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Abstract

Rehabilitation is the main therapeutic approach for reducing poststroke functional deficits

in the affected upper limb; however, significant between-patient variability in rehabilitation

efficacy indicates the need to target patients who are likely to have clinically significant

improvement after treatment. Many studies have determined robust predictors of recovery

and treatment gains and yielded many great results using linear approachs. Evidence has

emerged that the nonlinearity is a crucial aspect to study the inter-areal communication in

human brains and abnormality of oscillatory activities in the motor system is linked to the

pathological states. In this study, we hypothesized that combinations of linear and nonlin-

ear (cross-frequency) network connectivity parameters are favourable biomarkers for

stratifying patients for upper limb rehabilitation with increased accuracy. We identified the

biomarkers by using 37 prerehabilitation electroencephalogram (EEG) datasets during a

movement task through effective connectivity and logistic regression analyses. The pre-

dictive power of these biomarkers was then tested by using 16 independent datasets (i.e.

construct validation). In addition, 14 right handed healthy subjects were also enrolled for

comparisons. The result shows that the beta plus gamma or theta network features pro-

vided the best classification accuracy of 92%. The predictive value and the sensitivity of

these biomarkers were 81.3% and 90.9%, respectively. Subcortical lesion, the time post-

stroke and initial Wolf Motor Function Test (WMFT) score were identified as the most sig-

nificant clinical variables affecting the classification accuracy of this predictive model.

Moreover, 12 of 14 normal controls were classified as having favourable recovery. In con-

clusion, EEG-based linear and nonlinear motor network biomarkers are robust and can

help clinical decision making.
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Introduction

Motor deficits of the affected upper limb (UL) after stroke affect up to two-thirds of stroke

patients and rehabilitation is one of the most frequently used therapeutic approaches for

reducing the affected UL impairments. Because the most effective treatment approaches and

techniques remain unclear, rehabilitation efficacy significantly varies among patients [1,2],

especially in those with moderate initial motor impairment [3,4,5]. Therefore, the ability to

identify the target populations who can significantly benefit from treatment is particularly

important for maximizing the rehabilitation efficacy [6].

Many studies have determined robust predictors of recovery and treatment gains after

stroke, such as age, lesion size and type, time poststroke, and motor function, in addition to

neuroimaging findings [7], including cortical activation, network connectivity, and structural

integrity [8]. For instance, the motor network connectivity measured with functional magnetic

resonance imaging (fMRI) has been shown to facilitate individualized prediction of 86% accu-

racy [9]. Importantly, cortical oscillations in the five core motor areas, including supplemen-

tary motor area (SMA), bilateral primary motor cortex (M1) and premotor cortex (PM) are

modulated by hand movements [10,11,12] and by stroke [13,14,15]. After ischemic stroke, the

regional θ and γ oscillations were increased while β rhythms were decreased during the acute

phase [15], and a frequency-specific parameter based on the (δ +θ)/(α + β) ratio derived from

patients’ EEG has been used to predict functional outcomes [16]. Recently, Nicolo et al dem-

onstrated that the EEG β coherence between the ipsilesional M1 and all other brain regions

was linearly correlated with more favorable motor improvement in patients with subacute

stroke [17]. Similarly, Wu et al. identified the linear cortical connectivity in the high β band

between ipsilesional M1 and parietal operculum during resting state as biomarkers for predict-

ing motor gains from therapy in chronic stroke patients [18]. Therefore, studies have focused

on combinations of multi-modality predictors to increase the predictive value and yielded

many good results [4,7,19]. However, these predictors were identified using linear approaches

such as coherence and linear regression. Linear methods can extract the most significant fea-

tures of the data and provide a means of summarizing the system characters, but may not be

able to represent all the properties of brain signals accurately [20]. Evidence has emerged that

the nonlinearity is a crucial aspect to brain function (for review, see Stam, 2005). Specifially,

nonlinear approaches have been widely applied to study the inter-areal communication in

human brains in the expression of cross-frequency coupling [21,22,23,24,25,26] and can be

supplementary to the linear methods. In addition, the application of most predictors was lim-

ited to certain patient populations, for instance, patients in acute-subacute stages and with

ischemic stroke. It is still not clear whether these predictors can be generalized to different

patient populations. Nevertheless, the construct validity of predictors determined using inde-

pendent datasets is particularly essential for clinical practice; but, only very few have been

properly validated [27].

