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Premature ovarian failure (POF) is a common female reproductive disorder and

characterized by menopause, increased gonadotropin levels and estrogen

deficiency before the age of 40 years old. The etiologies and pathogenesis of

POF are not fully clear. At present, hormone replacement therapy (HRT) is the

main treatment options for POF. It helps to ameliorate perimenopausal

symptoms and related health risks, but can’t restore ovarian function and

fertility fundamentally. With the development of regenerative medicine, bone

marrow mesenchymal stem cells (BMSCs) have shown great potential for the

recovery of ovarian function and fertility based on the advantages of abundant

sources, high capacity for self-renewal and differentiation, low immunogenicity

and less ethical considerations. This systematic review aims to summarize the

possible therapeutic mechanisms of BMSCs for POF. A detailed search strategy

of preclinical studies and clinical trials on BMSCs and POF was performed on

PubMed, MEDLINE, Web of Science and Embase database. A total of 21 studies

were included in this review. Although the standardization of BMSCs need

more explorations, there is no doubt that BMSCs transplantation may represent

a prospective therapy for POF. It is hope to provide a theoretical basis for

further research and treatment for POF.
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Introduction

Premature ovarian failure (POF) refers to the decline of the

ovarian function that occurs before the age of 40 in female. It is a

clinical syndrome defined by oligomenorrhea or amenorrhea,

increased gonadotropin levels, and decreased estradiol levels,

and it is often accompanied by a variety of perimenopausal

symptoms such as hot flashes, night sweats, alopecia, dry skin

and mucous membranes, decreased libido, sleep disorders,

irritability (1, 2). The diagnosis of POF in clinical is usually

based on FSH >40 IU/L, oligo/amenorrhea for 4-6 months in

female under 40 years old, and hypoestrogenemia (3, 4). In

addition, the reduction of anti-Mullerian hormone is also an

important auxiliary diagnostic criterion.

Women with POF have an increased risk of psychological

disorders, cardiovascular diseases, osteoporosis, autoimmune

diseases, cognitive dysfunction, urinary and reproductive

system infections and other diseases compared with normal

people. In addition, low fertility and even infertility are also

major problems for POF patients (5, 6). Statistics showed that

the incidence of POF was about 1% in female before the age of

40. The incidence of POF is on the rise due to the younger age of

cancer onset, environmental pollution, lifestyle changes and

other factors. Nevertheless, the etiology of POF is complex and

not fully understood. Current studies show that the pathogenic

factors of POF include iatrogenic factors (chemotherapy,

radiotherapy, pelvic surgery, etc.), X chromosome abnormality,

genetic syndrome, single gene mutation, congenital enzyme

deficiency, autoimmune diseases, infection, HPV vaccination,

environmental influence, etc. (5, 7). Complex clinical symptoms

and adverse consequences caused by POF have greatly affected

the quality of life of patients. Exploring effective treatment of

POF has been a goal of clinical and scientific researchers.

Currently, there is no effective treatment for POF. HRT is the

main therapeutic schemes for POF, which can effectively

improve the menopause symptoms and reduce the risk of

osteoporosis and cardiovascular diseases, as well as improve

the quality of life of patients. However, HRT can’t fully restore

ovarian function, such as hormone secretion, follicular growth

or ovulation (8). Moreover, it is not entirely clear that whether or

not HRT increases the risk of breast cancer (9). Ovarian tissue

cryopreservation is a novel treatment for POF. Nonetheless,

there are many problems with ovarian tissue after

cryopreservation such as low survival rate and difficulty in

natural conception (10). The common treatments for POF

include psychological support, melatonin, androgen or

dehydroepiandrosterone supplementation, traditional Chinese

medicine therapy, diet and exercise conditioning, immune

regulation, etc., but none of them can fundamentally improve

ovarian function and meet the fertility needs of patients (7, 11).

To protect POF patients from the disease, researchers have been

exploring new treatments in recent years, such as perfusing
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platelet-rich plasma into the ovaries, ovarian tissue

transplantation, building artificial ovary, artificial gametes and

mitochondria replacement therapy, etc., which provide a new

way for treating POF. However, they are limited by high cost,

poor practical application and ethics (12).

Stem cell therapy has made great strides in regenerative

medicine over the past two decades. “Stem cells” refer to the

specific cell types that are insufficiently differentiated and

immature, capable of self-renewal, which can proliferate and

differentiate into various tissues and organs. Based on the

therapeutic potential of stem cells in multiple systems,

exploring the potential role of stem cells in treating female

reproductive system diseases has become the focus of cutting-

edge research. Recent years, a number of studies have also

confirmed that many stem cells are effective in treating POF,

including mesenchymal stem cells (MSCs), ovarian germ stem

cells (OGSCs), embryonic stem cells (ESCs). Among them,

BMSCs have shown great potential in repairing ovarian

damage and restoring ovarian function in POF animal models

or patients (13, 14). Due to their advantage of self-renewal

capacity, multipotency, low immunogenicity, injury

chemotaxis and less ethical controversy (15–18). BMSCs show

a great therapeutic prospect in POF. Therefore, the mechanism

and research progress of BMSCs in the treatment of POF are

reviewed below.
Methods

The study was carried out following the PRISMA guidelines

(19). Keywords and their combinations included: (Mesenchymal

Stem Cell) OR (Stem Cell, Mesenchymal) OR (Bone Marrow

Mesenchymal Stem Cell) OR (Bone Marrow Stromal Cell) OR

(Mesenchymal Stromal Cell) OR (Stromal Cell, Mesenchymal)

OR (Multipotent Mesenchymal Stromal Cell) OR (Mesenchymal

Progenitor Cell) AND (Primary Ovarian Insufficiency) OR

(Premature Ovarian Failure) OR (menopause, premature). The

search strategy was applied to PubMed, MEDLINE, Web of

Science and Embase database. The filters included: full text and

female and the publications in the English language and

year=“2005-Current”. The abstracts of the articles were

included as following criteria (1): BMSCs transplantation in

treating premature ovarian failure (2). Only original research

articles were included, but not reviews.

A total of 1202 articles were retrieved after the initial search.

154 duplicate records were removed after importing into

endnote software. After screening the title and abstract, 1014

articles were excluded mainly because they were not relevance

with the current analysis, or they were reviews or meta-analysis,

or other sources of MSCs but not bone marrow, or duplicate

reports. Among the 34 potentially relevant studies, 14 were

further excluded after reviewing full texts due to 5 studies were
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unrelated to the treatment of POF, 4 studies were unrelated bone

marrow derived MSCs, 3 studies were related to bone marrow

derived acellular therapy and one paper was meeting

abstract (Figure 1).
Biological characteristics of BMSCs

MSCs are a kind of pluripotent stem cells originating from

the early mesoderm, which can be isolated from bone marrow,

adipose, dental pulp, placenta, umbilical cord, amniotic

membrane, amniotic fluid and other tissues (20). Among

them, bone marrow is the most important source of MSCs (21).

In the mid-1960s, Friedenstein et al. first identified BMSCs in

mouse bone marrow, which were characterized by fibroblast-like

cells with clonal potential (22). In recent decades, BMSCs have

attracted plenty of attention for their potential in regenerative

medicine and tissue engineering in replacing, repairing or

restoring the function of damaged tissues or organs. Among the

1102 studies on “bone marrow stem cell” in the U.S. National

Library ofMedicine database, there are 95 studies of Phase III and 20

studies of Phase IV showing higher potency of BMSCs in clinical

application than other stem cell types (23). Although MSCs are

widely used in regenerative medicine, tissue engineering and

immune regulation, defining for MSCs basing on surface markers

and differentiation potential has so far been fragmentary (24).

Depending on the minimum criteria of define MSCs published by

the International Society for Cellular Therapy and recent studies,

MSCs are defined as follows: first, the growth of cells in vitro will
Frontiers in Immunology 03
adhere to the substrate; second, the cells are characterized by

expressing CD105, CD90, CD73, CD44 and Sca1 surface antigens,

while lack of CD34, CD45, CD14 or CD19, CD79a, CD11b and

HLA-DR; Meanwhile, these cells must have the ability of

differentiating towards osteoblasts, chondroblasts and adipocytes

in vitro (25–27). In addition to the surface markers mentioned

above, the following antigens, including CD9, CD10, CD13, CD29,

CD49, CD51, CD54, CD117, CD146, CD166 and Stro-1 are also

expressed on the surface of MSCs (28). However, the specific

combination expression of these markers varies with different host

tissues (28). As mentioned above, a variety of positive markers of

MSCs have been identified, but the specific markers of MSCs have

not been found yet. Even though the cells meet the minimum

standards of defining MSCs, there are great differences in their

transcription patterns and differentiation potential in vitro (29). For

example, human BMSCs express CD29, CD44, CD73, CD90,

CD105 and Sca1, while lack of expression CD14, CD34, CD45,

CD19, CD11b, CD31, CD86, Ia and HLA-DR, but the human

adipose-derivedMSCs (ADMSCs) are not completely identical with

BMSCs, which express CD29, CD44, CD73, CD90, CD105, CD146,

CD166 andMHC-I but not CD31, CD45 andHLA-DR (30). Single-

cell experiments showed that there are differences in metabolic

pattern, stress response and immunogenicity between BMSCs and

adipose MSCs, and moreover, BMSCs were more heterogeneous

(29). Andrzejewska and Chu et al. also found that the characteristics

of BMSCs are tightly related to the age or pathological status of the

donor (31). With the increase of age, the number of BMSCs and

their potential of adipogenic, chondrogenic and osteogenic

differentiation will decrease, meanwhile, the marker phenotype or
FIGURE 1

PRISMA flow diagram.
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stress level markers will also change (23, 31). Hass R et al. confirmed

that comparedwith adult-MSCs, neonatal tissue-derivedMSCsmay

have notable biological properties, such as higher multiplication

capacity, differentiation potential and life span (32). In addition,

depending on the source, the immunophenotypic and secretome

vary from differentMSCs that accounts for some differences in their

responses (33, 34). BMSCs have been widely used due to their great

potential of proliferation andmultidirectional differentiation as well

as stable genetic background (35–38). Recent studies also confirmed

that BMSCs have shown remarkable therapeutic effects in many

diseases including hematopoietic diseases, musculoskeletal diseases,

immune disorders, neurodegenerative diseases, cardiovascular

diseases, sports injuries, gastrointestinal and cutaneous diseases as

well as POF (39–44). The therapeutic mechanisms of BMSCs are

diverse. First, they can secrete a variety of soluble factors, including

cytokines, growth factors and chemokines as well as

immunomodulatory molecules, which participate in regulating

proliferation, apoptosis, fibrosis and immune regulation of

damaged tissues. In addition, BMSCs can also home to the

damaged tissue and differentiate into specific cells to reconstruct

the damaged localmicroenvironment, so as tomaintain the integrity

of tissue morphology and function stability (35, 45–47).
The mechanism of BMSCs in
treating POF

Studies have shown that BMSCs can improve ovarian

reserve function in POF patients through various mechanisms,

including homing, paracrine, regulation of ovarian angiogenesis,
Frontiers in Immunology 04
anti-fibrosis, anti-inflammatory and immune regulation, anti-

apoptosis, mitochondrial transfer, autophagy regulation

(Figure 2, Table 1).
The homing of BMSCs

MSCs homing is the process that self-derived or exogenous

MSCs are captured in the vasculature of the target tissue and

then migrate to the target tissue across vascular endothelial cells

actuated by a variety of factors, which will undergo the process of

selectin thrombus, cytokine activation, integrin block,

transvascular endothelial cell and extravascular migration

towards chemokine gradient (71, 72). Lu J et al. indicated that

the therapeutic effect of BMSCs was evaluated through the

amount of BMSCs migration to the site of lesion (73).

