnCRFA6 AAR25669 GHR 33.1 GHR - + + 1–436, 467–570
prlr.a AY375318 tnCRFA7 AAR25670 PRLR 24.8 PRLR PRLR^ + + 312–602
prlr.b BN000805 tnCRFA8 AAR25671 PRLR 33.3 PRLR - + + 36–144
crfa4 BN000914 tnCRFA4 AAR25667 GHR (35.1) GHR/PRLR - + + 1–117, 205–364

Group 2 obr BN000731 tnCRFA30 AAR25693 OBR 22.4 OBR OBR + + 245–444, 943–1100
gcsfr AM157796 - - GCSFR 25.6 GCSFR GCSFR^^ + + -
gp130 BN000730 tnCRFA26 AAR25689 GP130 31 GP130 GP130 + + -
lifr.a BN000768 tnCRFA29 AAR25692 OSMR 23 OSMR LIFR + + 1–173, 246–425
lifr.b BN000769 tnCRFA29 AAR25692 OSMR 20.6 OSMR LIFR + + 1–182, 452–956
osmr BN001082 tnCRFA28 AAR25691 LIFR ((32.2)) OSMR OSMR + + -

il-12rβ2.a BN000858 tnCRFA25 AAR25688 IL-12Rβ2 21.5 IL-12Rβ2 IL-12Rβ2 + + -
il-12rβ2.b BN000972 tnCRFA25 AAR25688 IL-12Rβ2 17.4 IL-12Rβ2 - - - 1–146, 445–549

il-23r BN000859 tnCRFA24 AAR25687 IL-23R 15.1 IL-12Rβ2 IL-23R - + -
Group 3 il-6rα BN000832 tnCRFA21 AAR25684 IL-6Rα 17.3 IL-6Rα IL-6Rα + + 463–580

il-11rα BN000772 tnCRFA17 AAR25680 IL-11Rα 26.9 IL-11Rα - + + 1–248, 276–402
il-27rβ BN000734 tnCRFA3 AAR25666 IL-27Rβ 23.4 IL-27Rβ - + + 1–302
cntfr BN000926 tnCRFA16 AAR25679 CNTFR 49.3 CNTFR - + + 1–357
clf-1.a BN000719 tnCRFA1 AAR25664 CLF-1 61.7 CLF-1 - + + 1–287, 322–389
clf-1.b BN000970 tnCRFA1 AAR25664 CLF-1 54.7 CLF-1 CLF-1 + + 1–270

il-12p40.a BN000854 tnCRFA14 AAR25677 IL-12p40 21.4 IL-12p40 IL-12p40 - + 1–231
il-12p40.b BN000860 tnCRFA15 AAR25678 IL-12p40 20.7 IL-12p40 IL-12p40 - + 72–281

Group 4 il-2rβ BN000818 tnCRFA12 AAR25675 IL-2Rβ 21.7 Group 4 IL-2Rβ(?) - + 1–138, 390–501
il-4rα BN000884 - - IL-4Rα 13.3 IL-4Rα IL-4Rα + + 1–314, 356–624
il-7rα BN000775 tnCRFA11 AAR25674 IL-7Rα 20.5 IL-7Rα IL-7Rα - + 1–372

il-21rα.a BN000773 tnCRFA13 AAR25676 IL-21Rα 23.8 IL-21Rα - + + 1–508
il-21rα.b BN000971 tnCRFA20 AAR25683 IL-21Rα (19.5) - - - - -
il-3rβc BN000973 tnCRFA23 AAR25686 IL-3Rβc 14.1 IL-3Rβc IL-3Rβc - - 1–193