Considering that nonlinearity is a crucial aspect to study the inter-areal communication

and both frequency-specific parameters (evidenced using EEG) and network connectivity (evi-

denced using EEG and fMRI) are of a prognostic value, we hypothesized that combinations of

nonlinear (cross-frequency) and linear (within frequency) network connectivity parameters

are favourable biomarkers for stratifying patients for upper limb rehabilitation with increased

accuracy. We identified these biomarkers using the pre-rehabilitation EEG data through effec-

tive connectivity analysis of dynamic causal modelling (DCM)[28,29] and logistic regression.

The predictive power of these biomarkers was then tested by using independent datasets (i.e.

construct validation) and the clinical variables were examined to determine significant factors

affecting the classification accuracy of these biomarkers.
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Materials and methods

Ethics statement

This study was approved by the Institutional Review Board of Taipei Veterans General Hospi-

tal (approval number: 2010120091A).

Patients and outcome measurements

Patients with stroke admitted to the Rehabilitation Center at Taipei Veterans General Hospital

were included. The inclusion criteria were as follows: (1) first hemiparetic stroke, (2) Brunn-

strom stage between stage II and V, (3) no cognitive dysfunction and (4) willingness to partici-

pate and sign the informed consent form. The exclusion criteria were as follows: (1) unstable

vital signs; (2) irreversible contracture over any of the joints of the upper extremity; (3) a his-

tory of surgery, fracture, arthritis, or pain; (4) spasticity (modified Ashworth Scale score of

>2); (5) poststroke seizures; (6) heart attack within 3 months; and (7) cortical lesions in the

5 core motor areas. Of the recruited 60 patients, 7 withdrew because of personal reasons.

Among the final 53 patients enrolled, EEGs of the first 37 patients were used as training data

and those of the remaining 16 patients were used as validation data. This study was approved

by the Institutional Review Board of Taipei Veterans General Hospital. All patients provided

their written consent. They received 24-hour rehabilitation, 3 times per week for 8 weeks. The

UL motor function of all patients was evaluated before and after the intervention by using the

Fugl—Meyer Assessment of Physical Performance (FMA) [30], Upper Extremity Performance

Evaluation Test for the Elderly (TEMPA) [31], and WMFT [32]. Table 1 lists the patients’

demographic and clinical characteristics. Furthermore, we recruited 14 healthy right-handed

participants in the control group for comparison.

Movement task and EEG preprocessing

Before rehabilitation, the patients were instructed to use their affected hand to perform either

shoulder or elbow flexion and extension, depending on their movement ability. The healthy

controls performed the right shoulder flexion and extension. All participants sat upright

with 0 degree of shoulder flexion. For elbow movements, the affected upper arm rested on

an armrest adjusted for the subject’s height. Auditory cues were used to pace the movement

(intertrial interval = 10 ± 2 s to avoid anticipation). Fail in completing a movement (angle of

movement < 45 degree) was recorded digitally by the therapist pressing a button and this trial

was discarded from further analysis. For every 10 success trials, participants took a short break

of 1–10 minutes to prevent the distortion of performance and thus results engendered by mus-

cle fatigue. We acquired 80 trials for each participant. All participants were instructed not to

blink in the first 2 seconds of each movement.

During hand movements, 32-channel EEG data (10–20 system montage) were measured

(sampling rate = 2000 Hz) and preprocessed offline by using SPM8 (Wellcome Trust Centre

for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). The EEG data were first epoched with a

peristimulus window of −1500 to 2000 milliseconds (time zero indicated the onset of an audi-

tory cue) and filtered from 4 to 48 Hz. Artefact-contaminated trials such as electrooculography

or movements (EEG amplitude > 500 μV) were excluded from further analysis. These arte-

fact-free trials were then entered into DCM.

DCM specification and Bayesian model selection

We adopted 5 sources of the SMA ([-2–2 62]), bilateral M1 ([-41–26 56; 49–27 56]) and PM

([-40–12 52; 40–2 62]) from our previous study [12] as the initial guess. The locations of the 5

Neuromarkers for recovery
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predefined areas were optimized individually through the DCM inversion. The model space of

the connection architecture was constructed under the following hypotheses. First, intrinsic

connections become more nonlinear after stroke, in contrast to being more linear under a

healthy state. Second, reduced lateralized activation after stroke results in a less lateralized net-

work [33]. This resulted in 6 models for comparison (see S1 Fig), which have been tested in

healthy individuals [12]. Furthermore, we also constructed an all-linear model for comparison.