Therefore, it’s crucial to understand the detailed mechanism

about the homing of BMSCs (Figure 3).

The homing of stem cells is regulated by “stem cell niches

microenvironment” of target tissues, which regulates the

proliferation, migration and differentiation of stem cells

through different signaling pathways. A large number

of signaling molecules including stromal cell derived factor1

(SDF1), hepatocyte growth factor (HGF), monocyte chemotactic

protein (MCP)3, platelet-derived growth factor are released in

injured tissues, while these factors stimulate high expression of

specific receptors (CXC chemokine receptor 4 (CXCR4), cMET,

CC chemokine receptor 1, platelet-derived growth factor

receptor, respectively) on the surface of BMSCs, thereby

promoting the homing of BMSCs (74, 75). Chemokines are
FIGURE 2

The possible mechanisms of bone marrow-derived mesenchymal stem cells (BMSCs) ameliorate premature ovarian failure (POF). BMSCs
ameliorate ovarian function of POF through homing to injured ovary, paracrine effect, inducing angiogenesis, anti-apoptosis, anti-inflammatory,
immunoregulation, autophagy regulation, antifibrosis, anti-oxidative stress and mitochondrial transfer.
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TABLE 1 Therapeutic effects of MSCs in POF.

Cell
type

Delivery
method

Model Main effects Reference

BMSCs Intraovarian
injection

CTX-induced POF Homing to injured ovary.
Decreased GCs apoptosis.

Sameni HR et al.,
2019 (48)

BMSCs intravenous
injection

Radiotherapy-induced POF Regulated apoptosis, proliferation and differentiation of ovarian follicles through genetic
and epigenetic modulation of the integrated TGF-b, Wnt/b-catenin, and Hippo
pathways.

El-Derany MO
et al., 2021 (13)

BMSCs intravenous
injection

CTX-induced POF Recovered normal serum hormonal levels.
Promoted formation of primordial follicles.

Badawy A et al.,
2017 (14)

BMSCs N/A phosphoramide mustard
induced GCs injury

Reduced the senescence and apoptosis of GCs.
Reduced cleaved-Caspase 3 expression.

Chen S et al., 2020
(21)

BMSCs Intraovarian
injection

CTX-induced POF Inhibited GCs apoptosis.
Ameliorated hormone level and ovarian function.

Chen X et al.,
2018 (27)

BMSCs Intraperitoneal
injection

CTX-induced POF Increased the number of healthy follicles. Restored estrous cycle and ovarian function.
Inhibited GCs apoptosis.

Yang M et al.,
2020 (37)

BMSCs Intraovarian
injection

CTX and BUS-induced POF Restored ovarian hormone production.
Reactivated folliculogenesis.
Improving pregnancy outcomes.

Mohamed SA
et al., 2018 (49)

BMSCs Intraovarian
injection

CTX-induced POF Regulated Bcl-2 and Bax expression.
Restored ovarian function.

Zarbakhsh S et al.,
2019 (50)

BMSCs intravenous
injection

CTX-induced POF Differentiation into specific cellular phenotypes.
Secreted VEGF and decreased GCs apoptosis.
Recovered normal serum hormonal levels.

Abd-Allah SH
et al., 2013 (51)

BMSCs intravenous
injection

CTX-induced POF Homing to the stroma of the injured ovaries.
Ameliorated hormonal level, folliculogenesis and ovarian architecture.
Restored ovarian function via regulating microenvironment surrounding the oocytes
(TNF-a, IGF1).

Gabr H et al.,
2016 (52)

BMSCs intraovarian
injection

CTX and BUS-induced POF Restored fertility in POF mouse.
Engrafted BMSCs didn’t differentiate to replace ovarian cells.
Restored ovarian GCs by paracrine effect.

Park HS et al.,
2021 (53)

BMSCs Intraperitoneal
injection

CTX-induced POF Increased primordial follicle counts and AMH levels. Besikcioglu HE
et al., 2019 (54)

BMSCs intravenous
injection

CTX and BUS-induced POF Decreased Bax, p53, p21 and increased CyclinD2 expression.
Inhibited apoptosis.
Promoted residual ovarian cell proliferation.

Bao R et al., 2018
(55)

BMSCs intravenous
injection

Cisplatin- induced POF Homing to injured ovaries.
Restored ovarian function and structure.
Increased E2 levels and follicle numbers.

Liu J et al., 2014
(56)

BMSCs intraovarian
injection

CTX-induced POF Improved ovarian function and structure mainly by paracrine effect Khanmohammadi
N et al., 2018 (57)

BMSCs intraovarian
injection

CTX and BUS-induced POF Stimulated GCs proliferation and inhibited apoptosis.
Stimulated E2 production.
Restored ovarian structure and function via paracrine effect.

Park HS et al.,
2021 (58)

BMSCs intraovarian
injection

N/A Diminished menopausal symptoms.
Resumed menses.
Increased E2 levels.

Igboeli P et al.,
2020 (59)

BMSCs N/A CTX-induced POF Homing to the ovarian tissue.
Protected germ cells from cyclophosphamide-induced cell apoptosis and DNA damage.

Kilic S et al., 2014
(60)

BMSCs intraovarian
injection

CTX-induced POF Reduced GCs apoptosis and induced up-regulation of Bcl-2.
Released VEGF, HGF and IGF-1.

Fu X et al., 2008
(61)

BMSCs intravenous
injection

CTX and BUS-induced POF Increased follicles numbers, decreased GCs apoptosis and restored FSH and E2 levels by
releasing cytokine (VEGF, HGF, IGF-2).

Bahrehbar K et al.,
2020 (62)

BMSCs intravenous
injection

D-galactose induced aging
rat model

Homed to ovarian tissue.
Affected the content of MDA and activity of SOD, and improve the aging of
reproductive organs by reducing p16 expression and increasing PCNA expression.

Wang Z et al.,
2020 (63)

ADMSCs intravenous
injection

CTX-induced POF Reduced ovarian injuries.
Inhibited GCs apoptosis and proapoptotic protein expression.

Ling L et al., 2022
(64)

(Continued)
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closely relevant to activation and migration of cell, and at the

same time, play a key role in many diseases including

hematopoiesis, immune monitoring and inflammation,

morphogenesis and neovascularization, as well as autoimmune

diseases and cancer. Chemokine CXCL12, also known as SDF1,

is one of the important molecules that induce homing of stem

cells (76). The subtypes of CXCL12 are various, among which

SDF1a and SDF1b are the main forms. SDF1 is widely expressed

in many tissues including brain, thymus, heart, lung, liver,

kidney, spleen and bone marrow, and maintains low secretion

physiologically (77). It can activate phosphatidylinositol-3-

kinase (PI3K)/Akt or mitogen-activated protein kinase

(MAPK)/extracellular signal-related kinas (ERK) signaling

pathway by binding to specific receptors and then regulate cell

migration, proliferation, apoptosis, tube formation and

chemotaxis (78). The receptors of SDF1 are various, among

which CXCR4 is the typical one. CXCR4 is a G-protein-coupled

receptor. SDF1/CXCR4 is involved in cell migration in early

embryonic development and may influence stem cell migration

from bone marrow or niche to damaged tissue during the whole

life, especially in adulthood (79). Studies have shown that SDF1/

CXCR4 axis plays a key role in promoting MSCs homing and

survival (80). First, when contacting with CXCR4 at the

extracellular domain, SDF1 will induce conformational change

of the receptor, and which will strengthen SDF1 binding with the
Frontiers in Immunology 06
receptor pocket (81). Then, CXCR4 experiences a second

conformational change, which activates the intracellular

trimeric G protein by dissociating of Ga subunit from the Gb/
Gg dimer (81). Activated G proteins can activate multiple signal

pathways, and then participate in increasing intracellular

calcium, modifying cellular proteins, altering transcription

factor binding and gene expression, thereby regulating cell

proliferation, migration, survival and senescence (81). The

expression of SDF1 is greatly increased in damaged tissues,

which promotes the homing and survival of stem cells in the

damaged tissue respectively by binding with CXCR4 and CXC

chemokine receptor 7 on the surface of MSCs (82). Studies have

shown that BMSCs mobilized from bone marrow to peripheral

blood and then migrated to injured tissue, possibly along with

the gradient of SDF1 concentration (83). Tamari et al. found that

adding SDF-1 in standard medium could promote the migration

of MSCs, while the MSCs migration was significantly reduced

after the intervention of SDF1 receptor antagonist (84).

Similarly, after transducing lentivirus carrying SDF1a into

mouse BMSCs, overexpression of SDF1a can promote the

proliferation, migration, and osteogenic differentiation of

BMSCs, and which partly by activating the Wnt pathway (85).

In addition, when lentivirus carrying CXCR4 are transduced

into human BMSCs, the migration ability of CXCR4-BMSCs

toward SDF1 is significantly increased due to the overexpression
TABLE 1 Continued

Cell
type

Delivery
method

Model Main effects Reference

Promoted antiapoptotic protein expression (VEGF and VEGFR2).
Migration and homing to ovary mediated by SDF-1/CXCR4 axis via PI3K/Akt signaling
pathway.

ADMSCs intravenous
injection

CTX-induced POF Improved ovarian function partly through paracrine mechanism (FGF2, IGF-1, HGF,
VEGF).
Inhibited GCs apoptosis.
Promoted angiogenesis.
Regulated follicular development.