Group 5 il-2rγ c.a BN000831 tnCRFA10 AAR25673 IL-2Rγ c 21.6 IL-2Rγ c - - + 1–211, 314–362
il-2rγ c.b BN000817 tnCRFA10 AAR25673 IL-2Rγ c 18.0 IL-2Rγ c IL-2Rγ c + + -

tslpr - - - TSLPR iso2 17.6 - TSLPR + + -
il-13rα1 BN000774 tnCRFA19 AAR25682 IL-13Rα1 16.7 Group 5 IL-13Rα1 + + 1–411
il-13rα2 BN000679 tnCRFA18 AAR25681 IL-13Rα2 30.2 IL-13Rα2 IL-13Rα2 + + 1–405

1Class I receptor chains are listed (and ordered by structural groups in the case of zebrafish) along with their Accession Number of the nucleotides (zebrafish) or protein (T. nigroviridis), closest human 
homologue based on percentage identity of the full-length protein, topology (Figure 1), synteny (Additional file 3) and expression status. Expression of zebrafish receptor chains was analyzed by RT-PCR on 
RNA extracted from either 24 hpf or 72 hpf, with the presence of an appropriately sized product following agarose gel electrophoresis indicated with a plus (+), or its absence with a minus (-). The existence 
of corresponding EST(s) is indicated for all sequences, including those from sea squirt. The numbers indicates amino acid coverage; bolded numbers represent either coverage of the start or stop codons, and 
absence with a minus (-). Brackets indicate sequences for which full-length sequence was unavailable, and so the CHD only was used, with double brackets indicating availability of only a partial CHD 
sequence. ^ indicates synteny with T. nigroviridis and ^^ indicates synteny with T. rubripes. Two additional receptors were omitted from the table and the final tally of receptors because these sequence was 
partial (tpor (GenBank accession no. BN001083)), have silent and missense mutations (il-4rα (GenBank accession no. BN000885)).
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Phylogenetic analysis of zebrafish Class I receptor chainsFigure 3
Phylogenetic analysis of zebrafish Class I receptor chains. Phylogenetic trees were created for each of the five struc-
tural groups of Class I receptor chains with sequences from zebrafish (dr) along with those from human (hs) and mouse (mm): 
Group 1 (a), Group 2 (b), Group 3 (c), Group 4 (d). Trees were calculated on the basis of multiple alignments of the CHD 
domains (Additional files 4, 5, 6, 7).
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with the tetrapod GP130 sequences using CHD only strat-
egies (Figure 3b, Additional file 5). However, multiple
sequence alignment of the full-length protein revealed
areas of significant homology throughout the protein that
continued into functionally important areas of the intrac-
ellular domain, including Box 1 and Box 2 (Jak docking),
a serine rich region, Box 3, a STQPLLDXEEX internaliza-
tion motif, and tyrosine residues essential for docking of
Stat3 (YXXQ) and SHP-2/SOCS3 (YXXV) [14-16] (Figure
5a). A zebrafish orthologue was also found for the closely-
related GCSFR, which has the same overall topology to
GP130 [10]. Synteny analysis suggested that there was no
conserved relationship between humans and zebrafish
(Additional file 3). However, there was conserved synteny
between human and T. rubripes, thus providing further
evidence that the zebrafish sequence is indeed a GCSFR

orthologue. Mammalian IL-12Rβ2 also exhibits the same
topology as GP130 and is syntenic to IL-23R with which it
also shows high homology [17], although the latter lacks
the FBN domains [10]. The zebrafish orthologues also
maintain conserved synteny (Additional file 3), although
zebrafish il-23r possesses FBN domains as does IL-12Rβ2,
but lacks a transmembrane domain.