All connections have been structurally identified in the macaque brains [34,35] and function-

ally tested using fMRI and EEG data in the human brain during motor tasks [36] [37,38]. For

given DCM and EEG data, artefact-free epochs were projected from the channel space to

sources by using the generalized inverse of a lead field matrix for our chosen sources and then

transformed using a time-frequency Morlet wavelet transform (wavelet number 7) over the

peristimulus time of -500 to 800 milliseconds. The absolute values of the resulting time—fre-

quency responses were then averaged over artefact-free trials and baseline (−850 to −800 ms)

corrected to produce the power spectrum at sources. Bayesian inversion was employed to esti-

mate DCM parameters, particularly the matrices A that contain coupling parameters of modu-

lating spectral activity induced by other sources and exogenous (e.g., stimulus) inputs. The

details of this standard procedure have been reported in previous studies [12,28,37,38].

To perform a second-level analysis of the model space, the models of patients with left-

hand weakness (right hemispheric lesion) were flipped along the mid-sagittal line. Bayesian

model selection (BMS) was used to identify the best model under the fixed and random effects

assumption at the individual and group levels [39,40,41] for the control and training groups.

DCM feature extraction

After establishing the best model, we divided the coupling parameters in the core motor corti-

cal network into 4 frequency bands, namely ɵ (4–8 Hz), α (8–15 Hz), β (15–30 Hz), and γ (30–

48 Hz), and 2 mechanisms, namely excitatory (positive) and inhibitory (negative); we averaged

them across frequencies to give 8 parameters for each connection (Fig 1a). After BMS, we can

then determine the number of attributes for each subject that entered into the classifier for

constructing the predictive model. For example, there were 18 connections in the model pro-

filed in Fig 1a, including 9 reciprocal connections between SMA-cM1, SMA-iM1, SMA-

iPM, SMA-cPM, iPM-cPM, iPM-iM1, cPM-cM1, iPM-cM1 and iM1-cM1 and this yielded

144 attributes (8 parameters x 18 connections). For comparison, spectra over the 5 core areas

were also averaged over the prespecified 4 frequency bands and mechanisms (positive and

negative) to give 8 parameters for each source (Fig 1b). Hence, 40 attributes were obtained for

each participant.

Classification and construct validity

The first 37 patients recruited (i.e., the training data set) were categorized as either having

favorable (n = 19) or poor recovery (n = 18) according to whether their postrehabilitation

improvement in FMA, WMFT, or TEMPA reached the 10% level of the maximum score [42]

(Table 1). The DCM features of the best model at the group level were used in a logistic regres-

sion for two-class classification (i.e., favorable and poor). Five-fold cross-validation was used

to evaluate the classification accuracy of different combinations of frequency-specific features

derived from DCM. After identifying the optimal combination of frequency-specific features,

we used a backward elimination procedure to select significant connection-specific features

[43,44].

Sixteen new patient datasets were used to validate the predictive model at the individual

level. For comparison, we performed a dichotomous classification on the clinical factors of the
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validation dataset by using cutoffs that best separated the favorable from the poor outcomes.

Finally, 14 datasets of healthy participants were tested through the predictive model to deter-

mine the degree to which the model reflects the normal motor network. The program used for

classification and the identified predictive model in this study can be downloaded from http://

140.115.52.12/.

Statistical tests

A 2-sample t-test was used to examine whether the clinical characteristic of patients signifi-

cantly differed between datasets. Furthermore, after establishing the best predictive model, we

statistically analyzed the frequency- and connection-specific parameters in the model by using

analysis of variance to determine whether these predictors were significantly consistent across

the patients. Statistical significance was set at P< .05.

Fig 1. Illustrations of frequency- and connection-specific parameters (a) in 5 core motor cortices and the frequency-specific spectrum

dynamics (b) at the five core motor cortices.

https://doi.org/10.1371/journal.pone.0178822.g001
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Results

Demographic characteristics at the baseline and improvement after

rehabilitation

Table 1 listed the demographic characteristics of all patients at the baseline and improvement

after rehabilitation and Table 2 summarized the statistic results of demographic and clinical

characteristic. The statistical result confirmed that the validation dataset resembled the train-

ing dataset, suggesting a similarity among recruited patients. We observed no significant

between-dataset differences in age, time poststroke, or initial impairment measured using

the Brunnstrom stage, FMA, and TEMPA (Table 2). However, the WMFT scores were

Table 2. The statistic results of demographic and clinical characteristic.