Ling L et al., 2019
(65)

PDMSCs intravenous
injection

Ovariectomized rat model Restored ovarian function via activating PI3K/AKT signaling pathway and increasing
VEGF expression and thereby promoting vascular remodeling.

Cho J et al., 2021
(66)

PDMSCs intravenous
injection

zona pellucida glycoprotein
3 induced autoimmune
POF

Reduced GCs apoptosis induced by endoplasmic reticulum stress-related inositol-
requiring enzyme 1a signaling pathway.

Li H et al., 2019
(67)

PDMSCs intravenous
injection

Ovariectomized Rat Model Homing to damaged ovarian tissue.
Restored ovarian function via upregulating antioxidant factors (SOD, catalase).

Seok J et al., 2020
(68)

MenSCs intravenous
injection

Cisplatin induced POF Ameliorated ovarian fibrosis.
Increased follicles numbers.
Decreased GCs apoptosis.
Normalized hormone levels.
Improved ovarian function via paracrine mechanism by secreting FGF2.

Wang Z et al.,
2017 (69)

UMSCs intravenous
injection

Cisplatin induced POF Restored ovarian function and alleviated theca interstitial cells apoptosis by regulating
autophagy signaling pathway AMPK/mTOR.

Lu X et al., 2020
(70)
ADMSCs, amnion-derived mesenchymal stem cells; BUS, busulfan; CTX, cyclophosphamide; CM, conditioned medium; CXCR4, C-X-C chemokine receptor 4; E2, estradiol; FGF2,
fibroblast growth factor2; FSH, follicle-stimulating hormone; GCs, granulosa cells; HGF, hepatocyte growth factor; IGF, insulin-like growth factor; MDA, malondialdehyde; MenSCs,
menstrual-derived stem cells; PDMSCs, placenta-derived mesenchymal stem cells; POF, premature ovarian failure; PCNA, proliferating cell nuclear antigen; SOD, superoxide dismutase;
SDF1, stromal-derived factor1; TNF-a, necrosis factor alpha; TGF-b, transforming growth factor-b. UMSCs, umbilical cord-derived mesenchymal stem cells; VEGF, vascular endothelial
growth factor; VEGFR2, vascular endothelial growth factor receptor2.
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of CXCR4 (86). Ling L et al. also indicated that the levels of SDF1

in ovaries and serum were remarkably increased in rats with

cyclophosphamide-induced POF, and ovaries with POF induced

the homing of MSCs expressing CXCR4 (64), which further

confirmed that SDF1/CXCR4 axis partially regulated the

migration and homing of transplanted MSCs to the ovaries

of POF.

HGF is a growth factor consisting of a and b chains, which

contains four cyclic domains and one serine protease-like

domain, respectively. Evidences demonstrate that HGF plays

an important role in growth stimulation, tissue regeneration,

migration, angiogenesis, morphogenesis, tumorigenesis, and

tumor invasion (87). In addition, Han P et al. found that HGF

could promote the proliferation and differentiation of

pluripotent stem cells, ESCs and BMSCs (88). The ovulation

process is thought to be hormone-induced tissue injury (89).

HGF is activated through the process of ovulation injury-tissue

factor–thrombin–HGF activator–HGF cleavage and promote

repair of tissue injury after ovulation (90), which indicates that

ovarian injury increases the level of HGF. Han P et al. also

confirmed that the expression of HGF in injured tissues was

significantly increased (88). The receptor tyrosine kinase cMET

is the specific receptor of HGF, which is a member of the

transmembrane tyrosine kinase receptor superfamily and has

independent phosphorylation activity (91). The high-affinity

binding of HGF to cMET induces homodimerization and

autophosphorylation of the cytoplasmic domain of cMET, and

then activates HGF/cMET and downstream pathways such as

the MAPK/ERK, PI3K, p-38, and the Akt/protein kinase B

pathways, thereby promoting cell proliferation, invasion,

survival, motility and angiogenesis (88, 92, 93). The HGF/
Frontiers in Immunology 07
cMET pathway plays an important role in the BMSCs homing.

Studies have shown that the high level of HGF in injured tissues

can upregulate the expression of cMET in stem cells (88). And

the overexpression of cMET promotes the homing of BMSCs

significantly (94).

MCP is a member of the CC chemokine family, which

mediates cell chemotactic. Previous studies demonstrated that

significant upregulation of the stem cell homing cytokine MCP-3

in urethral and vaginal tissues following simulated birth trauma

(95–97). Yamada et al. found that MCP-1 and MCP-3 were the

homing factors of MSCs, which could recruit MSCs to the

injured tissues (98, 99). Cui L et al. indicated that the level of

TGF-b1 in ovarian tissue of POF rats was increased (100). It can

promote BMSCs migrate to lesion sites in vitro and in vivo

though histone demethylase KDM6B mediated inhibition of

methylation marker H3K27me3 (101). Clinical studies also

showed that the level of chemokines and growth factors of

POF patients in follicular fluid significantly increased

comparing with control group, including interferon-g-
inducible protein 10, macrophage inflammatory protein-1a, C-
X-C motif chemokine ligand 8, eosinophil chemokine factor-1

and leukaemia inhibitory factor as well as brain-derived

neurotrophic factor, vascular endothelial growth factors

(VEGF)‐D and basic fibroblast growth factor (bFGF) (102),

which may be tightly related to enhance the homing efficiency

of BMSCs.

In the process of chemotaxis to damaged tissue, apart from

the chemokines mentioned above, the rolling and adhesion

process of MSCs are also regulated by various adhesion

molecules including CD44, vascular cell adhesion molecule 1,

intercellular adhesion molecule 1, p-selective protein, integrin
FIGURE 3

The possible mechanisms of BMSCs homing to injured ovary. Tissue inflammation, hypoxia or injury may induce the high level of chemokines
including stromal cell derived factor 1 (SDF1), hepatocyte growth factor (HGF), monocyte chemotactic protein-3 (MCP3). They are released into
the bloodstream and promote BMSCs proliferation as well as express specific receptors such as CXC chemokine receptor 4 (CXCR4), cMET, CC
chemokine receptor 1(CCR1). After binding with the ligand, BMSCs migrate to the injured tissue along the gradient of chemokines
concentration. In addition, various adhesion molecules including CD44, p-selectin, vascular cell adhesion molecule 1 (VCAM1) participate in
regulating the homing of BMSCs.
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and a4b1 (103). Finally, MSCs cross vascular endothelial cells

and basement membrane under the mediation of matrix

metalloproteinases and follow the gradient of chemokine

concentration homing to the target tissues (104).

Recent studies have confirmed that BMSCs can migrate to

damaged parts and ameliorate ovarian structure and function via

inhibiting apoptosis, promoting proliferation and improving

folliculogenesis in POF mice (13, 49, 50). Moreover, BMSCs

regulates the function of local cells after homing through

intercellular contact (105). Previous studies have shown that

BMSCs can differentiate into specific cells to replace damaged

cells and then repair damaged tissues (51, 106, 107). On the

contrary, recent studies indicated that the transplanted BMSCs

were located in the interstitial area rather than in follicles of ovary,

which suggested that BMSCs could homing to the injured ovary

and may enhance the ovarian function by regulating the

microenvironment around ovarian follicles rather than

differentiating into oocytes or GCs (49, 52). Park HS et al. also

confirmed that the engrafted BMSCs to the POF ovary didn’t

differentiate into ovarian cells, but restored ovarian GCs via

secreting paracrine factors (53). Moreover, the number of

engrafted BMSCs decreased gradually within 2 weeks and

disappeared entirely in majority animals within 4 weeks after

transplantation (53). It is remarkable that the number of

transplanted stem cells in injured tissues isn’t always correlated

with the healing rate, because even though stem cells can’t exist in

the target tissues for a long time, their paracrine and autocrine

roles may help to heal and activate local stem cells of stationary

stage, which may promote the recovery of damaged tissue (54).

Zahra et al. also indicated that there were small number of OGSCs

in ovarian surface epithelium and cortical tissues, which could

express ovarian germline markers and differentiate into cells of all

three embryonic germ layers (108). And in addition, these cells

could generate new GCs and primary follicles (108). Therefore, it

can be concluded that BMSCs may restore the structure and

function of damaged ovary by activating OGSCs (109), which can

differentiate into new GCs and primary follicles, but the specific

mechanism still needs to be further studied.

It isn’t completely clear that whether or not BMSCs can

differentiate into ovarian cells after homing to injured ovary.

Currently, it is widely believed that the key of BMSCs restoring

POF is based on paracrine effect of stem cells rather than

differentiation. However, it is remarkable that these secretory

factors are not the only mechanism that BMSCs improve ovarian

function. Ling et al. demonstrated that MSCs transplantation

was more effective in alleviating ovarian damage and restoring

ovarian function in POF rats compared with injection of MSCs

conditioned media (CM) (65). Therefore, further studies are

needed to clarify the mechanism of interaction between BMSCs
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and ovaries, which is greatly significant to the clinical

development of BMSCs transplantation.
Paracrine effect of BMSCs

BMSCs can synthesize and secrete a variety of chemokines,

growth factors and hormones, including VEGF, insulin-like

growth factor-1 (IGF-1), HGF, bFGF (50, 55). These molecules

play important roles in angiogenesis, anti-fibrosis, anti-

inflammatory and immunomodulatory, anti-apoptotic, thereby

improving the local microenvironment and promoting the

recovery of damaged tissues (Table 2). Many studies have

shown that BMSCs restore ovarian structure and function

possibly through paracrine effect (49, 53, 56). Among all the

BMSCs paracrine factors, brain-derived neurotrophic factor is a

member of the neurotrophic factor growth factor family, which

promotes oocyte maturation and embryo development (102).

bFGF and VEGF are involved in ovarian angiogenesis, which

help to provide nutrition for GCs (102). Meanwhile, VEGF and

its receptors play an important role in inhibiting apoptosis of

GCs, and promoting the development of follicles (51, 110, 111).

IGF-1 is a growth hormone that stimulates GCs proliferation by

regulating DNA replication in theca cells and GCs, and helps to

enhance the function of gonadotropin, regulate the activity of

aromatase and promote the formation of follicular cavity as well

as inhibit cell apoptosis (48). HGF has significant anti-apoptosis

effect in ovarian GCs and oocytes, which helps to promote blood

vessel growth and improve ovarian function (113). bFGF serves

as an initiator of folliculogenesis via inducing primordial follicle

development (117). Although BMSCs transplantation has been

widely used in repairing the damaged tissues, it has been

reported that there are some risks in stem cells transplantation

including tumor formation, pulmonary embolism (122, 123).