Several Group 2 receptors have a duplication of the CHD,
partially in OSMR, fully in the closely related LIFR, and
including a duplicated N-terminal Ig domain in the more
divergent OBR [13]. Zebrafish have three related receptors
that show similar sequence identity to both OSMR and
LIFR. All sequences showed topological similarity to
OSMR, having only a partial duplication of the N-termi-
nal CHD, termed "CHD 0.5". Two of these sequences,
lifr.a and lifr.b, are grouped with LIFR on the basis of phy-
logenic analysis of the CHD. One, lifr.a, showed extensive
conservation of intracellular homology motifs with LIFR,
including Box 1, Box 2, Box 3, multiple Stat3 binding sites
and a C-terminal GSPXIXSXQFLIP internalization motif,
absent in drlifr.b and OSMR [18] (Figure 5b). Although
the intracellular region of drosmr was unable to be deter-
mined, the extracellular region showed strong sequence
and synteny conservation with OSMR (Additional file 3).
In contrast, a clear OBR homologue was identified in
zebrafish, drobr, which maintains the same topology as
mammalian OBR. No zebrafish homologues were found
for the remaining Group 2 receptors – IL-12Rβ1, IL-27Rα,
and GLMR – with their unique topology apparently spe-
cific to tetrapods.

Zebrafish homologues were found for all six mammalian
members of Group 3 (Table 1). Single fish orthologues
were identified for IL-27Rβ, IL-6Rα, CNTFRα, and IL-
11Rα, while zebrafish possessed two homologues for
both CLF-1 (drclf-1.a and drclf-1.b) and IL-12p40 (dril-
12p40.a and dril-12p40.b). In each case, there was con-
served topology and clades formed with high bootstrap
values (Figure 3c, Additional file 6).

Mammalian Group 4 consists of six receptor chains in
humans and seven in mice, the latter with an additional
copy of IL-3Rβc [11]. No zebrafish orthologues were
found for either the additional IL-3Rβc or for IL-9Rα, but
each of the other five members was represented (Figure
3d, Additional file 7), albeit with weak homology. The
identity of these marginal orthologues was confirmed by
conserved topology for IL-3Rβc (Figure 6), conserved syn-
teny for IL-2Rβ, IL-4Rα, and IL-7Rα (Additional file 3).
Further evidence for the IL-7Rα orthologues was aided by
the conserved intracellular motifs, including Box 1 and a
Stat5 docking site (Figure 5c) [19]. In contrast, there were
two paralogues of IL-21Rα found, although neither dis-
played conserved synteny with human IL-21Rα.

Phylogenetic analysis of zebrafish Class I receptor chainsFigure 4
Phylogenetic analysis of zebrafish Class I receptor 
chains. A phylogenetic tree was created for structural 
Group 5 of Class I receptor chains with sequences from 
zebrafish (dr) along with those from human (hs) and mouse 
(mm). Trees were calculated on the basis of multiple align-
ments of the CHD domains (Additional file 8).
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Conservation of crucial intracellular motifs in zebrafish Class I receptor chainsFigure 5
Conservation of crucial intracellular motifs in zebrafish Class I receptor chains. Multiple sequence alignments of the 
intracellular regions of homologues of GP130 (a), LIFR and OSMR (b), and IL-7Rα (c) from zebrafish, human and mouse. The 
solid lines above the alignments indicate key regions of conservation: Box 1, Box 2, Box 3, serine rich (SR), and the internaliza-
tion motifs. The dashed line under the consensus sequence represents conserved docking sites for the signaling molecules 
SHP-2/Socs3, Stat3, and Stat5.
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Finally only four of the seven mammalian Group 5 recep-
tor chains were represented in zebrafish (Figure 4, Addi-
tional file 8). A single orthologue was identified for IL-
13Rα2 and two zebrafish sequences were found that were
most closely related to IL-2Rγc, dril-2γc.a, and dril-2γc.b.
Conserved synteny provided evidence for the identifica-
tion of the zebrafish orthologues of TSLPR and IL-13Rα1,
with the latter displaying only limited sequence homol-
ogy. Additionally both the zebrafish tslpr identified and
the second isoform of human TSLPR (Genbank accession
no. NP_001012288) lack the first half of the CHD. No
zebrafish orthologues were found for IL-3Rα, GMCSFRα,
and IL-5R.