Dataset Training dataset (n = 37) Validity dataset

(n = 16)

Between

datasets

Between

Favorable

subsets

Outcome n = 19 Poor

n = 18

P value Favorable

n = 11

Poor

n = 5

P value P value

Gender (F/M) 4/15 6/12 1/10 1/4

Affected

hemisphere (R/L)

6/13 9/9 5/6 1/4

Lesion site

(cortical/

subcortical)

8/11 6/12 1/10 3/2

Stroke type

(ischemic/

hemorrhagic)

10/9 10/8 7/4 4/1

Hand dominance

(R/L)

18/1 16/2 11/0 5/0

Age (mean±SD) 59.21

±12.40

54.50

±13.75

0.14 49.81±9.05 48.19

±14.55

0.07 0.02*

Time poststroke

(month) (mean

±SD)

5.10

±4.63

8.22

±5.39

0.03* 8.64±5.26 10.83

±6.18

0.11 0.08

Brunnstrom’s

stage (proximal)

3.79

±1.18

4.06

±0.99

0.46 3.54±1.13 3.20

±0.48

0.12 0.58

Brunnstrom’s

stage (distal)

3.52

±1.54

4.00

±1.18

0.30 3.81±0.87 3.33

±1.63

0.86 0.51

Pre-FMA scales

(mean±SD)

28.05

±22.97

34.61

±11.87

0.19 29.04±14.98 32.58

±12.23

0.53 0.50

FMA improvement

(mean±SD)

8.10±
4.85

1.33±
2.89

<0.0001* 5.63±4.31 2.4

±2.19

0.88 0.16

4.81±5.24 4.62±4.92

Pre TEMPA (mean

±SD)

-60.95

±21.49

-48.72

±23.24

0.12 -67.55

±33.07

-48.29

±11.70

0.29 0.57

TEMPA

improvement

(mean±SD)

10.42

±10.66

2.44

±6.24

0.009* 10.81±13.02 4.39

±3.96

0.94 0.932

6.54±9.57 6.25±9.40

Pre WMFT (mean

±SD)

39.21

±15.92

47.33

±15.53

0.13 52.00±16.00 45.52

±21.59

0.04* 0.048*

WMFT

improvement

(mean±SD)

6.789

+4.82

2.27

+3.73

0.003* 3.86+8.08 1.99

+2.75

0.38 0.29

4.59 ±4.95 2.90 ±5.07

*: P<0.05

https://doi.org/10.1371/journal.pone.0178822.t002
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significantly lower in the training dataset than in the validation dataset (P = .04). Notably, age

(P = .07) and time poststroke (P = .11) tended to differ between the 2 datasets, but the differ-

ence was not significant. The participants were significantly younger (P = .02) and the WMFT

scores were significantly higher (P = .048) in the validation dataset than in the training dataset.

Regarding the clinical characteristics of the patients in the training dataset, only time post-

stroke was significantly shorter in the favorable outcome subgroup than in the poor outcome

subgroup (P = .03).

Regarding the treatment effect of rehabilitation, the mean improvement scores in the train-

ing and validation datasets were 4.81 and 4.62 for the FMA, 6.54 and 6.25 for the TEMPA, and

4.59 and 2.90 for the WMFT, respectively. The mean improvement scores did not significantly

differ between the 2 datasets (P> .05). However, in the training data set, all improvement

scores were higher in the favorable outcome subgroup than in the poor outcome subgroup,

indicating that the patients with favorable outcomes were adequately separated from those

with poor outcomes. In addition, improvement scores did not significantly differ between the

2 favorable outcome subsets.

BMS result

The BMS results revealed that DCM1 and DCM3 were the best models for 19 and 18 patients

in the training data set, respectively, at the individual level. At the group level, the BMS results

under random effects assumption identified DCM1 as the optimal model for the training

group, with an exceedance probability of 0.87 (Fig 2a, upper panel). Regarding the control

group, under RFX, DCM1 was identified as the winning model for all at the individual level

and at the group level with an exceedance probability of 0.97 (Fig 2a, lower panel). These

results indicated that among the models being tested, DCM1 (shown in Fig 1a, right) was the

most optimal for both the patients and healthy controls. We then further compared DCM1

with the all-linear model at both the individual and group level. The BMS results of the train-

ing dataset showed an overwhelming significance of DCM1 over all-linear model under FFX

and RFX assumptions (Fig 2b).