In order to find the safer treatments, the researcher study on

whether the CM of BMSCs is a feasible treatment. BMSCs-CM

contains a variety of cytokines, such as VEGF, HGF, IGF-1 etc.,

which can inhibit apoptosis and promote proliferation of GCs in

vivo or in vitro. These results indicate that the secretion of these

factors plays an important role in BMSCs improving ovarian

function (124). Khanmohammadi N.et al. indicated that injecting

the BMSCs-derived CM or BMSCs into the damaged ovaries had

almost the same effect on repairing the damaged ovaries (57).

Similarly, human BMSCs-derived CM plays a similar role to

human BMSCs in reducing apoptosis of human GCs, promoting

cell proliferation, improving the viability of ovarian GCs and

restoring ovarian structure as well as stimulating estrogen

production (58). Above studies indicated that paracrine effect

plays a major role in BMSCs therapy. However, Ling et al.
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indicated that the therapeutic effect ofMSCsmedium on POFwas

not as good asMSCs (65). Thus, whether the efficiency of BMSCs-

CM is equal to BMSCs still warrants further study.
Angiogenesis

Angiogenesis plays an important role in repairing damaged

ovaries. Previous studies have shown that MSCs may participate in

angiogenesis through the following twomechanisms. Firstly,MSCs

have the potential to differentiate into endothelial cells, vascular

smooth muscle cells and other types of cells. Secondly, MSCs can

secrete a variety of bioactive factors that can promote angiogenesis

(125). Comparing with other tissue-derived MSCs, BMSCs have

higher angiogenic activity, which can differentiate into endothelial

cells, pericytes, and vascular wall, and then promote angiogenesis

(59). Moreover, BMSCs contributing to angiogenesis at least partly

depending on secreting various angiogenic factors includingVEGF,

MCP1, interleukin-6, SDF-1a, macrophage colony-stimulating

factor, IL-1 receptor, IGF-1, interleukin-8, metalloproteinase 3

(114). The composition and concentration of angiogenic factors

will also ultimately affect the functional responses of BMSCs (114).

VEGF is a powerful angiogenic factor and significantly affects

ovarian angiogenesis, which is closely related to follicular
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formation and development (110, 111). After binding to the

receptor, VEGF activates endogenous VEGF signaling through

the PI3K/Akt and GSK3b/b-catenin pathways, which results in

ovarian vascular remodeling and ultimately enhances follicular

formation (66). IGF-1 is also an effective angiogenic factor, which

is highly expressed in the damaged vessels (52). After binding to its

receptors, IGF-1 can activate the PI3K/Akt signaling pathway,

which induces endothelial cell proliferation, differentiation and

migration, and then possibly improves the structure and function

of damaged ovaries by promoting angiogenesis (52, 112). SDF1

secreting by BMSCs can directly promote the differentiation of

BMSCs into vascular endothelial cells through binding to CXCR4

on BMSCs (116). In addition, SDF1 indirectly promotes the

proliferation of vascular endothelial cells by promoting the

secretion of VEGF from BMSCs (116). BMSCs-derived CM

treatment can activate human ovarian vascular endothelial cells,

and then in which the expression of angiogenic marker genes,

transforming growth factor-a, C-C motif chemokine ligand 11 are

increased, which inducing endothelial cell proliferation and

promoting angiogenesis as well as increasing the density of new

blood vessels (115). Moreover, studies have shown that the key

mechanism of BMSCs CM enhancing angiogenesis is highly

correlated with the PI3K/Akt pathway (115). Zhang et al. also

found that BMSCs may control angiogenesis and follicular survival
TABLE 2 The roles of paracrine factors derived from MSCs.

Factors Function Reference

bFGF, CCL11, HGF, IGF1, IL-6, IL8,
MCP1, M-CSF, metalloproteinase 3,
TGF-a, VEGF

Promoted angiogenesis Liu P et al.2020 (102), Gabr H et al., 2016 (52), Yao X et al.2016 (110), Rühle A et al.,
2019 (111), Lin S et al., 2017 (112), Zhang S et al., 2020 (113), Maacha S et al., 2020 (114),
Park HS et al., 2019 (115)

BDNF Promoted oocyte maturation and
embryo development

Liu P et al.2020( (102)

SDF1 Promoted BMSCs secrete VEGF
and differentiate into vascular
endothelial cells.

Fang J et al., 2021 (116)

bFGF, VEGF Inhibited GCs apoptosis and
promoted the development of
follicles.

Yao X et al., 2016 (110), Rühle A et al., 2019 (111), Wang L et al., 2013 (117)

IGF1 Enhanced the function of
gonadotropin.
Regulated the activity of aromatase.
Promoted the formation of
follicular cavity.
Inhibited cell apoptosis

Sameni HR et al., 2019 (48)

IL-10, HO-1, HGF, IDO, NO, PGE2,
TGF-b

Inhibited inflammatory response.
Immunomodulatory.

Zhang L et al., 2019 (118), Forsberg MH et al., 2020 (119)

cyclophilin A, DJ-1 cyclophilin B,
IGF1, thioredoxin, HSP27,
peroxiredoxin-1

Anti-oxidative stress effect. Gabr H et al., 2016 (52), Pires AO et al., 2016 (120)

HO-1 Regulated autophagy via activating
JNK/Bcl-2 signaling pathway.
Upregulated the number of CD8
+CD28− T cells in the circulation.

Yin N et al., 2020 (121)
bFGF, basic fibroblast growth factor; CCL11, C-C motif chemokine ligand 11; GCs, granulosa cells; HO-1, heme oxygenase 1; HGF, hepatocyte growth factor; HSP, heat shock protein; IDO,
indoleamine 2,3 dioxygenase; MCP1, monocyte chemoattractant protein1; M-CSF, macrophage colony-stimulating factor; NO, nitric oxide; PGE2, prostaglandin E2; SDF1, stromal cell-
derived factor-1; TGF-b, transforming growth factor-beta; TGF-a, transforming growth factor-a.
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of xenografted human ovarian tissues by angiotensin

(126) (Figure 4).
Anti-fibrosis effect

In ovarian tissue, stromal cells can proliferate and differentiate

into endometrial cells or myofibroblasts. The myofibroblasts

synthesize and secrete extracellular matrix including type I and III

collagen fibers. The excessive accumulation of extracellular matrix

will lead to organ fibrosis, which is the basic pathological change of

POF (100).Ovarianfibrogenesis is associatedwith various cytokines,

including matrix metalloproteinases, tissue inhibitors of

metalloproteinases, transforming growth factor-b1 (TGF-b1),
connective tissue growth factor, peroxisome proliferator-activated

receptor g, VEGF, endothelin -1 (127). TGF-b1 is a key mediator of

tissue fibrosis, which is involved in fibrosis of multiple organs by

activating its downstream small mother against decapentaplegic

(Smad) signaling and triggering pre-fibrotic gene overexpression

(128). Moreover, Inagaki Y et al. also indicated that TGF-b
participated in inducing transcription of alpha-smooth muscle

actin and other extracellular matrix proteins (129), which would

promote the development of tissue fibrosis. Studies confirmed that

the level of TGF-b1 in ovarian tissue of POF rats was increased

notably (100).AndafterBMSCs transplantation, the level ofTGF-b1
in the POF ovary was down-regulated prominently (13). Moreover,

Cuiet al. foundthathumanumbilical cord-derivedMSCs(hUMSCs)

inhibited ovarian fibrosis by regulating stromal cell differentiation

through TGF-b1/Smad3 signaling pathway, thereby promoting the

recovery of ovarian function in POF rats (100). And MSCs derived

frommenstrual blood help to improve ovarian function by reducing

ovarian interstitial fibrosis and apoptosis in GCs, which may be

partially mediated by secreting fibroblast growth factor 2 (69).

Therefore, we guess that BMSCs may also inhibit ovarian fibrosis
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by the same mechanism. However, due to the reactivity of different

sources of MSCs is diverse, further studies are needed to confirm

whether this hypothesis is reliable. In addition, Wang PP et al.

indicated that the anti-fibrosis effect of BMSCs in liver fibrosis

induced by lipopolysaccharide was through secreting HGF and

cell-cell contact, which was closely bound up with the inhibition of

Toll-like receptor 4/Myeloid differentiation primary response gene

88/nuclear factor kappa-B signaling pathway (130). In view of this,

whether BMSCs protect ovarian fibrosis in POFmodel (131) by the

same mechanism is worthy of further exploration.

Chronic inflammation is one of the main factors driving the

process of fibrosis, which can change the normal structure of

tissues and result in functional deterioration. BMSCs exhibit

significant anti-inflammatory bioactivity, which may be another

mechanism of BMSCs inhibiting ovarian fibrosis. BMSCs

promote the secretion of anti-inflammatory cytokine IL-10 and

inhibit the expression of pro-inflammatory cytokines tumor

necrosis factor a and interleukin-6, thereby inhibiting the

inflammatory response, which plays an important role in anti-

fibrosis effect (118). In addition, angiogenesis and reperfusion are

also critical to repair damaged tissue and prevent fibrosis.
Anti-inflammatory and
immunomodulatory effects

