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Simultaneous Localization and Mapping (SLAM) is a challenging and key issue in the mobile robotic fields. In terms of the visual
SLAM problem, the direct methods are more suitable for more expansive scenes with many repetitive features or less texture in
contrast with the feature-based methods. However, the robustness of the direct methods is weaker than that of the feature-based
methods. To deal with this problem, an improved direct sparse odometry with loop closure (LDSO) is proposed, where the
performance of the SLAM system under the influence of different imaging disturbances of the camera is focused on. In the
proposed method, a method based on the side window strategy is proposed for preprocessing the input images with a multilayer
stacked pixel blender. 'en, a variable radius side window strategy based on semantic information is proposed to reduce the
weight of selected points on semistatic objects, which can reduce the computation and improve the accuracy of the SLAM system
based on the direct method. Various experiments are conducted on the KITTI dataset and TUM RGB-D dataset to test the
performance of the proposed method under different camera imaging disturbances. 'e quantitative and qualitative evaluations
show that the proposed method has better robustness than the state-of-the-art direct methods in the literature. Finally, a real-
world experiment is conducted, and the results prove the effectiveness of the proposed method.

1. Introduction

Simultaneous Localization and Mapping (SLAM) plays es-
sential roles in robotic and other related fields [1–3]. In the
robotic field, SLAM systems are used to solve the problem of
robots about where they are. Based on the acquisition of its
pose and surrounding environment, a robot can further
solve where to go or what to do [4].

Many kinds of sensors are used in SLAM systems, such
as LiDAR, camera, and inertial measurement unit [5, 6].
Commonly, SLAM algorithms are divided into laser SLAM
and visual SLAM according to the sensor used [7, 8]. Due to
the low cost of the camera, the large amount of information
it carries, and the ease of use, visual SLAM has become more
popular among researchers in recent years. Visual SLAM

usually uses monocular cameras, binocular cameras, or
RGB-D cameras to obtain environmental information.
Compared with other types of cameras, the monocular
camera is cheap and common. In addition, there are the
most abundant data sources of themonocular camera. So the
monocular SLAM plays an important role in the visual
SLAM field and has been widely studied and applied [9, 10].
However, the monocular SLAM can obtain only image
information without scale information, so it is more de-
pendent on the quality of the image. 'erefore, how to
improve the robustness of monocular SLAM under different
disturbances is a very challenging and important task in this
field [11, 12].

'ere are three main implementation schemes in visual
SLAM, namely feature-based method, direct method, and
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semidirect method. 'e feature-based method finds feature
points, matches them, calculates the pose, and constructs a
map through geometric relations. 'e most commonly used
methods for feature extraction are Scale Invariant Feature
Transform (SIFT) [13], Speeded Up Robust Features (SURF)
[14], and Oriented Fast and Rotated BRIEF (ORB) [15]. ORB
is one of the best methods, which improves the speed and
accuracy of FAST [16], and uses BRIEF [17] for the efficient
computation of features. Accordingly, ORB-SLAM is cur-
rently the most popular visual SLAM solution [18, 19].

Unlike the feature-based method, the direct approach
does not rely on the one-to-one matching of points. It
optimizes the interframe pose by extracting pixels with
apparent gradients and minimizing the photometric error
function of the pixels, such as the large-scale direct mon-
ocular SLAM (LSD-SLAM) [20] and the direct sparse
odometry (DSO) [21]. 'e semidirect method, such as the
semidirect visual odometry (SVO) [22], uses a similar
structure to the feature-based method and combines the
tracking of the direct method and the motion optimization
of the feature-based method. 'e feature-based method and
the semidirect method both rely on low-level geometric
feature extractors with high repeatability. 'ey are not
suitable for surfaces with many repetitive features or less
texture. In contrast, the direct method can be used in a
broader range of scenarios. In this paper, we focus on direct
method solutions for the monocular SLAM. 'e main
purpose of this paper is to improve the robustness of the
direct methods under different disturbances.

'e robustness of the direct method-based SLAM system
is challenged by photometric calibration, dynamic objects,
rolling shutter effect, camera imaging disturbances, and so
on [23]. 'ere have been many excellent works to improve
the robustness of the direct method-based SLAM systems.
For example, Zhu et al. [24] proposed a photometric transfer
net (PTNet), which is trained to pixel-wisely remove
brightness discrepancies between two frames without
ruining the context information, to overcome the problem of
brightness discrepancies. Liu et al. [25] proposed an en-
hanced visual SLAM algorithm based on the sparse direct
method to solve the illumination sensitivity problem. Sheng
et al. [26] filtered out the dynamic objects based on the
semantic information to improve the positioning accuracy
and robustness of DSO [21]. Zhou et al. [27] jointly opti-
mized the 3D lines, points, and poses within a sliding
window to consider the collinear constraint among the
points to improve the robustness of the direct method.

'e works introduced above can improve the robustness
of the direct method to some extent. However, the research
focusing on the influence of different camera imaging dis-
turbances and semistatic objects is relatively lacking. During
the long-term operation of the monocular SLAM system, the
image quality of the camera will be affected by different
disturbances from the external environment and internal
sensors. In this paper, two main types of imaging distur-
bances are studied, namely, different noise on the camera
and the brightness influence on the imaging process. 'e
main noises on the camera include Gaussian noise and Salt-
and-Pepper noise. Gaussian noise is often caused by the high

temperature of the camera sensor running for a long time
and mutual interference of internal circuit components [28].
Salt-and-Pepper noise is often caused by the faulty of the
camera sensor, the wear of the camera lens, and the ad-
sorption of dust in the air [29, 30]. 'e brightness influence
on the imaging is a very common problem of the vision-
based SLAM. For example, the accumulated irradiance
exceeding the camera’s dynamic range can cause the camera
overexposure interference when the ambient brightness is
not uniform [31, 32]. Another important influence on the
robustness of the direct methods in the vision-based SLAM
is the semistatic objects, which refer to objects that are static
most of the time but will change at a certainmoment, such as
the cars parked on the side of the road. Semistatic objects are
not suitable for being directly filtered out like dynamic
objects because most of them are rich in texture and are
suitable for estimating pose when they are static [33]. 'us,
the main motivation of this paper is to study how to improve
the robustness of the direct method-based SLAM system in
different camera imaging disturbances and reduce the
specific gravity of semistatic objects.