Frequency-specific features and classification accuracy

We compared the classification accuracy of frequency-specific features derived from DCM1

with that of features derived from the spectrum in the 5 motor areas. The features of the motor

network (i.e. DCM features) provided higher classification accuracy (up to 90%) than did the

frequency-related source power alone (up to 80%; Fig 3a). Furthermore, we investigated the

effect of the frequency and nonlinearity on the classification accuracy. Fig 3b presents a plot

of all the combinations of frequency-specific features against the classification accuracy. We

observed that, under DCM1, β oscillation was the most crucial component in the motor net-

work, yielding an 83.1% ± 3.9% accuracy, followed by alpha and gamma rhythms. The β plus γ
and β plus ɵ features yielded the highest accuracies (92.9% ± 5.0% and 92.9% ± 4.8%, respec-

tively; Fig 3b, red arrows). However, both the combination of β and α features and the use of

all features did not improve the classification accuracy. Regarding to the linear features derived

from the all-linear DCM, we found the best accuracy was approximately 80% when using α+β
+γ features.

Network –specific features

After identifying the optimal combination of frequency-specific features, we used a backward

elimination procedure to select significant area-specific features. We determined 7 and 8 con-

nections for β plus ɵ (Fig 4, left) and β plus γ (Fig 4, right) features, respectively, which could

Neuromarkers for recovery
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effectively differentiate between the patients with favorable and poor recovery. Three common

β connections existed in both network models (marked with asterisks): 2 originating from

SMA and 1 from cM1. Specifically, in the favorable recovery group, the SMA β connection

exerted a higher negative effect on cPM but a lower inhibitory effect on cM1 while cM1 β activ-

ity facilitated SMA rhythms. In other words, we identified a greater involvement of the SMA

and cM1, but low engagement of cPM, to be critical for treatment gains. However, none of the

network-specific features identified reached significance in the ANOVA test (P> .05) at the

group level to differentiate between the patients with favorable and poor recovery.

Construct validity and clinical variables with predictive value

We validated our model by using 16 new datasets of the patients with stroke. The overall accu-

racy, sensitivity, and positive predictive value were 81.3%, 90.9%, and 83.3%, respectively

Fig 2. (a) BMS results at the group level under RFX for the patients (left) and the controls (right) both confirmed that Model 1 was the most likely model

with exceedance probabilities of 0.87 and 0.97, respectively. (b) Model comparison of nonlinear+linear (Model 1) and all-linear model under FFX (left) and

RFX (right).

https://doi.org/10.1371/journal.pone.0178822.g002
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(Table 3). Furthermore, we identified that subcortical lesions, time poststroke, and initial

impairment scores measured using the WMFT were the most significant clinical variables

affecting the classification accuracy in this model (Table 4). When the motor cortices were

intact (i.e., subcortical lesions) and time poststroke was within 6 months, the classification rate

was accurate (100% accuracy). The classification accuracy decreased with an increase in time

poststroke, and it further decreased considerably when the time poststroke was >12 months

(50% accuracy). In addition, the outcome was predictable in this model when the initial

WMFT scores were above 45 (91% accuracy). Although age significantly differed between the

training and validation datasets, it did not strongly affect the classification. The classification

accuracies for the patients aged older than and younger than 55 years were 71% and 88%,

respectively (Table 4). Furthermore, the predictive value of the network biomarkers was always

superior to the prediction accuracy obtained by the dichotomous classification. Of the 14 con-

trol participants used to test the predictive model, 12 were predicted to have favorable out-

comes and 2 to have poor outcomes.

Fig 3. (a) Comparison of classification accuracy between DCM features (blue bars) and source spectral features (red bars). (b) Impact of frequency-

dependent linear (red bard) and nonlinear (+linear) network DCM (blue bars) features on classification accuracy. The red arrows indicate the best

accuracy.

https://doi.org/10.1371/journal.pone.0178822.g003
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Discussion

Prior requirements for the application of the predictive model

In this study, we identified the linear and nonlinear motor network biomarkers using the pre-

rehabilitation EEG data of a heterogeneous stroke population. By examining the clinical vari-

ables affecting the classification accuracy using independent data sets, we further recognized

the patient populations for the predictive model.

