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Abstract: Acquisition time and injected activity of 18F-fluorodeoxyglucose (18F-FDG) PET should
ideally be reduced. However, this decreases the signal-to-noise ratio (SNR), which impairs the
diagnostic value of these PET scans. In addition, 89Zr-antibody PET is known to have a low SNR.
To improve the diagnostic value of these scans, a Convolutional Neural Network (CNN) denoising
method is proposed. The aim of this study was therefore to develop CNNs to increase SNR for
low-count 18F-FDG and 89Zr-antibody PET. Super-low-count, low-count and full-count 18F-FDG
PET scans from 60 primary lung cancer patients and full-count 89Zr-rituximab PET scans from five
patients with non-Hodgkin lymphoma were acquired. CNNs were built to capture the features and
to denoise the PET scans. Additionally, Gaussian smoothing (GS) and Bilateral filtering (BF) were
evaluated. The performance of the denoising approaches was assessed based on the tumour recovery
coefficient (TRC), coefficient of variance (COV; level of noise), and a qualitative assessment by two
nuclear medicine physicians. The CNNs had a higher TRC and comparable or lower COV to GS and
BF and was also the preferred method of the two observers for both 18F-FDG and 89Zr-rituximab PET.
The CNNs improved the SNR of low-count 18F-FDG and 89Zr-rituximab PET, with almost similar or
better clinical performance than the full-count PET, respectively. Additionally, the CNNs showed
better performance than GS and BF.

Keywords: low-count; CNN; denoising; 18F-FDG; 89Zr-antibody

1. Introduction
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is essential

in staging of a broad spectrum of malignancies [1–3]. Currently, a whole-body 18F-FDG
PET scan is acquired using a scan duration of 2 min per bed position and an injected
activity of 3.7 MBq/kg. A shorter scan duration per bed position could ideally decrease
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the total scan duration, and therefore, minimize movement artefacts and increase patient
comfort and throughput. A reduction of injected activity would decrease the radiation
burden for the patient, and therefore makes it possible to perform more frequent 18F-FDG
PET scans per patient for restaging and therapy-response assessments, in case of scanning
children and/or for non-oncological cases. However, a shorter scan duration and lower
injected activity would result in a lower signal-to-noise ratio (SNR). Poor scan quality due
to low-count (LC) is also observed for 89Zr-antibody PET scans, which are obtained after
relatively low injected activity imposed by the radiation burden of 89Zr [4]. Therefore,
denoising LC whole-body 18F-FDG and 89Zr-antibody PET scans is of interest for improving
image quality.

Traditionally, Gaussian smoothing (GS) has been used to denoise PET images [5].
However, GS reduces the spatial resolution of the images, and therefore, could impair
detectability and quantification of small (tumour) lesions [6]. Bilateral filtering (BF) exhibits
superior properties in comparison to the more commonly used GS for noise reduction in
PET [7]. BF reduces the noise of PET scans, while preserving spatial information (e.g., edges).
However, BF parameters are difficult to optimize in a generic way because both an opti-
mized intensity and spatial parameter need to be determined, which depend on both the
tracer and site of interest. Therefore, another adaptive/data-driven denoising method with
high accuracy is warranted.

Convolutional Neural Networks (CNN) are a specialized type of Neural Networks
that use convolution to extract features from the PET scan. This is done by convolution
filters which assign importance/weights to (learnable) features present in the PET scan. It
can therefore learn and detect features such as PET intensities, edges, shapes, etc. Therefore,
CNNs are highly beneficial in various medical image processing/segmentation tasks [8–11].
A CNN-based deep-learning algorithm may also be superior in denoising tasks since it can
learn non-linear latent/hidden (not observable by humans) features (which you want to
preserve) from LC PET scans and increase the SNR [12–18]. Therefore, denoising LC whole-
body 18F-FDG and 89Zr-antibody PET scans using a CNN may be performed to improve
the SNR and thus their diagnostic value. In previous studies [12–14,17,19] a successful
application of CNNs for improving 18F-FDG PET scans has been presented. However, these
studies were performed in a small (oncology) patient cohort, were based on unsupervised
deep learning networks and on improving full-count (FC) 18F-FDG PET scans or a longer
scan duration per bed position.