'emain contributions of this paper are as follows: (1) A
regional pixel information fusion method based on multiple
average calculations is proposed to improve the robustness
of the direct sparse odometry with loop closure- (LDSO-)
based SLAM. (2) A side window strategy is introduced into
the framework of the LDSO-based SLAM to enhance the
edge-preserving property. (3) A method based on semantic
information is presented to reduce the effects of nonstatic
objects on the LDSO-based SLAM. So there are three main
improvements of the proposed method, namely, a regional
pixel information fusion method for robustness, a side
window strategy for edge preserving, and the semantic-
based strategy for the nonstatic objects. Compared with the
existing methods, the proposed method improves the ro-
bustness of the direct method-based SLAM against multiple
camera imaging disturbances, including Gaussian noise,
Salt-and-Pepper noise, and camera overexposure, rather
than just against a single disturbance.

'e rest of this paper is organized as follows. Section 2
gives out an overview of the background. 'e proposed
algorithm is presented in Section 3. In Section 4, detailed
quantitative and qualitative experimental results are pro-
vided. 'e discussions of the proposed algorithm are carried
out in Section 5. Finally, Section 6 concludes this paper and
gives out the future work.

2. Background

Direct method-based SLAM systems jointly estimate the
position and posture changes of the camera by minimizing
the photometric error in the image alignment. It makes
direct methods more accurate and robust than feature-based
methods in scenes that lack texture or are full of repetitive
textures. However, the monocular direct methods suffer
from the accumulated drift of global translation, rotation,
and scale without closed-loop detection. 'is leads to in-
accurate long-term trajectory estimation and mapping. In
this paper, Direct Sparse Odometry with Loop closure

2 Computational Intelligence and Neuroscience



(LDSO) [34] is focused on, which adds closed-loop detection
to DSO for global optimization. 'e main process of LDSO
is reviewed in this section.

2.1.FrameworkofLDSO. 'e algorithm framework of LDSO
is shown in Figure 1.When a new frame of image is acquired,
all the active 3D points in the current sliding window of the
local bundle adjustment module are projected into this
frame. 'e initial pose of this frame is estimated by direct
image alignment. 'is frame is added to the local windowed
bundle adjustment if it is judged as a new keyframe. Old or
redundant keyframes and points are marginalized. 'e
active keyframes and the marginalized keyframes rely on
bag-of-words (BoW) for closed-loop detection and verifi-
cation. If the closed-loop candidate is verified, it is added to
the global pose graph for optimization.

2.2. Local Bundle Adjustment. In the local bundle adjust-
ment module based on sliding window, 5–7 keyframes are
maintained. 'eir parameters are jointly optimized by
minimizing the photometric error. 'e photometric error is
defined as

min 􏽘
Ti ,Tj,pk∈W

Ei,j,k,
(1)

where W � T1, . . . ,Tm,p1, . . . ,pn􏼈 􏼉 is the m keyframe poses
represented as Euclidean transformation and n points of
inverse depth parameterization in the sliding window. Ei,j,k

is calculated by
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p∈Npk

wp Ij p′􏼂 􏼃 − bj􏼐 􏼑 −
tje

aj

tie
ai

Ii[p] − bi( 􏼁

��������

��������c

, (2)

where Npk
denotes the neighborhood pattern of pk; a and b

are the affine light transform parameters; t denotes the
exposure time; I is an image; wp is a heuristic weighting
factor; ‖ · ‖c is the Huber norm; and p′ denotes the repro-
jected pixel of p on Ij, which is calculated by

p′ � 􏽙 RΠ− 1 p, dpk
􏼐 􏼑 + t􏼐 􏼑, (3)

whereΠ is the projection function fromR3 toΩ; R and t are
the relative rotation and translation between the two frames;
and dp is the inverse depth of point p.

2.3. Closed-Loop Detection and Verification. In the LDSO
SLAM, the DSO’s point selection strategy has been modified
to be more sensitive to corner points. 'e selected corner
points are calculated as their ORB descriptors and packed
into BoW. When the ORB descriptor of each keyframe is
calculated, the closed-loop candidates of the keyframe are
proposed by querying the BoW database. 'e similarity
transformation from the closed-loop candidate to the cur-
rent keyframe Scr is optimized by minimizing 3D and 2D
geometric constraints:

Eloop � 􏽘
qi∈Q1

w1 ScrΠ
− 1 pi, dpi

􏼐 􏼑 − Π− 1 qi, dqi
􏼐 􏼑
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w2 􏽙 ScrΠ
− 1 pj, dpj

􏼒 􏼓􏼒 􏼓 − qj

������2
,
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where Q1 and Q2 are the matched features in the current
keyframe without and with depth, respectively; pi denotes
the reconstructed feature in the closed-loop candidates; dq is
the inverse depth of the feature q; and w1 and w2 are the
weights to balance the different measurement units.

It can be noticed from equation (2) that the pose esti-
mation of LDSO relies on minimizing the photometric error
of the selected points. If the selected points are disturbed by
imaging disturbances, equation (2) is converted into

Ei,j,k � 􏽘
p∈Npk

wp Ij p′􏼂 􏼃 − bj􏼐 􏼑 −
tje

aj
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ai

Ii[p] − bi( 􏼁
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+ En,

(5)

where En is the error due to imaging disturbances. As the
intensity of the camera imaging disturbance increases, the
optimization direction for minimizing the photometric error is
more inclined to the error caused by the imaging disturbances
rather than the estimated pose. 'erefore, the robustness of
LDSO in camera imaging disturbances is not strong enough.