Fig 4. (a)Significant network- and frequency-specific biomarkers of beta plus theta (left) and beta plus gamma (right) rhythms identified by the

backward elimination procedure. The asterisks indicate the 3 common connections in both predictive models.

https://doi.org/10.1371/journal.pone.0178822.g004

Table 3. The sensitivity and the positive predictive value of the neuromarkers.

Outcome

Favorable Poor

Predicted

condition

Favorable 10 2 Positive predictive value = 10/

12 = 83.3%

Poor 1 3

Sensitivity = 10/

11 = 90.9%

Specificity = 3/

5 = 60%

Accuracy = 13/16 = 81.3%

https://doi.org/10.1371/journal.pone.0178822.t003
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Effect of time poststroke

The time poststroke in the training data set was significantly shorter in the patients with favor-

able outcomes (5.10 ± 4.63 mo) than in those with poor outcomes (8.22 ± 5.39 mo; P = .03),

and this result supports the sensitive period for recovery (�6 mo). In other words, stroke

patients should receive the rehabilitation treatment as early as possible to enhance the efficacy.

However, this result does not indicate that the predictive model can be applied only to patients

close to their chronic stage, because the favorable group used in the construction of the predic-

tive model had an average time poststroke of 5 months. The mean time poststroke was aver-

aged across a broad range of time poststroke (1–15 mo) in this data set and the time poststroke

of 10 of the 19 patients in the favorable group of the training data set was within 3 months

(Table 1). In addition, because of the significant between-participant variability in neuroplas-

ticity in response to rehabilitation, the sensitive period of “<6 months” is not a highly inferen-

tial factor. In the training data set, 9 of the 22 patients in the early-to-late subacute phase (�6

mo) did not exhibit significant improvement after rehabilitation, whereas 5 of the 15 patients

in the chronic phase demonstrated significant improvement (Table 1). Moreover, the factor of

a time poststroke within 9 months became the best cutoff for the dichotomous classification.

Therefore, by using an independent data set for validity testing, we demonstrate that patients

having a time poststroke within 12 months are suitable for this predictive model (91% overall

accuracy), with the model exhibiting excellent performance for patients with a time poststroke

within 6 months (100% accuracy; Table 4). Notably, the performance of this predictive model

was superior to the best accuracy of the dichotomous classification.

On the basis of our result that 85.71% healthy controls were classified as having favorable

outcomes, we can infer that the predictive model of the motor network pattern resembles the

Table 4. Clinical variables affecting the prediction.

Clinical variables EEG Prediction accuracy (n) Best dichotomic

classification accuracy (n)

Lesion area Subcortical (n = 12) 100% (n = 12)

Cortical (n = 4) 25% (n = 1)

Time poststroke

(months)

Acute-subacute (1~6)

(n = 5)

100%

(n = 5)

91%

(n = 11)

Chronic (7~12) (n = 7) 85%

(n = 6)

Chronic (>12) (n = 4) 50% (n = 2)

< = 9 month (n = 10) 90% (n = 9) < = 9 month

(n = 10)

80%

(n = 8)

> 9 month (n = 6) 66% (n = 4) > 9 month (n = 6) 50%

(n = 3)

Initial WMFT score < = 45 (n = 4) 50% (n = 2)

>45 (n = 12) 91% (n = 11)

< = 50 (n = 9) 77% (n = 7) < = 50 (n = 9) 77%

(n = 7)

>50 (n = 7) 85% (n = 6) >50 (n = 7) 42%

(n = 3)

Age < = 50 (n = 9) 77% (n = 7) < = 50 (n = 9) 77%

(n = 7)

>50 (n = 7) 85% (n = 6) >50 (n = 7) 42%

(n = 3)

<55 (n = 9) 88% (n = 8)

> = 55(n = 7) 71% (n = 5)

https://doi.org/10.1371/journal.pone.0178822.t004
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normal motor network to a certain degree, but not completely. In addition, the classification

accuracy decreased with an increase in the time poststroke, suggesting that recovery and/or

maladaptation over time occurs through mechanisms that alter network patterns.