Therefore, the aim of this study was to develop, train, and extensively evaluate the
performance of CNNs to denoise LC whole-body 18F-FDG and 89Zr-antibody PET scans. A
secondary aim was to compare the diagnostic value of the CNNs to that of GS and BF.

2. Materials and Methods
2.1. Participants

We included PET scans of 60 patients with stage I–IV non-small-cell lung carcinoma
(NSCLC) (40 patients from Limburg PET-Center Hasselt Belgium (LPC) [20], and 20 patients
from Amsterdam UMC, location VUmc), of which five patients with diffuse large B cell
lymphoma (DLBCL) non-Hodgkin lymphoma (Amsterdam UMC, location VUmc) [21]
(Table 1). The study at LPC was registered at clinical trials.gov, NCT02024113. The data
from the patients with lung cancer at Amsterdam UMC were retrospectively obtained
from medical records, with a waiver for informed consent from the Medical Ethics Review
Committee of Amsterdam UMC, location VUmc. This study was registered as IRB2018.029.
The patients with non-Hodgkin lymphoma were included as part of studies performed
by Jauw et al. These patients provided written informed consent, and the studies were
approved by the Medical Ethics Review Committee of Amsterdam UMC, location VUmc.
This study was registered at Dutch Trial Register http://www.trialregister.nl (accessed on
19 January 2022), NTR3392.

http://www.trialregister.nl
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Table 1. The patients characteristics included in this study from Amsterdam UMC.

18F-FDG (n = 20)
NSCLC–Amsterdam UMC

18F-FDG (n = 40)
NSCLC–LPC

89Zr-Rituximab
(n = 5) Non-Hodgkin Lymphoma

Male/female (n) 11/9 25/15 3/2
Injected dose (MBq) 259.4 ± 43.8 298.2 ± 49.4 73.7 ± 0.3
Tumour volume (cubic centimeter (cc))–Test data 29.2 ± 54.3 - 25.6 ± 51.3

2.2. Data Acquisition

Whole-body 18F-FDG PET scans in LPC were acquired with a Gemini Big Bore TF
PET/CT scanner, and in Amsterdam UMC with an Ingenuity TF PET/CT and Vereos
Digital PET/CT scanners (Philips Medical Systems, Best, The Netherlands). 89Zr-rituximab
PET scans (patients with non-Hodgkin lymphoma) were acquired with an Ingenuity TF
PET/CT. For 18F-FDG PET scans, 60 min after 259.4 ± 43.8 MBq tracer injection, a low-
dose computed tomography (LDCT) scan was performed for attenuation correction and
anatomical localisation, and subsequently a 20 min static (exact time depends on patient
length) whole-body 18F-FDG PET scan was acquired (2 min per bed position). Six days
after the injection of 73.7 ± 0.3 MBq 89Zr-rituximab, an LDCT scan was obtained, directly
followed by a 60 min static whole-body PET scan (5 min per bed position). Corrections for
decay, dead time, normalization (detector sensitivities), attenuation, random coincidences
and scatter were applied.

Amsterdam UMC 18F-FDG PET data were reconstructed with a 10 s (super-low-count
(SLC), 92% scan time reduction), 30 s (low-count (LC), 75% scan time reduction) and 2 min
(full-count (FC)) scan duration per bed-position. The (S)LC PET scans were reconstructed
using multiple time points/delays, which was later used for data augmentation during
training. These scans were reconstructed using the blob-basis function ordered-subsets
time of flight (BLOB-OS-TF) for the Ingenuity TF PET/CT scanner and the novel ordered
subset expectation maximization (OSEM 3i15s, 1i6r-PSF, 4 mm FWHM GAUSS, OSEM
3i15s, 3 mm FWHM GAUSS) for the Vereos Digital PET/CT scanner. The 89Zr-rituximab
scans, and the 18F-FDG PET data from LPC were reconstructed with a FC 5 min and 2 min
scan duration per bed position only using BLOB-OS-TF, respectively.

The 18F-FDG and 89Zr-rituximab PET scans from Amsterdam UMC were reconstructed
according to current European Association of Nuclear Medicine Research Ltd. (Vienna,
Austria) EARL1 standards and settings associated with EARL accreditation [22], respec-
tively. Matrix and voxels sizes were 144 × 144 and 4 mm in all directions, respectively.
18F-FDG PET scans from LPC were reconstructed according to EARL1 standards, with
matrix and voxel sizes of 169 × 169 and 4 mm, respectively.