Discussion
The aim of this study was to further our understanding of
the evolution of class I cytokine signaling. Since Class I
cytokines share little primary sequence [8], analysis of
their receptors provides the best means to of achieving
this aim. We therefore employed bioinformatic
approaches to characterize the Class I cytokine receptor
repertoire within the sea squirt and zebrafish genomes.
However, the divergence of class I cytokine receptors,
means that phylogenetic trees and alignments are some-
times unreliable. Therefore, the identification of receptor
sequences was additionally guided by overall receptor
topology and, in particular, conservation of synteny. This

Evolution of Class I cytokine receptorsFigure 6
Evolution of Class I cytokine receptors. Class I cytokine receptors are depicted as in Figure 1. The rounded rectangles 
display all Class I cytokine receptors identified from fruit fly, mosquito, sea squirt, zebrafish, and humans. The bolded rectangles 
represent the hypothetical receptors present at the time of divergence of protostomes from deuterostomes, urochordates 
from vertebrates, and ray-finned from lobe-finned fishes, respectively. The vertebrate Class I receptor chains have been further 
divided into structural groups as described, with the exception of CLF-3 that has been considered separately on the basis of its 
distinct evolutionary history. Estimation of the times of the key evolutionary events, expressed in millions of years ago (MYA), 
are based on molecular genomic approaches [56]. Arrows represent presumed evolutionary relationships.
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robust methodology successfully identified two represent-
atives in sea squirt and 36 representatives in zebrafish.
Comparison with the equivalent receptors in insects and
mammals has yielded considerable insight into the evolu-
tion of this important family of receptors.

Molecular details
Sea squirt possess a classical Class I receptor with the sig-
nature Ig-CHD-FBN-TM-Box 1 topology found in D. mel-
anogaster dome and vertebrate GP130 proteins (including
that of zebrafish). The presence of a single Class I receptor
related to dome/GP130 in Anopheles gambiae confirmed
that an archetypal Class I receptor of similar topology
existed at 974 MYA, when protostomes and deuteros-
tomes diverged, and from which all other receptors were
derived (Figure 6). This was supported by the splicing pat-
tern of cigp130-like that was largely conserved in all verte-
brate Class I receptors, except CLF-3. In higher vertebrates,
GP130 functions as part of heteromeric receptor com-
plexes. However, the absence of other compatible receptor
chains suggests that cigp130-like signals in a
homodimeric manner, presumably similar to the dome
receptors of D. melanogaster.

The second sea squirt receptor showed unequivocal
homology to CLF-3 and, like the CHD of dome, was the
product of a single coding exon. This suggests that the
CLF-3 precursor arose from a duplication of at least the
CHD of an archetypal dome-like receptor, and that it sub-
sequently developed an independent splicing pattern in
the evolution of vertebrate CLF-3 genes. The high conser-
vation of CLF-3 despite its ancient origins are indicative of
an essential conserved function for this protein. However,
despite the presence of a WSXWS motif, CLF-3 proteins
lack the signature CHD CX-(9–10)-CXWX-(26–32)-CX-(10–15)-
C motif, and possibly a leader sequence, indicating an
altered function compared to other class I cytokine recep-
tors. This suggests that CLF-3 may be best considered as a
unique protein despite its shared evolutionary origins to
the other class I cytokine receptors. This has some similar-
ities to Tissue Factor, which has evolved a divergent bio-
chemical function in blood coagulation despite sharing
origins with the class II cytokine receptors [20].

Therefore, by the time of the last common ancestor of ver-
tebrates and urochordates 794 MYA, two different recep-
tor topologies (and the WSXWS motif) had been
generated, only one of which would ultimately generate
the great diversity of Class I cytokine receptor chains seen
in higher vertebrates, although the exact details remain
elusive (Figure 2c).