3. Proposed Method

To enhance the robustness of the direct SLAM method, the
points are fused with the surrounding pixels’ information.
'e overview of the proposed method for obtaining and
using fusion points is shown in Figure 2.

New Frame

Estimate
Initial Pose

New
Keyframe?

Project
3D Points

Marginalized
Keyframes

Active
Keyframes

Closed-loop
Detection Global Graph Optimization

Local Bundle
Adjustment

Y

Figure 1: 'e framework of the LDSO method.
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As shown in Figure 2, the area around each pixel is
divided into blocks according to the side window strategy
when a new frame arrives. 'e area block that crosses the
image’s edge the fewest times is chosen. 'is region block’s
pixel information is averaged into a single point. Multilayers
of such pixel information fusion are superimposed to form a
convolutional neural network (CNN) like structure [35, 36].
In the middle layer, semistatic objects are detected. 'e
radiuses of the side window of the pixels belonging to the
semistatic objects are increased in the back layers.'e fusion
points form the fused image. 'e points with sufficient
gradient intensity and corners are selected using a dynamic
grid search.'ese points are used in direct SLAM to improve
the robustness of the system. 'e details of the proposed
method are introduced as follows. 'e regional pixel in-
formation fusion is realized by multilayer fusion with a
CNN-like structure. 'en, the side window strategy is added
to the fusion method for edge preservation. Finally, the
radius of the side window is adjusted based on semantic
information to reduce the weights of the semistatic objects.

3.1. Regional Pixel Information FusionMethod. As we know,
the main reason why the robustness of feature-based SLAM
is better than that of direct SLAM is that the feature carries
the general information of pixels in a local area instead of a
single pixel [37]. 'erefore, to improve the robustness of
LDSO in different camera imaging disturbances, a regional
pixel information fusion method is introduced into the
LDSO algorithm. Namely, each pixel can fuse the infor-
mation of surrounding pixels, and the fusion intensity de-
creases as the distance between the pixels increases.

'e mean filter is one of the most common methods of
fusing pixels. Unlike other filters such as the median, max,
and min filters, which select one pixel and discard others, the
mean filter considers information from all pixels. In addi-
tion, the mean filter is simple to implement. So, a 3 × 3 mean
filter is used to fuse eight neighborhood pixels into one pixel
in this study. At the same time, referring to the charac-
teristics of the classic convolutional neural networks (CNN)
[38], the mean filters are stacked in the structure of CNN. In
CNN, the stacked convolutional layers are considered to
extract high-level features of the image so that these feature
points can be used for object classification operations. Each
feature point obtained contains information about a local
area.'e CNN-like structure of the multilayer fusion used in
this study is shown in Figure 2.

Remark 1. 'emain reason for using the 3 × 3 mean filter in
this paper is that it is the minimum size that can cover eight
neighborhood information. Using the stacking structure, the
3 × 3 receptive field can be easily expanded to 5 × 5, 7 × 7,
and other larger receptive fields. By this stacking structure,
the closer the points in this area are to the edge, the fewer
times they are repeatedly used and the less they affect the
obtained feature points.'ese characteristics are precisely in
line with our needs for fusing regional pixel information.

3.2. Side Window Strategy for Pixel Fusion Area Selection.
'e consistent use of the square area as the pixel fusion range
can conveniently improve the overall robustness of the visual
odometry, but it will also cause a certain degree of damage to
the edges of the image. 'e more the layers are stacked, the
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Figure 2: 'e overview of the proposed method for obtaining and using fusion points.
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greater the degree of damage. In image processing, this is
called nonedge preservation [39]. As mentioned earlier, the
points/features selected by LDSO are pixels with sufficient
intensity gradients and corner features. Pixel fusion across
the edges will reduce the gradient intensity of the pixels and
blur the corner features. Since it makes the selected points
difficult to gather at the edge, the point cloud map con-
structed is very unclear. Since the corner features are blurred
and difficult to be extracted, it is difficult for LDSO to detect
the closed-loop effectively.

To solve the above problems caused by the nonedge
preservation of pixel fusion in the fixed square area, the side
window strategy is introduced into LDSO [40]. 'e side
window strategy treats each pixel as a potential edge point.
Unlike the traditional pixel fusion method that takes the
pixel’s position as the center of the filter window, the side
window strategy aligns the edge of the filter window with the
pixel. Different from nonlinear anisotropic weightings such
as the spatial weighting and gray value weighting of bilateral
filters, which only reduce the diffusion of pixels along the
edge normal direction, the side window strategy can cut off
all the normal diffusion [41].

'e details of the side window strategy proposed in our
multilayer fusion are as follows:

(1) Each pixel and its surroundings are divided into
eight side windows, as shown in Figure 2. 'ey are
the side windows in eight directions: up (U), down
(D), left (L), right (R), northwest (NW), northeast
(NE), southwest (SW), and southeast (SE). 'e
center point pi of the pixel fusion is located on the
side or corner of the window.'e radius r of the side
window determines the range of the pixel fusion.

(2) 'e average value of the pixels in each side window is
calculated as the output qn of the side window, where
n ∈ U, D, L, R,NW,NE, SW, SE{ }.

(3) Compare the distance measured by L1 norm between
the output qn of the eight side windows and the
center point pi.'e fusion output pfusion of the center
point pi and its surrounding pixels is pfusion � qs,
where

s � argmin
n∈ U,D,L,R,NW,NE,SW,SE{ }

qn − pi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯. (6)

Remark 2. In the proposed multilayer superimposed pixel
fusion strategy, the diffusion of pixels along the normal edge
direction will be further amplified. And the side window
strategy cuts off the possibility of pixels spreading along the
normal direction of the edge, which is more suitable for our
multilayer fusion.