2.3. Image Processing

For each FC whole-body 18F-FDG PET scan from LPC, SLC PET, scans were simu-
lated using the SiMulAtion and ReconsTruction (SMART)-PET package [23]. Simulation-
reconstruction settings were chosen so that the simulated noisy 18F-FDG PET scans from
LPC showed an almost similar coefficient of variation as the SLC-reconstructed 18F-FDG
PET scans from Amsterdam UMC. The simulated PET images were used to initially train
the CNN, while parts of the actual reconstructed images were used for further fine-training
of the CNN, details are explained later.

2.4. Model Architecture

A supervised U-Net based [11] 3D-CNN (Figure 1 and Appendix B) was used to
denoise the (S)LC 18F-FDG PET scans while maintaining their diagnostic value. However,
instead of the max-pooling layer that is traditionally used, in this study the down sampling
layers consisted of convolution layers with a stride of two [24]. Although the convolution
layer compresses the feature image just as is the case for a max-pooling layer, it does not
exclude voxels by only looking at the maximum values. It therefore, not only reduces
computation time (although less than max-pooling), but most importantly increases the
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model its ability to learn [24]. Additionally, in contrast to conventional CNNs, a kernel size
of 6 × 6 × 6 instead of 3 × 3 × 3 was applied to learn inter-slice morphological features [25].

Figure 1. Architecture of the U-net shaped 3D-CNN used in the study. It consists of an encoding and
decoding path, which are connected with concatenation layers at each resolution block.

2.5. Model Performance
2.5.1. Quantitative Performance

The simulated SLC whole-body 18F-FDG PET scans from LPC were used to pre-train a
3D-CNN. Next, the reconstructed SLC and LC 18F-FDG PET data from Amsterdam UMC
were used for fine-training (transfer-learning) the pre-trained model, which generated two
additional models (SLC-CNN and LC-CNN) that are tailored to manage low or super low
count/quality images. These two models were subsequently used for further evaluation.
Training of the CNN model on the simulated noisy LPC 18F-FDG data was performed
to avoid overfitting due to the small dataset. Noise characteristics of 89Zr-rituximab
and LC 18F-FDG PET scans were almost similar. However, we used the SLC-CNN to
denoise the 89Zr-rituximab PET scans instead of the LC-CNN, because of the higher level
of noise reduction.

The 18F-FDG PET data from LPC was split into a training (80%, n = 32) and a validation
(20%, n = 8) set. Thereafter, for further refinement, validation and testing, the two CNN
models, 18F-FDG and 89Zr-rituximab data from Amsterdam UMC, were used. During this
training, the data were split into a training (32%, n = 8), a validation (8%, n = 2) and an
independent test (60%, n = 15) set. The training and validation set from Amsterdam UMC
consisted of only 18F-FDG PET scans from the Ingenuity TF PET/CT scanner. The test set,
however, consisted both of 18F-FDG PET scans from the Ingenuity TF PET/CT scanner,
the Vereos Digital PET/CT scanner, and 89Zr-rituximab PET scans from the Ingenuity TF
PET/CT scanner. PET data augmentation was applied during each training epoch (train-
data only) by randomly sampling the different (time points/delays) (S)LC 18F-FDG PET
scans for each patient during training. In other words, instead of traditional augmentation
(shifts, zoom, translation, rotation, etc.), in each training epoch, minor differences in noise
characteristics were present.

To compare the performance of the CNNs with other denoising methods, the (S)LC
test PET scans were also denoised using traditional GS (18F-FDG) and more advanced
BF [17] (18F-FDG and 89Zr-rituximab) denoising methods (Table 2). A Mann–Whitney U
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test (p < 0.05) was used to compare tumour recovery coefficients (TRC) and levels of noise
in the images after applying the denoising methods.

Table 2. Gaussian smoothing (GS) and Bilateral Filtering (BF) settings evaluated for the denoising of
the low-count whole-body PET scans.