Abnormally elevated levels of chemokines and cytokines in

follicular fluid of POF patients will induce intracellular

inflammatory in follicular niche by cellular and paracrine

interactions, which adversely affects oocyte quality and the

function of GCs or theca cell (102). Moreover, it can attract a

large number of white blood cells to migrate to the ovaries or

activate plenty of immune cells, which leads to chronic low-grade

inflammatory state, all of which will further aggravate follicular
FIGURE 4

The possible mechanisms of BMSCs promote angiogenesis in POF. BMSCs help to promote angiogenesis through differentiating into endothelial cells
(ECs), maintaining vascular stability, inhibiting ECs apoptosis and secreting angiogenic factors, including vascular endothelial growth factor (VEGF),
stromal cell derived factor 1 (SDF1) and insulin-like growth factor 1 (IGF1) et. to promote ECs proliferation, as well as promoting ECs migration and tube
formation via PI3K/Akt and GSK3b/bcatenin signal pathway. At the same time, the secrete factors reinforce the angiogenesis of BMSCs in turn.
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atresia and apoptosis, and ultimately affect the quality and quantity

of oocytes (102). The concentrations of pro-inflammatory

cytokines interleukin-6, interleukin-8 and tumor necrosis factor a
in serum of chemotherapy-induced POF mice were significantly

increased, while the levels of anti-inflammatory cytokines IL-10

were markedly decreased (132). The abnormalities of

inflammation-related factors may result in apoptosis of GCs,

which tightly contributed to the development of ovarian damage

in POF mice (132). The signaling molecules from inflammatory

sites promote the homing of BMSCs, which can help to inhibit the

production of inflammatory cytokines and proliferation of

lymphocytes, thereby inhibiting local inflammation (133). The

immunomodulatory function of MSCs is mainly through

intercellular contact, paracrine activity and interaction with T

cells, B cells, natural killer cells, macrophages, monocytes,

dendritic cells and neutrophils (134) (Figure 5). For example, the

direct contact betwixt the proinflammatory macrophages and

BMSCs promotes not only the production of tumor necrosis

factor-stimulated gene-6, but also the expression of CD200 on

BMSCs (105). The elevated tumor necrosis factor-stimulated gene-

6 helps to suppress the proliferation of T cells and promote the

transform between proinflammatory macrophages and anti-

inflammatory phenotype, while the increased CD200 participates

in mediating the interaction betwixt BMSCs and proinflammatory

macrophages (105). Moreover, BMSCs secrete a variety of
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immunomodulatory mediators, such as indoleamine 2,3

dioxygenase, nitric oxide, prostaglandin E2, TGF-b, heme

oxygenase 1, HGF, which play an important role in anti-

inflammatory and immunomodulatory (119). Pro-inflammatory

cytokine interferon-g has a synergistic immunosuppressive effect

with BMSCs, which mediates immune regulation by upregulating

the expression of prostaglandin E2, HGF, TGF-b1 in BMSCs and

inducing the expression of indoleamine 2,3 dioxygenase as well as

participating in tryptophan catabolism (135). Regulatory T cells

deficiency is associated with the pathogenesis of POF viamediating

apoptosis and steroidogenesis dysfunction of GCs (136). Luz-

Crawford P et al. found that BMSCs were capable to induce

functional regulatory T cells during the differentiation process of

Th1 and Th17 cells, which was related to the increase of IL-10

production by BMSCs (137). Moreover, BMSCs participate in

regulating the number and function of T cells (138). Therefore,

we surmise that maybe BMSCs regulate immune system in POF

through procedure mentioned above.
Anti-apoptotic effect

Apoptosis of GCs and theca cells increase in the ovaries of

cyclophosphamide (CTX)-induced POF mice (55). BMSCs

transplantation can help to inhibit the apoptosis of ovarian
FIGURE 5

The possible mechanisms of BMSCs in immunoregulation. BMSCs display immunomodulatory effect through paracrine effect and cell-cell
contact. BMSCs secrete immunomodulatory related factors, including indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO), prostaglandin E2
(PGE2), transforming growth factor-b (TGF-b), heme oxygenase 1 (HO1), hepatocyte growth factor (HGF), which participate in regulating the
number or function of immune cells. BMSCs-derived tumor necrosis factor-stimulated gene-6 (TSG-6) promote the transform from pro-
inflammatory macrophages (M1) to anti-inflammatory (M2) phenotype as well as inhibit the proliferation and inflammatory response of T cells.
The paracrine effect is heightened after BMSCs- M1 contact, which enhance the expression of TSG-6. Moreover, CD200R on M1 bind with
CD200 on BMSCs promote the transition of M1 to M2. At the same time, which contribute to promote the expression of CD200 on BMSCs.
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cells by regulating the levels of apoptosis-related genes such as

Bax, p53, caspase-3 and Bcl-2. Meanwhile, it can regulate the

expression of cyclinD2 and p21 to promote the proliferation of

residual ovarian cells, so as to repair the structure and function

of damaged ovary (37, 55). Kilic S et al. revealed that BMSCs

could protect germ cells from CTX-induced cell apoptosis and

DNA damage (60). In addition, BMSCs regulate apoptosis,

proliferation, and differentiation of ovarian follicles via genetic

and epigenetic regulation of the integrated TGF-b, Wnt/b-
catenin and Hippo signaling pathways, which are associated

with ovarian follicles growth and maturation (13). Transplanting

BMSCs with overexpressing miR-21 into the rat ovaries

damaged by chemotherapy can more efficiently inhibit the

apoptosis of GCs and improve the ovarian structure and

function through targeting to PDCD4 and PTEN (the target

genes of miR-21) compared with the transplantation of BMSCs

or miR-21 alone (139). In addition, BMSCs transplantation may

inhibit GCs apoptosis and ameliorate ovarian function through

releasing VEGF, HGF, IGF-1 and IGF-2, while upregulating the

expression of Bcl-2 (61, 62). Endoplasmic reticulum stress plays

a crucial role in promoting autophagy and apoptosis in GCs,

which results in excessive follicle loss and endocrine disorders

(67, 140). Hongxing Li et al. found that human placenta MSCs

(hPMSCs) transplantation inhibited the activation of inositol-

requiring enzyme 1a pathway of endoplasmic reticulum stress in

ovaries and reduced the up-regulation of XBP1, GRP78, caspase-

12 in zona pellucida glycoprotein 3 peptides-induced POF mice,

which subsequently decreased GCs apoptosis (67). Hence,

it’s worth to explore whether BMSCs restore ovarian
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function through regulating endoplasmic reticulum stress as

hPMSCs (Figure 6).
Antioxidation

Oxidative stress participates in inducing lipid peroxidation

functionally and structurally, and changing protein and DNA as

well as promoting apoptosis, which plays an important role in

the pathogenesis of POF (17, 141). Ağaçayak E et al. found that

the total oxidation status and oxidative stress index levels were

increased in POF patients (17). Superoxide dismutase (SOD),

which is an antioxidant enzyme, can help to partially restore

ovarian function by inhibiting ROS production (141). However,

the levels of SOD and nuclear factor erythroid 2-related factor

(Nrf2) were decreased in the POF mice ovary, leading to the

accumulation of ROS (142). ROS accumulation may impair to

ovarian function and oocyte quality (141). Several studies have

found that BMSCs play an important role in antioxidant stress.

Proteomic analysis revealed that various antioxidant mediators

such as cyclophilin A, cyclophilin B, thioredoxin, DJ-1, heat

shock protein 27, peroxiredoxin-1 secreted by BMSCs showed

significant antioxidant stress effects (120). IGF1 releasing from

BMSCs also possesses effective anti-oxidative abilities (52). In

addition, BMSCs transplantation impacts the activity of SOD

and the content of malondialdehyde through reducing the

expression of cyclin-dependent kinase inhibitor 2A (P16) and

increasing proliferating cell nuclear antigen, thus improving the

morphology and function of ovary (63). Seok J et al. indicated
FIGURE 6

The possible mechanisms of BMSCs in anti-apoptosis. BMSCs help to inhibit apoptosis through secreting vesicle containing microRNA-21(miR-
210), which targeting to PDCD4 and PTEN, or secreting vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin-like
growth factor 1/2 (IGF1/2) or and regulating apoptosis related gene, including Bcl2, Bax, Caspase3, p53, as well as regulating genetic and
epigenetic via TGFb, Wnt/b-catenin, Hippo signal pathway.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.997808
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2022.997808
that the transplanted hPMSCs reduced oxidative stress and

apoptosis in ovariectomized rat model via changing the

expression of HO-1/HO-2 and enhancing catalase and SOD1

gene expression (68). Furthermore, hUMSCs improve cisplatin-

induced autophagy in injured ovarian tissue via reducing the

levels of ROS and regulating AMPK/mTOR signaling pathway

(70). From this, we conjecture that maybe the mechanism of

BMSCs in anti-oxidative stress is consistent with aforesaid

MSCs. Currently, there are few studies about the mechanism

of BMSCs regulating oxidative stress to improve POF ovarian

function, but they have been widely studied in other diseases.

Niu Y et al. revealed that BMSCs-CM could alleviate oxidative

stress injury of neural stem cells through decreasing the

expression of lactate dehydrogenase and malondialdehyde,

increasing the expression of SOD and inhibiting the Notch1

signaling pathway (143). Moreover, BMSCs help to reduce

oxidative stress and inflammation via down-regulating NF-kB

signaling pathway, thereby reducing doxorubicin-induced

nephropathy (144). Whether the effect of BMSCs on

antioxidant stress in POF is consistent with others or not still

needs further research.
Mitochondrial transfer

Gomzikova et al. have found that MSCs can transfer

mitochondria to injured cells through various methods such as

tunneling nanotubes, extracellular vesicle and cell fusion,

thereby restoring aerobic respiration and mitochondrial

function of cells and inhibiting apoptosis (145). Wang L et al.

revealed that BMSCs transplantation could resist to

mitochondrial dysfunction in age-associated ovarian

hypofunction mice through enhancing mitochondrial

membrane potential, increasing mitochondrial DNA copies,

and improving mitochondrial cristae alignment and

vacuolation, as well as regulating expression of mitochondrial

dynamics-related proteins (146). Whether it is related to

mitochondrial transfer still needs further investigations. Tseng

N et al. indicated that when co-cultured with oxidant-damaged

neurons, BMSCs could transfer complete mitochondria to

injured neurons via instantaneous tunneling nanotubes, which

may contribute to the preservation and functional recovery of

neurons after stroke (147). Human BMSCs can transfer

mitochondria to injured human umbilical vein endothelial

cells via tunneling nanotubes, which helps to promote cell

proliferation, reduce cell apoptosis, and enhance their capacity

of transmembrane migration and angiogenesis, thereby

improving endothelial cells function and hematopoietic system

regeneration (148). Furthermore, the mitochondrial transfer

induced by BMSC-derived extracellular vesicle helps to

enhance phagocytic capacity, decrease secretion of

proinflammatory cytokine, and upregulate expression of the

M2 phenotype marker CD206 of human macrophages, thereby
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ameliorating lung injury in the acute respiratory distress

syndrome environment (149). In conclusion, mitochondria

transfer of BMSCs plays an important role in the treatment of

various diseases. Whether BMSCs can recover damaged ovarian

function through mitochondrial transfer in POF treatment still

needs further investigation.
Autophagy regulation

Autophagy is a crucial molecular pathway for maintaining

cellular and organismal homeostasis, which can remove

damaged or excess proteins, organelles, and foreign pathogens

in the cells (150). It has been proved that autophagy is involved

in the preservation of primordial follicles pools in young mice

and the elimination of inferior follicles during follicular

development (151). However, Xie QE et al. suggested that

excessive autophagy was connected with the pathogenesis of

POF (152). Therefore, regulating the activities of autophagy may

be an effective method to improve ovarian function of POF

(153). Yin et al. indicated that heme oxygenase-1 gene expressed

in UMSCs is crucial in restoring the ovarian function of POF

mice with UMSCs transplantation by activating JNK/Bcl-2

signaling pathway-regulated autophagy and upregulating the

number of CD8+CD28− T cells in the circulation (121).