Effect of lesion site and initial WMFT scores

In addition to the time poststroke, we observed that the subcortical lesion and an initial

WMFT score of>45 are also prerequisites for the application of this model. In the training

data set, 23 of the 37 patients had a lesion at the subcortical level, and the validation data sug-

gested that the best prediction could be obtained for subcortical lesion sites. Because electroen-

cephalography measures the electrophysiological activity of cortical areas, any damage to

the cortex would be expected to perturb the patterns and severely degrade the classification

accuracy. By contrast, when the motor cortices are intact, the classification is accurate, as

observed in this study. This result also indicates that the subcortical lesion consequently caused

cortical network alternations, which are crucial in identifying patients who are responding to

rehabilitation.

Only the initial WMFT scores significantly differed between the 2 datasets and 2 favor-

able subsets. The mean WMFT scores were significantly lower in the training data set than

in the validation data set; in addition, the mean WMFT scores were significantly lower in

the favorable group of the training data set than in that of the validation data set. It seems

that a lower initial WMFT score appeared to predict better outcomes, as observed in the

training data set. However, a similar trend was not observed in the validation data set

because only a few patients (n = 5) were included in the poor outcome subset. Through

dichotomous prediction, we observed that a WMFT score of <50 predicted better out-

comes; however, the best accuracy was only 77%. By using the EEG predictive model, we

identified a WMFT score of >45 to be inferential, with an accuracy of 91%. By contrast, this

result did not support that a lower initial WMFT score could predict better outcomes as 8 of

the 12 patients having a WMFT score of >45 were accurately predicted to have favorable

outcomes by the EEG model.

In summary, patients who have subcortical lesions, an initial WMFT score of>45, and a

time poststroke within 12 months are the most suitable candidates for this predictive model.

Benefits of favorable outcomes

Measuring rehabilitation outcomes is challenging because of the heterogeneity of stroke.

Various measures are currently used in clinical and research practice, but no single measure

is universally acceptable or sufficient for recording the minimal clinically important differ-

ence [45]. Therefore, in this study, a patient having an improvement of 6.6 on the FMA, 7.5

on the WMFT, or 16.2 on the TEMPA (i.e. 10% increase of the maximum score) was consid-

ered to have favorable outcomes. The improvement of 10% is the minimum effect that has

been previously considered to be of clinical significance [42] and the FMA and WMFT are

highly recommended for measuring the outcomes of patients with stroke [46]. The reported

minimal clinically important difference values for chronic patients were 6 for the lower-

extremity FMA [47] and 1–1.2 for the WMFT functional score [48]. Therefore, our defini-

tion of improvement is beyond the result of chance or increasing familiarity with the test

observed in chronic patients. Nevertheless, the statistical results suggest that patients were

adequately separated and the classification results are good, thus indicating that this defini-

tion is sufficient for our goal.
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Functional significance of frequency- and network-specific biomarkers

In this study, we observed that the DCM derived network features can lead to the best predic-

tion accuracy, thereby confirmed our hypothesis of combining linear and nonlinear (cross-

frequency) network parameters to be favourable biomarkers. Furthermore, our result also sug-

gested that the network parameters can add some predictive values to the accuracy as the fre-

quency-specific network features outperformed the frequency-specific source power spectrum

by 10%. Nevertheless, the frequency-specific source power spectrum along can provide up to

80% prediction accuracy, indicating the informative value for clinical management and prog-

nostication of outcomes [14,49]. In addition, two possible predictive models (β+γ and β+θ)

yielded relatively equal classification accuracy levels and we identified 3 consistent β connec-

tions in both network models. All the 3 connections located in the contralesional hemisphere

and were connected to the SMA in the β band, highlighting the importance of the intact hemi-

sphere and SMA in recovery. Specifically, our findings of higher SMA activity and lower inhib-

itory connection between the SMA and cM1 in the favorable recovery group are in agreement

with previous studies that have reported that increased activity in the SMA may play a role in

recovery [50] and that enhanced β connectivity between the SMA and cM1 is believed to sub-

serve the control of the recovered hand [13]. Moreover, many studies using different methods

and devices have confirmed a significant involvement of cM1 as compensatory mechanisms

to recovery[51] [52,53,54]. Our finding, that the inhibition of cM1 activity was higher in the

patients with poor recovery, may be one of the reasons responsible for poor recovery. Further-

more, a study reported that greater recruitment of cPM helps patients with more severe

impairment to control the affected hand [55]. Our findings can explain the underlying mecha-

nisms for these observations—the increase in cPM activity in patients with more severe

impairment may be due to the insufficient inhibition from the SMA after stroke that altered

the brain network. In summary, SMA β oscillations are the most prominent biomarkers for

identifying target patients with stroke for rehabilitation. Regarding the translational values of

these biomarkers, SMA activities could be the modulation target for rTMS.