GS (FWHM) BF (FWHM; SUV)
18F-FDG PET

SLC 8 mm, 10 mm and 12 mm 4 mm and 5 mm; SUV2.5
LC 4 mm, 6 mm and 8 mm 3 mm and 4 mm; SUV2.5

89Zr-rituximab PET 6 mm, 8 mm and 10 mm 2 mm, 3 mm and 4 mm; SUV2.5

We calculated TRC for the 18F-FDG and 89Zr-rituximab PET scans (test data) using
Equation (1). TRC was computed for the test data post-processed with a 3D-CNN, GS, or
BF denoising method and compared this to the FC data. PET uptake features from the
tumour volumes were extracted (UX, X = average, maximum and 3Dpeak) for both the
denoised (UX denoised) as the FC (UX FC) PET scans, using the in-house built and open-
access ACCURATE tool (quAntitative onCology moleCUlaR Analyses SuiTE) [26,27]. From
the 18F-FDG scans, only the primary lung tumour was extracted using a 50% SUV3Dpeak
isocontour (Table 1 and Figure A1). For the 89Zr-rituximab PET scans, tumours were
extracted using manual delineation (Table 1 and Figure A1). For patients with non-Hodgkin
lymphoma with more than three tumours, bootstrapping was applied to randomly choose
three tumours for analysis.

TRC =
UX denoised

UX FC
(1)

The level of noise was presented as the coefficient of variance (COV; Equation (2)).
Four spherical volume of interest (VOIs) were drawn in the liver (because the liver showed
homogeneous tracer uptake in this cohort, and therefore, could be used to reliably assess
the level of noise). Average standard deviation

(
σ liver

)
and average uptake

(
Uavg liver

)
were extracted using these four VOIs.

COV =
σ liver

Uavg liver
(2)

2.5.2. Qualitative Performance

For a qualitative assessment of the denoising methods (CNN and BF), the images after
denoising were independently evaluated by two experienced nuclear medicine physicians
(BZ and OH). GS was not included in this assessment due to a mostly significant (p < 0.05)
lower quantitative performance in comparison to the CNNs and BF. The questionnaire was
drafted to assess the reliability and effectiveness of the denoising methods. The assessment
was blinded, i.e., the scans presented to the physicians were a random combination (without
labels) of the FC, SLC, LC (with and without denoising) PET scans per patient. The 18F-FDG
and 89Zr-rituximab PET scans were scored per patient (1–5: low to high) based on the
level of noise, tumour detectability, overall scan quality, clinical acceptability (yes/no), and
overall best performance (1st/2nd/3rd/4th/(5th)). A Mann–Whitney U test (p < 0.05) was
used to compare the performance of the denoising methods.

3. Results
3.1. Quantitative Assessment

3.1.1. 18F-FDG

The BF and the proposed CNN (SLC- and LC-CNN) denoised PET scans have an
overall higher TRC and more similar COV to the FC PET scans than GS (Figure 2 and
Table A1). In contrast with BF, the SLC-CNN denoised PET scans showed a higher average
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uptake TRC, a higher 3Dpeak uptake TRC, but a lower maximum uptake TRC. With regard
to the LC scans, the LC-CNN denoised PET scans showed a trend (0.05 < p < 0.1) of a
higher TRC than the BF denoised PET scans for the average uptake, and 3Dpeak uptake.
Additionally, the LC-CNN showed a higher but not significant maximum uptake TRC than
the BF. In addition, the LC-CNN denoised PET scans showed a similar COV as the FC PET
scans. The SLC-CNN had the second closest COV to the FC PET scans.

Figure 2. The performance of the denoising methods for low-count 18F-FDG PET. The (A) average,
(B) maximum, (C) 3Dpeak TRC of the SLC-CNN, GS (8 mm, 10 mm and 12 mm) and BF (4 mm and
5 mm) denoising methods of the SLC 18F-FDG PET from the Ingenuity TF PET/CT and the Vereos
Digital PET/CT scanner. The (D) average, (E) maximum, (F) 3Dpeak TRC of the LC-CNN, GS (4 mm,
6 mm and 8 mm) and BF (3 mm and 4 mm) denoising methods of the LC 18F-FDG PET from the
Ingenuity TF PET/CT and the Vereos Digital PET/CT scanner.