Comparison of the zebrafish and mammalian Class I
cytokine receptor repertoires suggest that between 794
MYA and 476 MYA there was a considerable expansion of

both the number of receptor topologies (combinations of
structural subdomains) as well as the total number of
receptor chains. The result was eight different topologies
for the 27 core receptor chains that were likely to be
present in the common ancestor of fish and mammals
(Figure 6). During this period it has been hypothesized
that two whole genome duplications have occurred [21].
These events would explain some of the increase in the
diversity of receptor chains. However, only one CLF-3-like
receptor is present in both humans and zebrafish. Thus
the two whole genome duplications alone theoretically
account for only four GP130-related receptors. Therefore,
other processes, such as tandem and en bloc duplication
have likely driven this expansion.

Since their last common ancestor, the number of cytokine
receptor chains have increased to 36 receptors in zebrafish
and 36 in humans, although the cause of this expansion is
likely different in each lineage. The teleost lineage is
believed to have experienced a further whole genome
duplication event [22], which is probably responsible for
several novel teleosts receptors, such as the paralogues of
the ghr, prlr, lifr, il-12rβ2, clf-1, il-12p40, and il-2rγc. How-
ever, evidence of en bloc duplications is also apparent in
the il-21rα paralogues, as well as crfa4. In contrast, recep-
tor repertoire expansion within mammals appears prima-
rily to be the result of tandem or en bloc duplications. This
is typified in the generation of GLMR, IL-12Rβ1 and IL-
27Rα within Group 2, and of the Group 5 receptors that
lie relatively adjacent on chromosome X [10]. Similar
duplication apparently explain the ongoing cytokine
receptor (and ligand) evolution in D. melanogaster [10].

Functional considerations
Some Class I receptor chains have maintained a one:one
(1:1) homologue relationship between mammals and tel-
eosts, suggesting conserved functions. For example, a sin-
gle GP130 orthologue was also present in teleosts with
conserved intracellular Jak and Stat3 docking motifs [14-
16]. Moreover, many of the Group 3 receptor chains that
form complexes with GP130 also largely showed a 1:1
homologue relationship. Other orthologous 1:1 receptor
genes found were EPOR, CLF-3, GCSFR, IL-23Rα, OBR,
CNTFRα, IL-6Rα, IL-11Rα, IL-27Rβ, IL-7Rα, IL-3Rβc, IL-
13Rα1, IL-13Rα2, and TSLPR. Many of these also showed
the highest percent similarity and conserved topology,
further attesting to their likely conserved roles. An obvi-
ous exception was IL-23Rα, which showed different
topology in teleosts and tetrapods, lacking a transmem-
brane domain in the former and FBN repeats in the latter.
However, conserved synteny and sequence within the
CHD strongly suggest that the zebrafish sequence is an il-
23rα orthologue.
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In contrast, lineage-specific expansion was seen in both
teleosts and mammals probably representing a diversifica-
tion of function. In support of this, expansion of Group 1
receptor chains within teleosts that has produced multiple
paralogues for the PRLR/GHR subgroup. Prolactin signal-
ing in fish plays a drastically different function with
diverse roles such as pigment cell function and osmoreg-
ulation [23,24], contrasting to its role in mammary gland
development and lactation in mammals [25]. It remains
speculative as to whether prolactin binds to prlr.a or
prlr.b, to both prlr.a and prlr.b, or whether there may be
more than one prolactin. Fish also have a unique cytokine
related to both growth hormone and prolactin, somatol-
actin, which has roles in background adaptation, stress
response and acid-base regulation [26]. Indeed zebrafish
has recently been shown to have two somatolactins, slα
and slβ, a growth hormone, and a prolactin [27].
Zebrafish has a clear orthologue of salmonid slr, although
whether slα or slβ, or both bind to zebrafish slr needs to
be established. The zebrafish ghr is less problematic,
clearly orthologues to the single ghr in salmonids (see
additional file 2) [28,29]. The remaining more divergent
homologue of PRLR/GHR, crfa4, also does not have a
direct mammalian orthologue, and is most closely related
sequence to the orphan T. nigroviridis receptor CRFA4.
Other receptor genes expansions are limited to Group 3
(IL-12p40 and CLF-1) and Group 4 (IL-21Rα), although
the duplication of CLF-1 appears to be specific for
zebrafish rather than all teleosts, as they are absent in
pufferfish (data not shown).