'e pseudocode of the proposed side window-based
multilayer fusion method is summarized in Algorithm 1.

3.3. Semantic-Based Variable Radius Side Window Strategy.
When humans use their eyes to estimate their position and
remember the environment, they do not take all the objects

they see into consideration. Instead, they focus on static
objects such as walls and pillars and use semistatic objects
that are stationary most of the time, such as cars parked on
the side of the road, as a reference. Inspired by this, a se-
mantic-based variable radius side window strategy is pro-
posed to assign weights to static and semistatic objects.

First, in the first half of the stacked structure of pixel
fusion, a smaller radius for the side window is used. In
multilayer pixel fusion, due to the smaller coverage area, the
side window with a smaller radius can make the image retain
more details such as edges while reducing the impact of
camera imaging disturbances. Subsequent object detection
in a camera imaging disturbed environment is carried out on
this basis.

Second, Yolov5 (one of the popular object detection
deep networks) is used to distinguish static and semistatic
objects in the input images. Yolov5 is the latest version of
the Yolo object detection algorithm [42, 43]. 'e main
reason for using the Yolov5 network is that Yolov5 can also
maintain a higher processing frame rate under lower
hardware conditions while achieving the accuracy of the
current state-of-the-art technology. In this study, the
pretrained Yolov5 model on the Microsoft COCO
(Common Objects in Context) dataset is used to extract
object location and category semantic information [44].
Common movable categories such as bicycles, cars, mo-
torcycles, buses, and trucks in the COCO dataset are
marked as semistatic objects.

'ird, in the second half of the stacked structure of the
pixel fusion, a slightly larger radius is used for the side
windows of the regions where the semistatic objects are
detected. A side window with a larger radius is more likely to
contain more image edges.'e selection principle of the side
window is to select the side window whose output is most
similar to the center pixel.'e larger the edge gradient of the
image within the coverage of the side window, the more
dissimilar the output is from the center pixel. 'erefore, the
side window strategy is more inclined to retain the image
edges with large gradients. Edges with smaller gradients in
the side window will be blurred. With repeated pixel fusion,
the obvious image edges in the semistatic object area will be
preserved, while the pixel gradients inside will be reduced.

Remark 3. 'e specific gravity of the point in the semistatic
object area selected by the LDSO with a high gradient
intensity will decrease. 'e preserved obvious image edges
can provide enough corner features for LDSO. In this way,
a static object-based and semistatic object-assisted ap-
proach similar to the human positioning strategy is
achieved.

A summary of the proposed points selection strategy
based on the side window with semantic-based variable
radius is given in Algorithm 2.

Overall, the workflow of the proposed variable radius
side window direct SLAMmethod is summarized as follows:

Step 1. 'e radius parameters applicable to different regions
are selected based on semantic information.
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Step 2. 'e different radius parameters are applied to the
side window strategy to form a variable radius side window
strategy.

Step 3. 'e semantic information-based variable radius side
window strategy is applied to a multilayer stacked pixel
blender to fuse regional pixel information.

Step 4. 'e points are selected according to Algorithm 2 on
the points fused with local information.

Step 5. 'e selected points are used to estimate the camera
pose by minimizing equation (2) and perform global opti-
mization by minimizing equation (4) when loop closures are
detected.

4. Experimental Results and Analysis

In this section, the proposed method is comprehensively
evaluated on outdoor datasets (KITTI dataset) and indoor
datasets (TUM RGB-D dataset), which are introduced as
follows:

(1) KITTI dataset [45, 46]: this dataset is currently the
most extensive dataset in the world for evaluating
computer vision algorithms in autonomous driving
scenarios. It contains real image data collected in
outdoor scenes such as urban areas, villages, and
highways. 'e “00–10” sequences in this dataset
provide ground truth, which are used in this study.

(2) TUM RGB-D dataset [47, 48]: this dataset provides
RGB-D data and ground-truth data intending to
establish a novel benchmark for the evaluation of

Input: Image I, Layer number L, Radius of side window r

Output: Set of fusion points
(1) for ∀l ∈ L do
(2) for ∀ xi, yi􏼈 􏼉 ∈ I do
(3) S � (xi − r): (xi + r), (yi − r): (yi + r)􏼈 􏼉;
(4) % S is the surrounding of the pixel pi

(5) Divide S into U, D, L, R,NW,NE, SW, SE{ };
(6) for n ∈ U, D, L, R,NW,NE, SW, SE{ } do
(7) qn � mean(pj), j ∈ n;
(8) end for
(9) s � argmin |qn − pi|􏼈 􏼉;
(10) % Select the side window s;
(11) pfusion � qs;
(12) end for
(13) end for

ALGORITHM 1: Side window-based multilayer fusion.

Input: Number of layers L, Desired number of points Ndes
Output: Selected points
(1) for ∀l ∈ L do
(2) if l< 1/2L then
(3) Use small radius side windows for multilayer fusion;
(4) end if
(5) if l≥ 1/2L then
(6) Use Yolov5 to distinguish static and semistatic objects;
(7) Increase the radius of the side windows of the regions where the semistatic objects are detected;
(8) end if
(9) end for
(10) Split the image composed of fusion points into patches;
(11) while Nsel <Ndes do
(12) Randomly select a patch M

(13) Compute the median of gradient as the region-adaptive threshold;
(14) Split M into d × d blocks;
(15) Select a point with the highest gradient which surpasses the gradient threshold from d × d, 2 d × 2 d, 4 d × 4 d blocks separately;
(16) end while

ALGORITHM 2: Semantic variable radius side window-based points selection.
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visual odometry and visual SLAM systems. In this
paper, the sequences “freiburg1_xyz,” “frei-
burg2_xyz,” “freiburg2_rpy,” “freiburg1_desk,” and
“freiburg1_desk2” are selected, which were all ac-
quired in the office interior scene with rich texture.