3.1.2. 89Zr-Rituximab

The SLC-CNN denoised PET scans showed a predominant trend of a TRC higher than
the 3 mm and 4 mm BF (Figure 3 and Table A2). The SLC-CNN even showed a significantly
(p < 0.05) higher average uptake TRC than the 3 mm and 4 mm BF. The 3 mm and 4 mm BF
presented a comparable COV as the SLC-CNN. The 2 mm BF had a significantly (p < 0.05)
higher COV than the 3 mm and 4 mm BF and the SLC-CNN.
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Figure 3. The performance of the denoising methods for low-count 89Zr-rituximab PET. The (A) aver-
age, (B) maximum, (C) 3Dpeak TRC of the SLC-CNN and BF (2 mm, 3 mm and 4 mm) denoising
methods of the FC 89Zr-rituximab PET from the Ingenuity TF PET/CT scanner.

3.2. Qualitative Assessment

For the 18F-FDG scans, the observers found lower levels of noise, better tumour
detectability, better overall scan quality and higher clinical acceptability for all the CNN
models in comparison to the BF denoising methods (Figures 4 and A2, Table 3), with the
only exception being SLC-CNN in terms of noise levels and tumour detectability.

Figure 4. Illustration of a (A) FC, (B) SLC, (C) SLC-CNN, (D) BF 4 mm, (E) GS 10 mm denoised
18F-FDG PET scan (axial orientation) from the Ingenuity TF PET/CT scanner. Illustration of a (F) LC,
(G) LC-CNN, (H) BF 4 mm, (I) GS 6 mm denoised 18F-FDG PET scan (axial orientation) from the
Ingenuity TF PET/CT scanner.
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Table 3. Scores provided by the Nuclear Medicine Physicians as part of qualitative assessment of the
denoised 18F-FDG PET scans. The best performing method is indicated in bold based on the average
score of both physicians.

SLC LC FC

Metrics
[1–5: Low–High] SLC-CNN BF-4 mm BF-5 mm LC-CNN BF-3 mm BF-4 mm

Level of noise 3.0–3.2 4.0–4.0 * 3.6–4.0 * 1.8–2.0 2.6–2.0 ** 2.2–3.8 * 1–1 *

Tumour detectability 2.0–3.0 2.2–3.0 2.0–3.0 4.0–4.0 3.6–4.0 2.8–3.0 * 5–5 *

Overall scan quality 2.4–2.6 1.6–2.0 * 1.8–2.0 * 4.4–4.0 3.8–4.0 2.8–2.2 * 5–5 *

Clinically acceptable? [%] 0–80 0–0 * 0–0 * 100–100 80–100 20–0 * 100–100

Best scan (1/2/3/4) 2–2 3–3 4–4 2–3 3–2 4–4 1–1

* significant (p < 0.05) higher/lower than (S)LC-CNN. ** trend (p < 0.1).

For the 89Zr-rituximab scans, the observers found a comparable level of noise, but sim-
ilar/better tumour detectability, better overall scan quality and higher clinical acceptability
for the SLC-CNN in comparison to the BF denoising methods (Figure 5 and Table 4).

Figure 5. Illustration of a (A) FC, (B) SLC-CNN, (C) BF 3 mm, (D) BF 4 mm, (E) BF 5 mm denoised
89Zr-rituximab PET scan (coronal orientation) from the Ingenuity TF PET/CT scanner.

Table 4. Qualitative assessment of the 89Zr-rituximab PET scans. Scores were given for the PET scans
with (SLC-CNN and BF) and without (FC) denoising by both Nuclear Medicine Physicians. In bold
the best performing method (or scan) is indicated based on the average score of both physicians.

Metrics [1–5: Low–High] SLC-CNN BF-2 mm BF-3 mm BF-4 mm FC

Level of noise 2.4–2.6 3.8–4.6 * 2.8–2.6 1.4–1.2 * 4.6–4.8 *

Tumour detectability 3.4–3.8 4.4–4.0 * 2.4–2.4 * 1.4–1.4 * 4.6–4.2 *

Overall scan quality 3.8–3.8 3.6–3.8 3.4–3.0 * 2.0–1.4 * 3.4–3.0 *

Clinical acceptable? [%] 100–100 100–100 80–80 0–0 * 80–80

Best scan (1/2/3/4/5) 1–1 3–2 2–4 4–5 3–3
* significant (p < 0.05) higher/lower than SLC-CNN.