Importance of nonlinear coupling

Nonlinear coupling in EEG/MEG signals has been seen in a variety of tasks, systems and path-

ological conditions, for instance, during face processing [56] or as an index of the depth of

anaesthesia [57,58], though the nonlinearity may differed in the expressions of cross-frequency

coupling. In the motor system, it has been shown that coupling between regions is nonlinear

during the performance of a simple motor task [12,37,38]. This nonlinearity was thought to

reflect the mechanisms at the level of post-synaptic receptors (e.g., NMDA receptors) that

afferent inputs from other regions exert nonlinear effects on intrinsic dynamics [12]. In this

study, the result of model comparison strongly points to nonlinear and linear connections (i.e.

DCM1) (Fig 2b) for explaining the observed spectral dynamics after stroke. Furthermore, in

support of our hypothesis, these nonlinear coupling features are informative as the prediction

accuracy was improved when compared to the all-linear features (Fig 3b).

Spatial resolution of electroencephalography

Unprocessed scalp potentials derived from EEG systems involving <64 channels provide only

a coarse spatial resolution [59]; therefore, there is a concern that the cortical activities of the

M1 and PM may not have been appropriately separated in this study. We compared the mean

spectral difference (msd) between the M1 and PM in both hemispheres by using all 37 patients’

EEG data in the training data set. The statistical result suggested significant spectral differences

between the iM1 and iPM (msd = −12.21%; t = −71.234, P< .0001) and between cM1 and
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cPM (msd = 26.49%;t = 154.5147, P< .0001). However, the mean differences of −12.21% and

26.49% also indicate a similarity of>70% in power. Because of the lack of a gold standard

for comparison, additional studies using high-density EEG or magnetoencephalography may

help derive such a standard. Nevertheless, it has been shown that 19-electrode array is adequate

to detect the EEG based frequency-specific markers for predicting the clinical outcome after

stroke [60].

Study considerations and limitations

First, all the patients underwent rehabilitation for 24 hours, and we considered that improve-

ments in clinical scores represented the intervention outcome. However, 27 of the 53 patients

having a time poststroke within 6 months may still experience spontaneous recovery and con-

tribute to functional improvement; nevertheless, only 17 of the 27 patients in the early-to-late

subacute phase but 13 of the 26 patients in the chronic phase exhibited significant improve-

ment (Table 1). The observed improvement cannot be completely explained by spontaneous

recovery. This consideration instead reflects that intervention also plays a role in promoting

recovery. Second, because we recruited a heterogeneous stroke population to construct the

predictive model, the heterogeneity of patients with stroke rendered any in-depth interpreta-

tion of the observed neurophysiological difference between the favorable and poor outcome

groups difficult. Thus, we discussed only the possible functional roles of 3 common connec-

tions in both predictive models, although some other connections in the predictive model may

also be informative. Finally, the motor task used here may confound the results. Because the

movements of the proximal part of the UL are partly controlled from the contralesional hemi-

sphere [61], the finding that the intact hemisphere may be crucial in recovery is attributable

to the uncrossed descending motor pathways. Additional studies using a set of homogeneous

patients and a task that entails moving the distal part of the hand can provide insights into the

underlying mechanisms.

In conclusion, poststroke linear and nonlinear features in the motor network are favorable

biomarkers that can accurately predict treatment gains. The predictive value and the sensitivity

of these biomarkers were 81.3% and 90.9%, respectively. Specifically, SMA beta oscillations

were identified as the most crucial biomarker in the motor network. Our findings can help

physicians in making clinical decisions, such as suggesting an alternative treatment along with

rehabilitation at an early stage, and guide the design of rehabilitation strategies, consequently

facilitating overall rehabilitation efficacy.

Supporting information

S1 Fig. Architectures of the plausible models. i: ipsilesional; c: contralesional; M1: primary

motor cortex; PM: premotor cortex; SMA: supplementary motor area.
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