'emain reason for using the two datasets is that both of
them provide ground truth, which is required for the
quantitative evaluation. Because there is a certain natural
camera overexposure problem in the two datasets [49], they
are used directly to test the proposed method under the
disturbance of camera overexposure. In addition, Gaussian
noise and Salt-and-Pepper noise are added to the two
datasets in these experiments to further test the proposed
method under different camera sensor noises. In this paper,
the variance of Gaussian noise added is 0.003, and the rate of
Salt-and-Pepper noise added is 10%. 'e noise addition
operation and the noise-adding parameters in this study are
relatively common in the literature [50, 51]. Figure 3 shows
an example scene before and after adding two kinds of noise.

4.1. Quantitative Evaluation. In this study, the proposed
method is based on the side window fusion strategy on the
direct method-based SLAM. Here, it is compared with the
general direct sparse odometry method (DSO) and the
general direct sparse odometry with loop closure (LDSO). In
this paper, the large-scale direct monocular SLAM (LSD-
SLAM) is not compared because its tracking robustness is
not as good as DSO [52]. To further discuss the performance
of our method, ORB-SLAM3 is also added for comparison,
which is one of the state-of-the-art methods based on the
feature-based method [53, 54]. 'e root mean squared error
of absolute trajectory error (RMSEATE) is used to evaluate
the performance of these methods [55].

4.1.1. On the KITTI Dataset. Firstly, some comparison ex-
periments are conducted on the KITTI dataset to show the
robustness of the proposed method in the face of different
camera imaging disturbances. 'e results with no noise
added, Gaussian noise, and Salt-and-Pepper noise are listed

in Tables 1–3, respectively. 'e missing values in the tables
mean tracking failures.

'e results in Table 1 show that our method can achieve
similar or better performance compared with the other
direct methods in the sequences without added noise. 'e
results on the sequences without added noise show that the
performance of the proposed method is obviously better
than the general LDSO method on the sequences
“KITTI_00” and “KITTI_02,” where the RMSE values of
the proposed method are 32.42% and 51.91% less than the
general LDSO method. 'e main reason is that the se-
quences “KITTI_00” and “KITTI_02” have a large number
of scenes in the shade of trees (see Figures 4(a) and 4(c)),
and frequent changes in ambient light bring more frequent
camera overexposure problems to the images. 'e results
show that the proposed method can deal with the camera
overexposure interference on the direct methods
effectively.

In the sequences with Gaussian noise, we can see that
the performance of the general direct methods decreases
obviously on all of the sequences in the KITTI dataset, but
the proposed method is not seriously affected by the
Gaussian noise (see Table 2). In particular, the other direct
methods fail to track in sequence “KITTI_03,”
“KITTI_04,” and “KITTI_09” while our method still
works. 'e results in Table 2 show that the proposed
method outperforms the general LDSO method by more
than 13.7% on all of the sequences in the KITTI dataset. In
the sequences with Salt-and-Pepper noise, DSO and
LDSO are entirely inoperable, while our method obtains
good performance (see Table 3).

Compared with ORB-SLAM3, our method obtains
slightly better performance on the sequences without added
noise, except sequences “KITTI_08,” “KITTI_09,” and
“KITTI_10.” 'e main reason is that these sequences
contain very rich textures that are more suitable for feature-
based methods. In particular, ORB-SLAM3 will track failure
in the sequence “KITTI_01,” whether the noise is added or
not. 'is is due to the fact that the sequence “KITTI_01” is a
very texture-deficient highway scene and is not suitable for
feature-based SLAM methods (see Figure 4(b)).

(a) (b)

(c)

Figure 3: Comparison of the example scene before and after adding noise. (a)'e original image. (b)'e image after adding Gaussian noise.
(c) 'e image after adding Salt-and-Pepper noise. Note that the effect of the added noise is noticeable.

Computational Intelligence and Neuroscience 7



Ta
bl

e
1:

RM
SE

A
T
E
on

K
IT
TI

da
ta
se
tw

ith
no

no
ise

ad
de
d.

M
et
ho

d
N
o
no

ise
ad
de
d

K
IT
TI
_0
0

K
IT
TI
_0
1

K
IT
TI
_0
2

K
IT
TI
_0
3

K
IT
TI
_0
4

K
IT
TI
_0
5

K
IT
TI
_0
6

K
IT
TI
_0
7

K
IT
TI
_0
8

K
IT
TI
_0
9

K
IT
TI
_1
0

A
ve
ra
ge

D
SO

[2
1]

11
5.
03
5

31
.8
11

15
2.
46
3

2.
03
0

0.
75
5

49
.9
81

54
.0
04

17
.5
76

11
4.
39
1

70
.5
34

14
.6
61

56
.6
58

LD
SO

[3
4]

7.
36
0

9.
97
2

47
.2
45

2.
34
2

0.
80
0

4.
16
6

12
.8
05

1.
69
1

11
4.
73
9

69
.8
03

14
.8
15

25
.9
76

O
RB

-S
LA

M
3
[5
4]

9.
26
5

—
22
.0
25

2.
11
7

1.
22
3

4.
03
4

16
.1
96

1.
68
8

38
.1
14

7.
24
3

7.
77
1

10
.9
68

O
ur
s

4.
97
4

9.
71
0

22
.7
22

2.
18
3

0.
85
7

3.
54
0

12
.7
98

1.
78
9

99
.5
79

52
.4
69

14
.2
10

20
.4
39

N
ot
e.
“—

“
m
ea
ns

tr
ac
ki
ng

fa
ilu

re
.'

e
av
er
ag
e
va
lu
e
is
ca
lc
ul
at
ed

ba
se
d
on

th
e
nu

m
be
r
of

su
cc
es
se
s.