4. Discussion

CNN models to denoise (S)LC 18F-FDG and 89Zr-rituximab PET scans were trained and
extensively evaluated. Overall, the CNN models performed better than the conventional
GS and the more advanced BF denoising methods for both the 18F-FDG and 89Zr-rituximab
PET scans. As such, the CNN models show promise for reducing the acquisition time and
injected activity of 18F-FDG PET scans and increasing the image quality of 89Zr-rituximab
PET scans.
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In this study, we trained noise-specific CNN models, to address the difference in
noise levels seen for different scan acquisition times and injected activity in 18F-FDG PET
scans. However, in case of PET tracers such as 89Zr-antibody PET, training a noise specific
CNN model was not feasible. Due to the dose limits of 89Zr, the overall image quality
was impaired (low SNR), and therefore, no high quality 89Zr-antibody PET images were
available for training a CNN. So, the only possible solution was to directly apply the
SLC-CNN (trained using SLC 18F-FDG PET scans) to the 89Zr-rituximab PET scans and
test its performance. The main advantage of this approach is that this validation is the
ultimate way of externally testing the CNN on data that are obtained with a different tracer.
Although the SLC-CNN is not trained on 89Zr-rituximab PET scans, it obtained a higher
TRC than the 3 mm and 4 mm BF denoising methods (Figure 3 and Table A2).

With regard to 18F-FDG PET scans with a low injected tracer activity, such as scans with
shorter scan duration, a lower SNR will be observed, which impairs both the quantitative
and qualitative value of these scans. The CNNs could therefore also be useful to maintain a
good image quality when reducing injected 18F-FDG activity in whole-body 18F-FDG PET
studies, and therefore, reduce radiation burden for the patient, but maintain diagnostic
value. However, further assessment is necessary to evaluate the performance of CNNs
when used for a reduction in the injected activity for whole-body 18F-FDG PET acquisitions.

The qualitative assessment also showed that the proposed CNNs were preferred over
BF. However, the CNN denoised (S)LC 18F-FDG PET scans did show an overall lower
qualitative performance than the FC 18F-FDG PET scans. Yet, the LC-CNN denoised LC
18F-FDG PET scans obtained a similar clinical acceptability score as the FC 18F-FDG PET
scans (Table 3), while for 89Zr-rituximab PET scans, the SLC-CNN increased the overall
image quality of the FC 89Zr-rituximab PET scans (Table 4). The observers preferred the
SLC-CNN denoised 89Zr-rituximab PET scans over both the BF denoised and FC 89Zr-
rituximab PET scans. This can be explained by a higher ratio between tumour signal and
background signal present in the SLC-CNN denoised 89Zr-rituximab PET scans (Figure 5).
This indicates that the SLC-CNN shows promise for establishing an optimal denoising
setup for 89Zr-antibody PET scans.

In this study, several strategies to prevent overfitting were applied. First, data aug-
mentation was applied by randomly sampling the different (S)LC 18F-FDG PET scans for
each patient. By using traditional augmentation, interpolation may be different between
the training data ((S)LC) and training labels (FC), and therefore, this was not applied in
this study. Another method by which overfitting was reduced is by using the symmetric
connections in the U-Net based 3D-CNN [28]. As shown in previous studies [12,13], train-
ing a model using a small dataset could result in overfitting. Since acquiring sufficient real
(S)LC 18F-FDG PET data were not feasible, SLC 18F-FDG PET data were generated using
the already available LPC data. SLC 18F-FDG PET data from LPC were simulated using
SMART, which facilitated the development of a pre-trained model familiar with morpho-
logical features. This resulted in a shorter learning time, lower probability of overfitting,
and a more accurate and robust model. Even though pre-training of the model was only
performed on SLC 18F-FDG PET data from LPC, the fine-trained LC-CNN showed a higher
performance than a LC-CNN without a pre-trained model.