Moreover, Lu X et al. suggested that hUMSCs transplantation

could alleviate ovarian function in POF rats via inhibiting the

theca-interstitial cells apoptosis through reducing autophagy,

which achieving in part through regulating ROS levels and

inhibiting the AMPK/mTOR signaling pathway (70). From

this, we can speculate that maybe BMSCs regulate autophagy

to ameliorate ovarian function. Presently, the fact that BMSCs

influence autophagy to restore ovarian function in POF has not

been reported, but BMSCs do have an effect on autophagy in

other diseases, such as ischemia/reperfusion injury (154).

Therefore, exploring the mechanism of BMSCs in modulating

autophagy may provide a feasible therapeutic strategy for POF.
Enhancing the effect of BMSCs

Recent years, lots of studies have proved that BMSCs

transplantation improves ovarian damage caused by

chemotherapy or other factors (13, 49, 50, 53, 56), which

provides promising treatment options for POF. However,

chronic inflammatory response, hypoxia, oxidative stress and

other microenvironmental changes in the damaged tissue area

often leads to apoptosis or low homing efficiency of transplanted

MSCs (155, 156). Saberi K et al. illustrated that more than 80% of

the transplanted cells underwent apoptosis after transplantation

to the target organ (157). The low mobility and survival rate of

BMSCs transplantation often limit their therapeutic potential.

Therefore, enhancing the homing and survival rate of
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transplanted cells is critical to improve the therapeutic effect of

BMSCs (Table 3).
Gene-modified BMSCs transplantation

To enhance repairing capabilities of transplanted cells, gene

modification is worth to take into consideration before BMSCs

transplantation. Previous studies indicated that overexpression

of homing related factors, such as SDF1, CXCR4, CMET, can

help to promote the homing of BMSCs significantly (85, 86, 94).

After dual genetic modification of BMSCs via transducing

CXCR4 and IL-35 , the migra t ion capab i l i t y and

immunoregulation effects of BMSCs are remarkably improved

compared to their natural counterparts (158), which implies that

dual CXCR4/IL-35 overexpression-BMSCs may be a promising

and attractive treatment in autoimmune POF. Fu X et al.

revealed that miR-21-overexpression BMSCs showed less

apoptosis and more vitality after transplanting and stronger

repairing effect in chemotherapy-induced POF compared with

the transplantation of BMSCs injection alone (139). Ni X et al.

found that co-overexpression of VEGF and Bcl-2 protected

BMSCs from a hostile environment through inhibiting

apoptosis, suppressing autophagy and enhancing paracrine

signaling (159). In addition, Parkinson’s disease protein 7

(PARK7) is an antioxidant protein that enhances cellular

resistance to oxidative stress and stress-induced apoptosis

(180, 181). PARK7 overexpression enhances antioxidative‐

stress capacity in BMSCs via activating the ERK1/2 signal

pathway, which effectively decreases the level of ROS/

malondialdehyde and protects the mitochondrial membrane

potential as well as inhibits apoptosis of BMSCs subjected to

oxidative stress (160). Moreover, PARK7 can also promote the

disintegration of Nrf2/Kelch-like echinacoside associated

protein 1 complex, thereby activating Nrf2. And then the

activated Nrf2 will enter the nucleus to activate the expression

of manganese superoxide dismutase, catalase, glutathione

peroxidase, and other antioxidant enzymes. This cascade helps

to remove excessive cellular ROS and protect BMSCs from

stress- induced apoptos is (161) . Therefore , BMSCs

overexpressing PARK7 before transplantation may help to

reduce BMSCs apoptosis induced by oxidative stress and

increase the homing efficiency of BMSCs to the damaged

microenvironment, thereby enhancing their repairing effect.

From this, gene‐modified BMSCs transplantation may be a

promising method to enhance the therapeutic effect of BMSCs.
Pretreatment and co-transplantation

Studies have reported that when the transplanted cells are

trapped in an undesirable environment, such as free radicals,

inflammation or hypoxia, they may suffer early death, which
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may limit the beneficial effects of these cells (157). Thus, it will be

beneficial to develop a special pre-treatment system or co-

transplantation to enhance the proliferation, homing and

survival ability of BMSCs to improve their performance. Zhu

X et al. revealed that shikonin pretreatment significantly

inhibited apoptosis in hUMSCs under hypoxic-ischemic

conditions in vitro or vivo studies through regulation of

autophagy via regulating AMPK/mTOR signal pathway,

thereby improving hUMSCs survival surrounding injured

tissues (163). In addition, the immunoregulation capability of

human ADMSCs can be changed when cultivated under serum

starvation to adapt to the different culture conditions in vitro

(164), which suggests that serum starvation pretreatment may be

beneficial to enhance the therapeutic effect of transplanted

BMSCs. Cunningham CJ et al. revealed that hypoxic

pretreatment of BMSCs could increase the secretion of VEGF,

FGF2, HGF, IGF1 (167). Erythropoietin (EPO) is a glycoprotein

hormone with the effect of antioxidant and anti-inflammatory.

Vitro studies showed that the proliferation rate and mobility of

BMSCs were significantly increased after 48h pretreatment with

500 IU/mL EPO, which may be achieved by regulating BMSCs

cytoskeletal rearrangement and upregulating the expression of

CXCR4 (165). In vivo studies also confirmed that pretreatment

with EPO before transplantation significantly increased the

homing and therapeutic capacity of BMSCs (165). In addition,

EPO is related to the activation of SIRT1 signal in BMSCs, and

then regulates the expression of P53 and Bcl-2, which shows an

anti-apoptotic effect (166). Colony-stimulating factors, which

are hematopoietic growth factors, participate in regulating the

proliferation, migration and differentiation of bone marrow

cells. BMSCs pretreated with granulocyte colony-stimulating

factor help to enhance the homing efficiency of BMSCs to

injured tissues by upregulating the CXCR4 expression, which

significantly increases repairing effects of BMSCs (162). Sameni

HR et al. also confirmed that the recovery of ovarian function in

POF rats was more favorable in coadministration of BMSCs with

granulocyte colony-stimulating factor compared with the

administration of either of them individually (48).

Low intensity pulsed ultrasound (LIPUS) is a pulse emission

with low intensity and low thermal effect. Studies have found

that LIPUS exposure can activate MAPK/ERK and PI3K/Akt

signal pathways by up-regulating CyclinD1 and C-MYC genes,

thus promoting the proliferation of MSCs (168, 169). Ling L

et al. also indicated that the activation of ERK1/2 and PI3K/Akt

signal pathways may be one of the potential mechanisms of

LIPUS promoting the proliferation of MSCs (170). Animal

studies also found that compared with human ADMSCs

transplantation, LIPUS-pretreated human ADMSCs

transplantation could not only repair chemotherapy-induced

ovarian damage and improve ovarian function in POF rats, but

also show greater advantages in alleviating ovarian tissue

inflammation, improving local microenvironment and

inhibiting chemotherapy-induced GCs apoptosis (171). Heat
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TABLE 3 The methods of enhancing MSCs effects.

Methods Cells
type

Intervention
way

Main effects Reference

Overexpression CXCR4 BMSCs Gene
modification

Promoted the homing of BMSCs to injured sites. Zheng XB et al., 2019 (80), Chen L
et al., 2020 (86)

Overexpression
SDF-1

BMSCs Gene
modification

Promoted BMSCs migration, proliferation and osteogenic
differentiation by activating the Wnt pathway.

Meng Z et al., 2021 (85)

Overexpression CMET BMSCs Gene
modification

Promoted the homing of BMSCs to injured sites. Wang K et al., 2017 (94)

Overexpression miR-21 BMSCs Gene
modification

Decreased BMSCs apoptosis.
Promoted efficacy against chemotherapy-induced POF.

Fu X et al., 2017 (139)

Co-overexpression
CXCR4 and IL-35

BMSCs Gene
modification

Enhanced migration and immunomodulatory activity of BMSCs. Tan C et al., 2022 (158)

co-overexpression
VEGF and Bcl-2

BMSCs Gene
modification

Protected BMSCs by inhibiting apoptosis, suppressing autophagy and
enhancing the paracrine effects.

Ni X et al., 2017 (159)

Overexpression PARK7 BMSCs Gene
modification

Increased antioxidative-stress processes and survival of BMSCs via
activating ERK1/2 signaling pathway.
Enhanced resistance to oxidative stress and inhibited stress-induced
apoptosis in BMSCs by regulating Nrf2 signaling pathway.

Zhang F et al., 2020 (160), Zhang F
et al., 2021 (161)

G-CSF BMSCs Coadministration/
pretreatment

The efficacy of the coadministration of BMSCs and G-CSF in restoring
ovaries damaged was more effective.
Promoted the homing of BMSCs via upregulating CXCR4 expression

Sameni HR et al., 2019 (48), Zhao F
et al., 2019 (162)

Shikonin UMSCs Coadministration/
pretreatment

Regulated autophagy via AMPK/mTOR pathway and reduced
apoptosis of human UMSCs to improve survival in injured site.

Zhu X et al., 2021 (163)

Starvation medium ADMSCs pretreatment Increased the immunomodulation Vu BT et al., 2021 (164)

Erythropoietin BMSCs pretreatment Increased the homing ability of BMSCs.
Protected BMSCs from apoptosis through SIRT1 pathway.
Reduced the lung entrapment of BMSCs and increased distribution in
target organs.
Enhanced therapeutic of BMSCs.

Zhou S et al., 2018 (165), Zhou S
et al., 2020 (166)

H2O2 BMSCs pretreatment Promoted homing to injured site. Guo L et al., 2020 (82)

Hypoxia BMSCs pretreatment BMSCs increase VEGF, FGF2, HGF, and IGF-1 expression by nuclear
factor-kappa B mechanism.

Lahm T et al., 2008 (167)

LIPUS ADMSCs
BMSCs
AMSCs

Treatment/
pretreatment

Maintained ADMSCs stem-cell property by activating MAPK/ERK
and PI3K/AKT signaling pathways by up-regulating CyclinD1 gene
and c-myc gene in ADMSCs cells.
Promoted cells proliferation by activating PI3K/AKT and ERK1/2
signaling pathways.
Promoted expression and secretion of growth factors.
More advantageous for reducing inflammation, improving local
microenvironment and inhibiting GCs apoptosis in ovarian tissue of
POF.