Mammalian lineage-specific expansion has occurred in
other structural groups. Within Group 2 the IL-12Rβ1, IL-
27Rα, and GLMR receptor chains are unique to tetrapods.
These receptors are topologically similar lacking an N-ter-
minal Ig-domain – a unique topology – and so are likely
derived from the same ancestral receptor. IL-12Rβ1 a
member of the IL-12R subfamily is a shared component of
both IL-12R and IL-23R complexes promoting Th1 cell
and memory T cell development respectively [30]. IL-27R
is also involved in the regulation of Th1 cell differentia-
tion [31]. It remains to be seen whether these higher order
immune functions are conserved in fish [32]. In contrast,
IL-9Rα likely arose from a duplication of IL-2Rβ. In mam-
mals, IL-9Rα has been implicated in asthma and immune
responses against parasites [33], the former property
clearly not relevant in an aquatic environment. Lineage-
specific expansion was most evident in Group 5 with no
teleost homologues found for several mammalian recep-
tors. Interestingly, this is largely limited to receptor chains
that form complexes of the IL-3R functional family. Spe-
cifically, GMCSFRα, IL-3Rα, and IL-5Rα could have been
formed via multiple rounds of duplication of either IL-
13Rα1, IL-13Rα2, or TSLPR on chromosome X. The IL-3R
functional family is involved in the development of eosi-

nophils, granulocytes, macrophages, and monocytes. Of
these, IL-5 signaling plays a specific role in eosinopoiesis
[34]. Interestingly, teleosts have no clear analogue for this
cell-type [35], and we have been unable to identify ortho-
logues of a range of eosinophil-specific genes in zebrafish
(data no shown). Thus, the IL-5R may have played a direct
role in the evolutionary ontogeny of this cell type. The
expansion of the IL-3R family has continued within mam-
malian lineages as IL-3Rβc has been duplicated to gener-
ate, IL-3Rβc and IL-3RβIL-3 in mouse [11], that latter of
which is a pseudogene in humans.

Conclusion
Innate immunity, including complement and Toll recep-
tors are well developed in invertebrates, as characterized
by D. melanogaster [36,37]. In this organism, the domeless
receptors play diverse roles in oogenesis, eye and gut
development, with a more minor role in the D. mela-
nogaster immune system. Adaptive immunity, on the
other hand, arose after sea squirt [38]. Our data suggest
that a massive increase in the number of Class I cytokine
receptors correlated with the development of acquired
immunity and the refinement of innate immunity. This
suggests that the expansion and subsequent specialization
of dome/gp130-like receptors may have played a major
role in the evolution of the immune system. In contrast,
chemokines and their receptors, which are not present in
sea squirt [39], probably only contributed at later stages of
immune system evolution. Further data mining or func-
tional studies of species between urochordates and tele-
osts, such as lampreys and hagfish, is required for
additional insight into this interesting family of receptors,
while it is anticipated that reverse genetics approaches in
zebrafish may shed light on the function of CLF-3 recep-
tors.

Methods
Data mining and sequence assembly
Searches were performed using Class I cytokine receptor
sequences and a Class I CHD consensus motif [10]. These
sequences were used to systematically interrogate the sea
squirt genomic [40] and Expressed Sequence Tag (EST)
databases [41] as well as the zebrafish EST, genomic, and
whole genome shotgun (WGS) databases [42], using
tBLASTn. All independent sequences possessing E values >
0.1 were extracted for further analysis. GenomeScan [43]
was used to predict coding exons from sequences derived
solely from WGS or genomic scaffolds, some of which
were manually adjusted on the basis of known intron-
exon boundaries in other organisms. Nucleotide
sequences were assembled using Sequencher 4.1.4 (Gene
Codes Corporation). Any apparently incomplete contigs
were extended by iterative BLASTn searches using the rel-
evant contig terminus until the entire putative coding
sequence had been identified, with any remaining gaps
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closed by sequencing of appropriate reverse transcription-
polymerase chain reaction (RT-PCR) product. The posi-
tion of intron/exon boundaries was determined by align-
ment of cDNA and genomic sequences, applying the GT-
AG splice rule where possible [44].