The main limitation of this study is the size of the patient cohort. Small-sized tumours
in the (S)LC PET scans are more prone to being underestimated by the proposed CNNs.
This is because the training data were devoid of small tumours. Therefore, it could be that
the model specifies this signal as noise rather than a tumour-specific signal [29]. However,
the proposed CNNs showed better correspondence with the FC PET scans than GS and BF.
So, although small tumours were present in a small number in the training data, by using
the proposed CNNs, more quantitative information was retained in comparison to GS and
BF. Even though the differences in performance between the proposed CNNs and BF were
small, contrary to BF, a CNN still has the ability to learn and improve by incorporating more
patients. Thus, further evaluation in a larger and more heterogeneous cohort could further
improve CNNs performances. However, although the proposed method showed promising
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results for denoising low-count 18F-FDG PET scans, obtaining a similar quantitative and
qualitative value as the FC 18F-FDG PET scans may not be fully feasible and we therefore
foresee that the main applications of the CNNs are denoising and improving image quality
of 89Zr-antibody PET studies.

5. Conclusions

The 3D-CNNs used in this study to denoise (S)LC whole body 18F-FDG and 89Zr-
rituximab PET scans were constructed and tested. The CNN denoised (S)LC 18F-FDG
and 89Zr-rituximab PET scans showed almost similar or better clinical performance than
the FC scans, respectively. Therefore, the proposed CNNs show promise for reducing
PET scan duration or lowering injected activity of whole-body 18F-FDG PET scans but
are particularly useful to increase the quantitative and qualitative image quality of 89Zr-
rituximab PET scans.
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Appendix A

Figure A1. Volume (cc) and SUVBW distribution of the tumours in the 18F-FDG PET and the 89Zr-
rituximab PET scans (test data).
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Figure A2. Illustration of a (A) FC, (B) SLC, (C) SLC-CNN, (D) BF 4 mm, (E) BF 5 mm, (F) GS 10 mm
denoised 18F-FDG PET scan (coronal orientation) from the Ingenuity TF PET/CT scanner. Illustration
of a (G) LC, (H) LC-CNN, (I) BF 3 mm, (J) BF 4 mm, (K) GS 6 mm denoised 18F-FDG PET scan
(coronal orientation) from the Ingenuity TF PET/CT scanner.

Table A1. Overview of the performance of the GS, the BF and the proposed CNNs denoising methods
using the external test 18F-FDG PET scans from the Ingenuity TF PET/CT and Vereos Digital PET/CT
scanners. For the FC (green), SLC and LC (with (blue) and without (orange) post-processing) PET
scans, the TRC and COV values are shown in each column.

TRC–Average TRC–Maximum TRC–3DPeak COV

FC 0.09
SLC 0.99 1.11 1.03 0.29

GS (12; 10; 8 mm) [0.69 *; 0.74 *; 0.81 **] [0.59 *; 0.66 *; 0.74] [0.68 *; 0.74 *; 0.80] [0.09; 0.11; 0.14]
BF (5; 4 mm) [0.79; 0.82] [0.85; 0.87] [0.82; 0.84] [0.01; 0.11]

SLC-CNN 0.86 0.85 0.87 0.10
LC 0.98 1.02 0.99 0.17

GS (8; 6; 4 mm) [0.80 *; 0.85 **; 0.90] [0.71 *; 0.79 *; 0.86 *] [0.79 *; 0.84 *; 0.90 *] [0.09; 0.11; 0.13]
BF (4; 3 mm) [0.81 **; 0.88] [0.78; 0.87] [0.82 **; 0.89] [0.07; 0.11]

LC-CNN 0.95 0.94 0.96 0.10

* significant (p < 0.05) higher/lower than (S)LC-CNN. ** trend (0.05 < p < 0.1).

Table A2. Overview of the performance of the BF and the SLC-CNN on the external test 89Zr-
rituximab PET scans from the Ingenuity TF PET/CT scanner. For the FC (orange), and post-processed
(blue) PET scans, the TRC and COV values are shown in each column.

TRC–Average TRC–Maximum TRC–3Dpeak COV
FC 0.14

BF (4; 3; 2 mm) [0.88 *; 0.94 *; 0.98] [0.78 **; 0.86; 0.94 *] [0.84 **; 0.92 **; 0.97 *] [0.07; 0.10; 0.13]
SLC-CNN 0.96 0.88 0.94 0.10

* significant (p < 0.05) higher/lower than SLC-CNN. ** trend (0.05 < p < 0.1).