Huang D et al., 2020 (168), Xie S
et al., 2019 (169), Ling L et al., 2017
(170), Ling L et al., 2017 (171)

HSP BMSCs
UMSCs

pretreatment Alleviated the apoptosis and improve the survival of BMSCs through
elevating expression of HSP70 and HSP90 and attenuating autophagy.
Enhanced inhibitory effect of UMSCs on inhibiting NLR family pyrin
domain containing 3 inflammasome activation in macrophages by
upregulating HSP70.

Chen X et al., 2018 (27), Wang Q
et al., 2019 (172), Lv H et al., 2021
(173)

L-carnitine BMSCs treatment Suppressed cell apoptosis by elevating ATP.
Inhibited adipogenic differentiation.

Fujisawa K et al., 2017 (174)

Apigenin BMSCs coadministration More effectively restored damaged ovaries.
May increase the differentiation of transplanted BMSCs.

Talebi A et al., 2020 (175)

PRP UMSCs coadministration Increased the survival rate of UMSCs transplantation.
Enhanced the beneficial effects of UMSCs in treating POF.

Wang J et al., 2021 (176)

Collagen scaffolds ADMSCs Co-
transplantation

Increased the short-term retention of ADMSCs in ovaries and
contributed to long-term restoration of ovarian function

Su J et al., 2016 (177)

(Continued)
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shock pretreatment (HSP) is an effective way to protect cells

before and after transplantation. Recent studies have shown that

HSP can inhibit apoptosis and improve the survival of BMSCs in

the chemotherapy environment. The mechanism may be related

to the elevated expression of HSP90 and HSP70 and the

reduction of autophagy (172). In addition, HSP can also

enhance the immunomodulatory ability of MSCs (173), which

may enhance the therapeutic potential of BMSCs. Studies

indicated that melatonin, L-carnitine, apigenin pretreatment

could remarkably improve the homing and survival of BMSCs

and improve the beneficial effects of MSCs therapy (50, 157, 174,

175, 182). Wang J et al. found that human cord blood platelet-

rich plasma could promote proliferation and reduce apoptosis of

hUMSCs. Co-transplantation hUMSCs with human cord blood

platelet-rich plasma could increase the number of MSCs homing

to the ovary of POF rats, which more effectively restored the

estrous cycle and repaired damaged follicles of POF rats (176). In

addition, Xu H et al. indicated that co-transplantation of BMSCs

and endothelial progenitor cells could promote angiogenesis in

the site of osteonecrosis of the femoral head (183). From this, we

speculate that maybe co-transplantation BMSCs with

endothelial progenitor cells can significantly ameliorate

ovarian function in POF in the same way, which deserves

further exploration.
BMSCs and biomaterials

Biomaterials take the advantages of promoting cell

interactions, excellent stability and biodegradability, good

passive and active targeting and show great potential in

various applications including regenerative medicine (184). Su

et al. reported that ADMSCs transplantation by collagen scaffold

increased the retention of MSCs in ovaries and contributed to

long time restoration of ovarian function in the POF rat model

(177). However, transplanting cells directly into the core of the

ovaries may lead to ovarian injury resulting from needle

puncture. Shin EY et al. effectively avoid the disadvantage

through subcutaneous transplanted MSCs using hyaluronic

acid gel scaffold, and at the same time, the method effectively
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prolongs the survival rate of transplanted cells and significantly

recovers ovarian functions in POF rats, too (178). Moreover,

Mao AS et al. found that biomaterial encapsulation of BMSCs

into programmable microencapsulation using a microfluidic

device could partly reduce donor rejection and efficiently

increase retention in vivo after intravenous injection, which

substantially sustained BMSCs survival and enhanced overall

immunomodulatory capacity of BMSCs in a model of allogeneic

transplantation (179).
Exosomes

Although numerous studies have shown that BMSCs

transplantation can effectively restored the ovarian structure

and function of POF, there are still some limitations, such as

invasive operation, uncontrollable preparation quality,

immunological rejection, post-transplantation infection,

secondary injury, descendant safety, chromosomal aberration,

potential tumorigenicity (185–187). Chen S et al. demonstrated

that the repairing effects of BMSCs and their exosomes were

consistent in reducing senescent and apoptotic of GCs after

phosphoramide mustard injury (21). From it, it’s worth

to explore whether BMSCs-derived exosomes can provide a

new strategy and direction for restoring POF ovarian function

and at the same time avoid the disadvantages of direct

BMSCs transplantation.

Exosome is a vesicle with a diameter of 40-100 nm secreting

by cells and contains various proteins, mRNA and microRNAs,

which is involved in cell communication and migration,

angiogenesis and growth of tumor cells (37, 187). Yang M

et al. revealed that BMSC-derived exosome miR-144-5p-

mediated PTEN inhibition resulted in increasing PI3K/AKT

signal activation, which was conducive to decrease GCs

apoptosis and increase ovarian reserve in chemotherapy-

induced POF (37). Similarly, the delivery of BMSC-derived

exosome miR-644-5p to GCs plays a key role in regulating p53

expression of cells and thereby inhibiting GCs apoptosis and

restoring ovarian function in cisplatin-induced POF mice model

(188). MiR-126 is an important regulator for the function of
TABLE 3 Continued

Methods Cells
type

Intervention
way

Main effects Reference

PLGA/MH sponge or
hyaluronic acid gel type
of scaffold

ESC-
MPCs

Co-
transplantation

Effectively prolonged the cell survival rate in vivo.
Exhibited the best recovered ovarian functions.

Shin EY et al., 2021 (178)

Programmable
microencapsulation

BMSCs Co-
transplantation

enhanced BMSCs persistence and immunomodulation. Mao AS et al., 2019 (179)
AMSCs, amniotic mesenchymal stem cells; ADMSCs, adipose-derived mesenchymal stem cells; BMSCs, bone marrow mesenchymal stem cells; ESC-MPCs, embryonic stem cell-derived
mesenchymal progenitor cells; FGF2, fibroblast growth factor2; G-CSF, granulocyte colony-stimulating factor; HGF, hepatocyte growth factor; HSP, heat shock pretreatment; IGF, insulin-
like growth factor; LIPUS, low-intensity pulsed ultrasound; PARK7, Parkinson’s disease protein 7; POF, premature ovarian failure; PRP, platelet-rich plasma; UMSCs, umbilical cord
mesenchymal stem cells; VEGF, vascular endothelial growth factor.
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endothelial cells and angiogenesis (189). BMSCs-derived miR-

126 can enhance the survival and angiogenic function of injured

endothelial cells by activating the PI3K/Akt/eNOS pathway and

reducing cleaved caspase-3 expression, while increasing the

expression of VEGF, epidermal growth factor, platelet derived

growth factor, bFGF and other angiogenesis and growth factors

(190). In addition, human BMSCs-derived exosomes can induce

tubule formation in vitro and promote angiogenesis through

NF-kB signaling pathway (191). Related studies have shown that

exosomes secreted by MSCs from different tissues such as

amniotic membrane and umbilical cord also play an important

role in POF treatment. hUMSCs-derived exosome helps to

rescue POF and reduces ROS accumulation by downregulating

the expression of SIRT7 and its downstream target genes via

delivering exosome miR-320a (192). Similarly, hUMSCs-derived

exosome can recover ovarian structure and function, promote

GCs proliferation and inhibit ROS accumulation in CTX

-induced POF mouse model by down-regulating the

expression of SIRT7 and its downstream target genes (PARP1,

gH2AX and XRCC6) via delivering miR-17-5p (193). Xin Mi

et al. also found that the secretome of hUMSCs helped effectively

to activate primordial follicle both in vivo and vitro. And

furthermore, hUMSCs-derived HGF upregulated the

expression of KIT ligand in GCs, thereby promoting the

activation of PI3K/Akt signaling pathway in dormant oocytes

(194). Li Z et al. revealed that hUMSCs-derived exosome

significantly ameliorated ovarian function and reproductive

ability of POF mice models through promoting GCs

proliferation via the Hippo signaling pathway (195). Cai et al.

also found that hUMSCs-derived miR-21 could inhibit the

expression of LATS1, so as to reduce phosphorylated LOXL2

and YAP, and ultimately promote E2 secretion in ovarian GCs

(196). Moreover, hUMSCs-derived miR-126-3p promote

proliferation while inhibit the apoptosis of GCs through

PIK3R2/PI3K/AKT/mTOR pathway (197). Similarly, Yang

et al. demonstrated that hUMSCs exosome transplantation

could ameliorate ovarian function through promoting

angiogenesis by activating PI3K/AKT signaling pathway (198).

In a word, the above studies have proved that exosomes

derived from MSCs effectively ameliorate ovarian function in

POF by promoting angiogenesis, inhibiting oxidative stress,

suppressing cell apoptosis, and exerting many beneficial

effects, which may represent a prospective cell-free therapy for

developing therapeutic regimen for POF (Table 4). But there are

still some limitations. Firstly, there is no standardized methods

to produce enough exosomes. Moreover, the exosomes

transplanted into the body are quickly degraded and lost.

Finally, whether exosome therapy alone is equivalent to stem

cell treatment is still uncertain (199). All in all, how to avoid the

drawbacks of BMSCs transplantation effectively or find a better

alternative method still needs further research.
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Discussion

POF is a common endocrine disorder that causes infertility

in women, which affecting about 0.1% and 1% of women under

30 and 40 years old, respectively. POF is irreversible and

currently incurable. Currently, HRT is the preferred treatment

for POF, but it is unclear whether HRT increases the risk of

breast cancer and venous thromboembolism (200). Therefore, it

is crucial to find a better treatment for POF patients. Studies

reveal that BMSCs have great potential for alleviating POF in

laboratory-based investigations and pre-clinical as well as

clinical studies in the last decade (64, 201, 202). BMSCs

transplantation is a terrific option for POF treatment due to

their low immunogenicity, availability and broad sources (35,

37). They can improve POF ovarian function through various

mechanisms including paracrine, angiogenesis, anti-fibrosis,

anti-inflammatory and immune regulation, anti-oxidative

stress, inhibition of apoptosis, mitochondrial transfer and

autophagy regulation after homing to the damaged ovary. At

the same time, more and more researchers focus on optimizing

the efficacy and safety of MSCs through genetic modification,

pretreatment or co-transplantation and biomaterials processing.

Moreover, exosomes secreted by MSCs may be a prospective

cell-free therapy for developing therapeutic option for POF.