8 Computational Intelligence and Neuroscience



Ta
bl

e
2:

RM
SE

A
T
E
on

K
IT
TI

da
ta
se
tw

ith
G
au
ss
ia
n
no

ise
.

M
et
ho

d
G
au
ss
ia
n
no

ise
K
IT
TI
_0
0

K
IT
TI
_0
1

K
IT
TI
_0
2

K
IT
TI
_0
3

K
IT
TI
_0
4

K
IT
TI
_0
5

K
IT
TI
_0
6

K
IT
TI
_0
7

K
IT
TI
_0
8

K
IT
TI
_0
9

K
IT
TI
_1
0

A
ve
ra
ge

D
SO

[2
1]

11
5.
77
1

56
.1
43

18
5.
18
7

—
—

50
.1
85

59
.3
82

38
.8
12

12
7.
67
4

—
15
.2
87

81
.0
55

LD
SO

[3
4]

22
.5
43

23
.0
52

16
9.
24
7

—
—

44
.0
10

58
.7
29

53
.4
81

13
0.
99
3

—
16
.2
77

64
.7
92

O
RB

-S
LA

M
3
[5
4]

10
.6
45

—
59
.8
68

2.
86
0

1.
91
1

9.
25
0

19
.2
49

1.
93
2

42
.9
31

8.
22
3

8.
77
6

16
.5
65

O
ur
s

17
.7
72

13
.0
23

12
0.
38
0

2.
13
3

1.
09
3

5.
74
0

13
.4
91

1.
97
3

10
2.
20
6

52
.6
64

14
.0
42

31
.3
20

N
ot
e.
“—

“
m
ea
ns

tr
ac
ki
ng

fa
ilu

re
.'

e
av
er
ag
e
va
lu
e
is
ca
lc
ul
at
ed

ba
se
d
on

th
e
nu

m
be
r
of

su
cc
es
se
s.

Computational Intelligence and Neuroscience 9



Ta
bl

e
3:

RM
SE

A
T
E
on

K
IT
TI

da
ta
se
t
w
ith

Sa
lt-
an
d-
Pe
pp

er
no

ise
.

M
et
ho

d
Sa
lt-
an
d-
Pe
pp

er
no

ise
K
IT
TI
_0
0

K
IT
TI
_0
1

K
IT
TI
_0
2

K
IT
TI
_0
3

K
IT
TI
_0
4

K
IT
TI
_0
5

K
IT
TI
_0
6

K
IT
TI
_0
7

K
IT
TI
_0
8

K
IT
TI
_0
9

K
IT
TI
_1
0

A
ve
ra
ge

D
SO

[2
1]

—
—

—
—

—
—

—
—

—
—

—
—

LD
SO

[3
4]

—
—

—
—

—
—

—
—

—
—

—
—

O
RB

-S
LA

M
3
[5
4]

—
—

—
—

—
—

—
—

—
—

—
—

O
ur
s

19
.7
98

10
.4
64

10
8.
44
8

2.
25
2

0.
80
6

11
.5
81

12
.4
63

2.
23
8

10
1.
59
0

52
.1
77

14
.9
37

30
.6
14

N
ot
e.
“—

“
m
ea
ns

tr
ac
ki
ng

fa
ilu

re
.

10 Computational Intelligence and Neuroscience



(a) (b)

(c)

Figure 4: Example scenes for sequences “KITTI_00,” “KITTI_01,” and “KITTI_02” in the KITTI dataset: (a) is from the sequence
“KITTI_00”; (b) is from the sequence “KITTI_01”; (c) is from the sequence “KITTI_02.”'e sequences “KITTI_00” and “KITTI_02” are the
sequences with more camera overexposure interference, while “KITTI_01” is the sequence with little camera overexposure interference.
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Figure 5: Continued.
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Although ORB-SLAM3 performs better in the face of
Gaussian noise (see Table 2), ORB-SLAM3 is unavailable
under the influence of Salt-and-Pepper noise (see Table 3).
By contrast, the results show that ourmethod performsmore
consistently in different camera imaging disturbances than
other methods (see Tables 2 and 3).

To compare the robustness in different camera imaging
disturbances more clearly, the absolute pose errors (APE)

with respect to translation on the example sequence
“KITTI_07” in different noises are shown in Figure 5. Here,
the main reason for using the sequence “KITTI_07” as the
example is that this sequence has a medium sequence length
in the KITTI dataset. In the next part of this paper, the
sequence “KITTI_07” is also used as the study object, where
the reason is not further explained. 'e lack of the APE
curves of DSO and LDSO in the sequence with Salt-and-
Pepper noise is due to their inability to work. Notice that our
method has more consistent APE curves in different noises,
and all the APEs of our method are less than 5.0%. 'is
experiment highlights that our strategy effectively improves

Figure 6: Blurred image with smears in TUM RGB-D dataset.

Table 4: RMSEATE on TUM RGB-D dataset with no noise added.

Method
No noise added

fr1_xyz fr2_xyz fr2_rpy fr1_desk fr1_desk2
LDSO [34] 0.061 0.011 0.046 0.774 0.904
Ours 0.063 0.012 0.043 0.780 0.905

Table 5: RMSEATE on TUM RGB-D dataset with Gaussian noise.

Method
Gaussian noise

fr1_xyz fr2_xyz fr2_rpy fr1_desk fr1_desk2
LDSO [34] — 0.096 — 0.518 —
Ours 0.156 0.010 0.060 0.801 0.756
Note. “—” means tracking failure.