Appendix B

Appendix B.1. Image Processing

Matrix dimension of the PET scans varied between centre, scanner, and patients.
Therefore, EARL1 scans from the Ingenuity TF PET/CT, the Vereos Digital PET/CT and
the Gemini Big Bore TF PET/CT scanner were zero-padded to a uniform matrix size of
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192 × 192 × 320. The EARL2 scans from the Vereos Digital PET/CT scanner were zero-
padded to a uniform matrix size of 384 × 384 × 640. Next to overcome capacity limitations
of the computer system, all the PET scans were rebinned to a matrix size of 192 × 192 × 80
with a voxel size of 4 mm for EARL1 and 2 mm for EARL2 scans in all directions.

Appendix B.2. CNN Architecture

Noise reduction inevitably degrades some of the quantitative features of the PET image.
To repress this, the network uses symmetric connections (concatenate two layers) while
decoding (upsampling) to alleviate the loss of details during encoding (downsampling).
So, the decoding layers use the features from the previous layer (encoded scans) but also
the retained details from the downsampling layers (uncompressed scans). This results in a
network that increases the SNR of the PET scans, and simultaneously retain the quantitative
and qualitative features of the scan.

The proposed model was implemented with the Keras library (v2.2) in Python (v3.6),
which is based on Tensorflow (v.1.13.1) as backend. The model was trained, validated, and
tested on two NV-linked Nvidia 11GB RTX 2080Ti GPUs. For optimisation of the weights,
an Adam optimizer was used with a low learning rate of 1 × 10−5 with a decay of 1 × 10−6.
The batch size for training the CNNs was set to 2.

Box A1. Python code of the architecture of the U-Net

kernel_size = (6,6,6)
inputShape = (192,192,80,1)
inputs = Input(inputShape)
model = Convolution3D(16,kernel_size,strides = 1,padding = ‘same’)(inputs)
model = Activation(‘relu’)(model)
model = Convolution3D(16,kernel_size,strides = 1,padding = ‘same’)(model)
model_1 = Activation(‘relu’)(model)
model = Convolution3D(32,kernel_size,strides = 2,padding = ‘same’)(model_1)
model = Activation(‘relu’)(model)
model = Convolution3D(32,kernel_size,strides = 1,padding = ‘same’)(model)
model_2 = Activation(‘relu’)(model)
model = Convolution3D(64,kernel_size,strides = 2,padding = ‘same’)(model_2)
model = Activation(‘relu’)(model)
model = Convolution3D(64,kernel_size,strides = 1,padding = ‘same’)(model)
model_3 = Activation(‘relu’)(model)
model = Convolution3D(128,kernel_size,strides = 2,padding = ‘same’)(model_3)
model = Activation(‘relu’)(model)
model = Convolution3D(128,kernel_size,strides = 1,padding = ‘same’)(model)
model = Activation(‘relu’)(model)
model = UpSampling3D((2,2,2))(model)
model = concatenate([model_3,model])
model = Convolution3D(64,kernel_size,strides = 1,padding = ‘same’)(model)
model = Activation(‘relu’)(model)
model = UpSampling3D((2,2,2))(model)
model = concatenate([model_2,model])
model = Convolution3D(32,kernel_size,strides = 1,padding = ‘same’)(model)
model = Activation(‘relu’)(model)
model = UpSampling3D((2,2,2))(model)
model = concatenate([model_1,model])
model = Convolution3D(16,kernel_size,strides = 1,padding = ‘same’)(model)
model = Activation(‘relu’)(model)
model = Convolution3D(1,kernel_size,strides = 1,padding = ‘same’)(model)
model = Activation(‘relu’)(model)

Appendix B.3. Model Performance

For training and validation, the model performance of the CNNs was measured using
structural similarity (SSIM) and peak-signal-to-noise ratio (PSNR) [30]. The PSNR represent
the peak signal error, whereas the SSIM is a measure of the similarity between two scans,
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which have been proven to be consistent with human-eye perception. Based on these two
metrics the optimal (highest PSNR and SSIM) trained SLC-CNN and LC-CNN weights
were chosen for further assessment using the test PET scans.
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