BMSCs have great therapeutic potential in many diseases,

however, there are still some limitations. First and foremost, the

specific markers of MSCs are unclear, so it is difficult to purify

MSCs. Next, the mechanism of MSCs homing is still not fully

understood, especially the mobilizing mechanism of MSCs,

therefore targeted transplantation of BMSCs to injured ovaries

remains a challenge (203). Thirdly, the existence of certain

biosafety and biological efficacy concerns of MSCs may restrict

their clinical applications, including tumor formation,

chromosomal aberration, and immunological rejection (37,

186). Moreover, failure of homing to the target damaged tissue

precisely and efficiently may lead to some fatal complications

such as pulmonary embolism and induced thromboembolism

(204–206). More than that, cell senescence is still the bottleneck

for clinical applications of BMSCs. Last but not least, there

is still no unified standard for BMSCs treatment. For

instance, the dosage of stem cell transplantation and the

choice of transplantation method, intravenous, orthotopic

or intraperitoneal injection? Libing Shi et al. found that

intraovarian injection may effectively improve the utilization

of MSCs in the ovaries and reduce the adverse effect to other

organs, nevertheless, the data also found that intraovarian

hUMSCs injections may be toxic to the ovaries and oviduct,

which manifested as ovarian lesions and inflammatory cell

infiltration in the ovaries (206). In addition, although MSCs

have demonstrated obvious therapeutic efficacy in animal

models of POF, it is not sufficient to ensure that the majority
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of patients with POF regain their ovarian reserve in

clinical (207).

In view of the problems existing in BMSCs transplantation,

it is urgent to seek positive solutions. Firstly, improving

standardization of BMSCs including manufacturing

protocols, therapeutic targets, dosage, delivery strategy,

number, and treatment protocols may partly avoid

transplanted relevant risks such as thromboembolism and

immunological rejection. Secondly, the tumorigenicity of

BMSCs transplantation has long been a concern. Park HS

et al. indicated that the number of transplanted cells

gradually decreased and almost disappeared after 4 weeks in

POF ovaries (53), therefore, the transient residence time and

low survival of exogenous BMSCs after transplantation in vivo

decrease the risk of tumorigenesis (186). Not only that,

previous studies also revealed that BMSCs was safe at least

six months after transplantation and without significant found
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of tumorigenicity (146). In addition, Zhang S et al. revealed

that ovarian regenerative patch that composed by clinically

relevant hydrolysable scaffolds and synthetic MSCs, which

encapsulated the secretome of MSCs, restored ovarian

function and rescued fertility in POF rats efficiently. The

strategy could efficiently avoid the drawback of direct

implantation of live cells that increased the risk of developing

tumor and immunological rejection, and at the same time, it

was able to maintain secretome of MSCs sustainable release to

play a more effective therapy (208), which may provide a

clinically feasible treatment for POF.
Conclusion

In summary, BMSCs have undergone a long process of

scientific research and exploration from initial discovery
TABLE 4 Therapeutic effect of exosomes derived from MSCs in POF.

Sources Contents Function Reference

BMSCs-EVs
(human)

N/A Reduced the proportions of senescent and apoptotic GCs after phosphoramide mustard
injury.

S. Chen et al.2020 (21)

BMSCs-EVs
(rat)

miR-144-5p Inhibited GCs apoptosis.
Preservation of ovarian follicles after chemotherapy-induced POF through the PTEN/
PI3K/AKT axis.

M. Yang et al., 2020
(37)

BMSCs-EVs
(mouse)

miR-644-5p Inhibited ovarian GCs apoptosis by targeting regulation of p53. B. Sun et al., 2019
(188)

BMSCs-EVs
(mice)

miR-126 Enhanced endothelial cells proliferation, migration, and tube formation via activating the
PI3K/Akt/eNOS signaling pathway.
Inhibited endothelial cells apoptosis by downregulation of cleaved caspase-3.
Enhanced the expression of FGF, bFGF and angiogenic factors (PDGF, VEGF) in injured
endothelial cells.

Q. Pan et al., 2019
(190)

BMSCs-EVs
(human)

Angiogenic paracrine effectors
(PDGF, EGF, FGF)

Induced proangiogenic factors expression in endothelial cells.
Modulation of angiogenesis via nuclear factor-kappa B signaling.

J. D. Anderson et al.,
2016 (191)

AMSCs-EVs
(human)

miR-320a Resistance to ovarian senilism.
Reduced the ROS levels by regulating SIRT4 by delivering exosomal miR-320a to oocyte,
hGCs and ovaries.

C. Ding et al., 2020
(192)

UMSCs-EVs
(human)

miRNA-17-5p Promoted proliferation of CTX-damaged hGCs and ovarian cells.
Alleviated ROS accumulation.
Improved ovarian function in POF by regulating SIRT7.

C. Ding et al., 2020
(193)

UMSCs-EVs
(human)

HGF Promoted primordial follicle activation by increasing the activity of the PI3K-AKT
signaling pathway.

X. Mi et al., 2022
(194)

UMSCs-EVs
(human)

N/A Improved ovarian functions and proliferation by regulating the Hippo pathway.
Promoted the proliferation of ovarian GCs.

Z. Li et al., 2021 (195)

UMSCs-EVs
(human)

miR-21 Promoted estrogen production in ovarian GCs via LATS1-mediated phosphorylation of
LOXL2 and YAP.

J. H. Cai et al., 2022
(196)

UMSCs-EVs
(human)

miR-126-3p Promoted angiogenesis and attenuated ovarian GCs apoptosis in POF. Q. Qu et al., 2022
(197)

UMSCs-EVs
(human)

N/A Restored ovarian function by inducing angiogenesis via the PI3K/AKT signaling
pathway.

Z. Yang et al., 2019
(198)
AMSCs, amniotic mesenchymal stem cells; BMSCs, bone marrow mesenchymal stem cells; bFGF, basic fibroblast growth factor; EGF, epidermal growth factor; EVs, exosomes; FGF,
fibroblast growth factor; GCs, granulosa cells; HGF, hepatocyte growth factor; miR, microRNA; POF, premature ovarian failure; ROS, reactive oxygen species; UMSCs, umbilical cord
mesenchymal stem cell.
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to gradual application in the treatment of clinical diseases. Long-

term studies found that BMSCs show great potential in

ameliorating POF ovarian function through homing,

paracrine, angiogenesis, anti-fibrosis, anti-inflammatory and
Frontiers in Immunology 19
immune regulation, anti-oxidative stress, inhibition of

apoptosis, mitochondrial transfer and autophagy regulation.

And genetic modification, pretreatment, co-transplantation

and biomaterials processing effectively enhance the therapeutic
TABLE 5 Clinical trials of MSCs treatment for POF.

Identifier Patients Study
design

Source of MSCs Delivery
route

NCT02696889 Female over the age of 18.
Diagnosis of POF.
Normal karyotype 46, XX.
Presence of at least one ovary.
Acceptable uterine anatomy.
Normal thyroid function.
No other causes of female infertility.

N/A Autologous bone marrow intraovarian

NCT02779374 Women with POF:
Less than 40 years.
amenorrhea of at least 4 months.
FSH level above 25 IU/L (repeated twice >4 weeks apart).

N/A Autologous bone marrow intravenous

NCT04675970 Diagnosed of POF ESHRE:
Women age of 18-40 years.
Have experienced 4 months of oligo/amenorrhea.
Two serum follicle-stimulating hormone (FSH was >40 mIU/ml levels in the menopausal
range, obtained at least a month apart.
Lower FSH levels (25 mIU/ml).
AMH serum levels (3.0 ng/ml).

N/A Autologous bone marrow N/A

NCT03069209 Female.
Age: 20-39 years old.
FSH>20 IU/L.

Phase 1/2 Autologous bone marrow intraovarian

NCT02062931 Post-menarche female less than 40 years old.
FSH more than or equal to 20 IU/L.
Female with normal karyotyping.

Phase 1/2 Autologous bone marrow intraovarian

NCT02372474 Post-menarche female less than 40 years old.
Normal karyotyping female.
Primary ovarian failure females FSH more than or equal to 20 IU/L.

Phase 1/2 Autologous bone marrow intraovarian

NCT03816852 Meet diagnostic criteria of ESHRE.
No hormonotherapy and Chinese traditional medicine within 3 months.

Phase 2 Human umbilical cord intravenous

NCT05308342 Meet the POF diagnostic criteria and have no spontaneous follicular activity.
Married, 20 years old ≤ age < 40 years old.
The average diameter of each ovary is > 10 mm.

N/A Human umbilical cord intraovarian

NCT02644447 Diagnosed with POF.
Patients show no response to drug treatment.
Women between 20 and 39 years.

Phase 1/2 Human umbilical Cord intraovarian

NCT01742533 Between age 18- 39 years, Female only.
Diagnosed with POF, and currently receiving Hormone Replacement Therapy.

Phase 1/2 Human umbilical Cord N/A

NCT03877471 Under 40 years of age.
Have established regular menstrual cycle, oligomenorrhea/amenorrhea ≥ 4 months.
FSH (Follicle-Stimulating Hormone) > 25 IU/mL.
Bilateral ovaries are visible by ultrasound.
Have fertility requirement, husband has sperms.

Phase 1 Embryonic stem cell intraovarian

NCT04706312 Women between35 and 45 years.
Diagnosed with Diminished Ovarian Reserve by Bologna criteria, (AFC ≤ 7, or serum AMH
level < 1.10ng/ml).
failed pregnancies in at least two cycles of In Vitro Fertilization or Intracytoplasmic Sperm
Injection.

Phase 1 human amniotic MSCs intravenous

NCT01853501 Clinical diagnosis of POF.
Patients show no response to drug treatment.
Age between 20 to 39.

Phase 4 Autologous adipose
derived stem cells

intraovarian
fr
AMH, anti-mullerian hormone; ESHRE, European Society for Human Reproduction and Embryology; FSH, follicle stimulating hormone; MSCs, mesenchymal stem cells; POF, premature
ovarian failure.
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effects of BMSCs. In addition, exosome is a prospective cell-free

therapy in POF. Up to now, more and more clinical trials of

MSCs in the treatment of POF have been gradually carried out

(59, 209) (Table 5), but there are still many details which need to

be further improved and explored. Formulating systematic

standards of BMSCs from culture to application can help to

increase the safety of BMSCs-based applications and avoid the

side effects. The application of gene modification, biomaterial

and exosomes may bring good news to the treatment of POF. It

is believed that BMSCs-mediated therapy has broad application

prospect for fundamental restoration of ovarian function in

POF patients.
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