Table 6: RMSEATE on TUM RGB-D dataset with Salt-and-Pepper
noise.

Method
Salt-and-Pepper noise

fr1_xyz fr2_xyz fr2_rpy fr1_desk fr1_desk2
LDSO [34] — — — 0.841 —
Ours 0.129 0.011 0.058 0.796 0.871
Note. “—” means tracking failure.
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Figure 5: Comparison of APE with respect to translation in different noises on the sequence “KITTI_07”: (a) APE of DSO. (b) APE of
LDSO. (c) APE of our method. Note that the performance gap of our method is significantly smaller than that of DSO and LDSO. In
particular, DSO and LDSO do not work in the sequence with Salt-and-Pepper noise, and the results in this case cannot be added for
comparison. Besides, the performance of our method is better than the others overall.
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the robustness of direct SLAM when facing different camera
imaging disturbances outdoors.

4.1.2. On the TUM RGB-D Dataset. Secondly, some ex-
periments are conducted on the TUM RGB-D dataset to
verify whether our strategy has the effect of improving
robustness in indoor environments. Since DSO and LDSO
perform very similarly in this case, our method is only
compared with LDSO. In this dataset, there are many
blurred images with smears, as shown in Figure 6. In this
experiment, because the selected sequences are relatively
short, the difference in RMSE is not apparent. 'us, we
mainly compare whether the tracking of the SLAM system
based on different methods is successful. 'e results are
shown in Tables 4–6.

'e results in this experiment show that the SLAM
system will fail easily after adding noise to the images. Note
that, in the sequences in which no noise is added, both our

method and LDSO can track successfully (see Table 4). After
adding different noises to the sequences, LDSO becomes
more prone to failure tracking, while our method still tracks
successfully (see Tables 5 and 6). 'is experiment highlights
that our approach can still improve the robustness of direct
SLAM under different camera imaging disturbances when
faced with a poor indoor image input.

4.2. Qualitative Evaluation. 'is section mainly conducts a
qualitative evaluation of the completeness and the clarity of
the predicted trajectory map and the constructed point
cloud map in the camera imaging disturbances. Examples
of the point cloud map constructed on the sequence
“KITTI_07” are shown in Figure 7. 'e results show that
our method is similar to LDSO in the absence of noise
interference. When disturbed by Gaussian noise and Salt-
and-Pepper noise, LDSO is negatively affected to varying
degrees, while our method has a better and more stable

Zoom in Zoom inReal view Real view

Output of LDSO Output of ours

(a)

Real view Zoom in

Output of LDSO Output of ours

(b)

Real view Zoom in

Output of LDSO Output of ours

(c)

Figure 7: Sample outputs of the sequence “KITTI_07”: (a), (b), and (c) are the outputs on the sequence with no added noise, Gaussian noise,
and Salt-and-Pepper noise, respectively. Left: LDSO’s outputs. Right: our method’s outputs. Note that, in the sequence without adding noise,
the quality of our method’s trajectory estimation and point cloudmap construction is similar to that of LDSO. In the sequence with Gaussian
noise added to LDSO, the closed-loop cannot be detected, and the trajectory estimation in the second half is wrong. LDSO does not work in
the sequence with Salt-and-Pepper noise added. Our strategy achieves a more robust performance under different noise interferences.
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performance in the trajectory prediction and point cloud
map construction. 'e main reason is that our method uses
the multilayer pixel fusion features based on the side
window strategy instead of directly using the original
pixels, which can improve the robustness of the direct
method-based SLAM in different camera imaging
disturbances.

5. Discussion

'e total performances of the proposed method have been
proved on different datasets by some comparison ex-
periments in Section 4. In this section, some additional
comparison experiments are conducted to discuss the
performance of our method in different intensities of
camera imaging disturbances. In addition, the perfor-
mance of the key improvement of the proposed method,
namely, the points selection strategy, is further discussed.
At last, the proposed method is tested in real-world ap-
plications to demonstrate the effectiveness of the pro-
posed method.

5.1. Performance inCamera ImagingDisturbances ofDifferent
Intensities. Firstly, the performance of our method in the
camera imaging disturbances of different intensities is dis-
cussed, where some expanded comparison experiments are
conducted under the sensor noise of different intensities and
the camera overexposure with different frequencies.

5.1.1. About Different Noise Intensities. 'e performance of
our method in the camera sensor noise of different in-
tensities is discussed on the sequence “KITTI_07.” 'e
comparison experiments are carried out separately in
Gaussian noise and Salt-and-Pepper noise with different
intensities. 'e variance of Gaussian noise ranges from
0.001 to 0.009 and is incremented by a step size of 0.002.
'e rate of Salt-and-Pepper noise added ranges from 2% to
10%, and the step size is 2%. 'e results are shown in
Tables 7 and 8. For Gaussian noise, DSO tracking fails when
the variance is greater than 0.005. LDSO tracking fails when
the variance is greater than 0.003. Our method tracks
successfully at all noise intensities and performs stably
when the variance is below 0.005. 'is reflects that our
method is more robust than other direct methods in dif-
ferent intensities of Gaussian noise. For Salt-and-Pepper
noise, both DSO and LDSO fail to track when the noise
addition rate is greater than 2%. Our method can track
successfully and perform stably at all noise addition rates. It
can be seen that our method is more robust than other
direct methods in different intensities of Salt-and-Pepper
noise. ORB-SLAM3 can also track successfully in all in-
tensities of Gaussian noise and performs stably when the
variance is below 0.007. While ORB-SLAM3 outperforms
our method in robustness under different intensities of
Gaussian noise, it fails to track at all addition rates of Salt-
and-Pepper noise.