Reverse Transcription-Polymerase Chain Reaction
Total RNA was extracted from zebrafish embryos at 24
and 72 hours post fertilization (hpf). This was converted
into cDNA using oligo-dT primers (Roche) and reverse-
transcriptase (Invitrogen), which was used as a template
for PCR with Taq polymerase (Invitrogen) in an iCycler
thermocycler (Biorad) and oligonucleotides designed to
span at least one intron to eliminate the potential for
amplifying genomic sequences. Negative control tem-
plates were water and samples in which the reverse tran-
scriptase was omitted. If required for contig assembly, RT-
PCR products were cloned into pGEM-T EASY (Promega)
and subsequently sequenced using Big Dye Terminator
(Applied Biosystems).

Sequence analysis and nomenclature
The probable identity of each encoded receptor chain was
determined by pBLAST searching with the respective con-
ceptual translations. The initial BLAST search was fol-
lowed by multiple sequence alignments using AlignX 9
(Invitrogen) and ClustalX 1.83 [45]. The latter were used
to create bootstrapped phylogenetic tree of 1000 repli-
cates with the Neighbor-Joining algorithm, formatted
using njplot [46], and viewed in Treeview 1.6.6 [47].
Additional analysis using maximum parsimony [48] and
maximum likelihood [49] algorithms was performed with
phylo_win [50] and phylip [51] packages to confirm phy-
logenetic topologies.

Synteny analysis was performed on the putative receptor
chains to further access the identity of these receptor
chains. Ensembl [52] was used to perform synteny analy-
sis using version 2 of the C. intestinalis (JGI 2) assembly
and version 6 of the D. rerio (Zv6) assembly. Synteny data
from either C. intestinalis or D. rerio was primarily com-
pared to that of humans (NCBI 36). However, in certain
cases Tetraodon nigroviridis (TETRAODON 7), Takifugu
rubripes (FUGU 4.0), Xenopus tropicalis (JGI 4.1), Gallus
gallus (WASHUC 1), and Mus musculus (NCBI m36) were
also used in the synteny comparison.

The final assignment of identity was guided by conserva-
tion of topology, synteny, and overall sequence such as
the conservation of functional domains, including intrac-
ellular sequences that mediate interactions with the key
signal transduction pathway used by cytokine receptors,
the Jak-Stat (Signal transducer and activator of transcrip-
tion) pathway [53]. The nomenclature for the zebrafish
genes followed the conventions of zebrafish information
network (ZFIN) [54]. Sea squirt genes were named using
similar criteria. All sequences were subsequently depos-

ited in GenBank (Table 1) except zfprlr.a (GenBank acces-
sion no. AY375318).

Abbreviations
BLAST Basic local alignment search tool

CHD Cytokine receptor homology domain

CLF Cytokine receptor like factor

CNTF Ciliary neurotrophic factor

CSF Colony-stimulating factor

CRFA Cytokine receptor family, Class I

EPOR Erythropoietin receptor

EST Expressed sequence tag

FBN Fibronectin

GCSF Granulocyte-CSF

GH Growth hormone

GLMR GP130-like monocyte receptor

GP130 Glycoprotein 130

HPF Hours post fertilization

IFN Interferon

IL Interleukin

JAK Janus Kinase

LIF Leukemia inhibitory factor

MYA Million years ago

OB obesity (leptin)

OSM Oncostatin M

PRL Prolactin

R Receptor

SL Somatolactin

STAT Signal transducers and activators of transcription

TM Transmembrane

TNF Tumor necrosis factor
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TSLP Thymic stromal lymphopoietin
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