5.1.2. About Different Overexposure Frequencies. To discuss
the performance of our method under the interference of
camera overexposure, the sequence “KITTI_01,” which
suffers little from camera overexposure, is experimented
with adding simulated camera overexposure disturbance at
different frequencies. 'e camera overexposure addition
operation in this study is similar to other pieces of literature
[56]. 'e number of interval frames at which overexposure
interference is added ranges from 30 to 10 and is decreased
by a step size of 5. 'e results are shown in Table 9.

'e results in Table 9 show that our method performs
close to LDSOwhen the camera overexposure interference is
not very serious. However, when the overexposure inter-
ference interval is 20 frames, the proposed method out-
performs the general LDSO method by more than 46%. In
addition, LDSO starts to fail to track when the overexposure
interference interval is lower than 15 frames, while our
method can still work when the overexposure interference
interval is bigger than 10 frames. ORB-SLAM3 fails to track
in the sequence “KITTI_01” under the added camera
overexposure interference. 'e results of this experiment
show that the proposed method has better performance
under the camera overexposure interference.

Table 9: RMSEATE comparison under interference of camera
overexposure at different frequencies.

Interval
frames DSO [21] LDSO

[34]
ORB-SLAM3

[54] Ours

30 32.946 11.866 — 11.522
25 34.257 12.248 — 11.836
20 — 22.240 — 11.885
15 — — — 13.333
10 — — — —
Note. “—” means tracking failure.

Table 7: RMSEATE comparison in Gaussian noise of different
intensities.

Variance DSO [21] LDSO [34] ORB-SLAM3 [54] Ours
0.001 24.396 2.504 1.872 1.655
0.003 38.812 53.481 1.932 1.973
0.005 45.968 — 2.101 2.946
0.007 — — 2.566 12.343
0.009 — — 10.242 13.816
Note. “—” means tracking failure.

Table 8: RMSEATE comparison in Salt-and-Pepper noise of dif-
ferent intensities.

Addition rate
(%)

DSO
[21]

LDSO
[34]

ORB-SLAM3
[54] Ours

2 35.500 35.525 — 1.409
4 — — — 1.602
6 — — — 1.755
8 — — — 2.225
10 — — — 2.238
Note. “—” means tracking failure.
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Figure 8: Point selection results of our strategy and LDSO in different noises: (a), (b), and (c) are the images from the KITTI dataset with no
added noise, Gaussian noise, and Salt-and-Pepper noise, respectively. Top rows: point selection results of LDSO. Bottom rows: point
selection results of our strategy. Note that the points selected by our strategy are more consistent in different noises. Moreover, on semistatic
objects such as cars parked on the side of the road, the points selected by our approach are significantly less than those by LDSO and are
mainly distributed on the apparent edges.

Table 10: RMSEATE comparison of whether using semantic-based variable radius side window.

Method
No noise added Gaussian noise Salt-and-Pepper noise

KITTI_07 KITTI_08 KITTI_07 KITTI_08 KITTI_07 KITTI_08
FR-SW 2.256 106.652 2.794 112.754 2.471 106.093
SVR-SW 1.789 99.579 1.973 102.206 2.238 101.590

Gaussian noise added

(a)

Salt-and-Pepper noise added

(b)

Figure 9: Some images in the real scene added with noise. (a) Added with Gaussian noise. (b) Added with Salt-and-Pepper noise.
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5.2. About Points Selection Strategy. Secondly, the effect of
the points selection strategy of our method to improve the
robustness of direct method-based SLAM is discussed.
Figure 8 shows the selection of points in an example scene
with different types of noise. Here, our points selection
strategy is compared with that of the general LDSO. It is easy
to notice that the points selected by our strategy are more
consistent in different noises. It is not easy for LDSO to
detect closed loops under the influence of Gaussian noise.
Gaussian noise creates texture in untextured areas. 'ese
textures are selected as the basis for closed-loop detection,
which easily leads to the failure of closed-loop detection. In
Salt-and-Pepper noise, LDSO is entirely inoperable. 'e
reason is that the image-gradient-based features selected by
LDSO are easily located at the position of the Salt-and-
Pepper noise (see Figure 8(c)). 'ese randomly generated
noise positions cannot be used as the basis for estimating
camera pose. As shown in Figure 8(a), the points selected by
our method are significantly less than that by LDSO and are
mainly distributed on the apparent edges of the semistatic
objects such as cars parked on the side of the road. 'e
consistent selection of points of our method improves the
robustness of direct method-based SLAM.

'e comparison results of RMSEATE based on the
proposed semantic-based variable radius side window (SVR-
SW) and the fixed radius side window in the general LDSO
(FR-SW) are shown in Table 10. Here, the sequences “07”
and “08” of the KITTI dataset are used, which contain more
semistatic objects. It can be noticed that the proposed SVR-
SW strategy achieves better performance on different noises.
'e main reason is that the semantic-based variable radius
side window can reduce the weight of selected points of
semistatic objects to improve the performance of direct
method-based SLAM in scenes with more semistatic objects.

5.3. Experiment in Real Scene. 'irdly, to discuss the per-
formance of our method in real scenes, an experiment is
conducted on a real-world dataset collected outdoors by the
Zenmuse X5S camera mounted on the DJI Inspire 2 drone
[57]. In reality, the camera imaging disturbances often do
not exist all the time but are sudden and random. For

simulation of this situation, Gaussian noise and Salt-and-
Pepper noise are artificially added to parts of this dataset.
Some images added with noise are shown in Figure 9, which
have obvious brightness changes due to the shade of trees
and lots of semistatic objects in the real scene, such as bi-
cycles and cars. 'e real-world dataset is collected along the
road to easily judge whether our method estimates the
correct trajectory using the satellite map. 'e experimental
result of this self-collected real dataset is shown in Figure 10.
It can be seen that the trajectory estimated by our method
does not deviate from the road due to the camera imaging
disturbances, including the artificially added noise and the
natural brightness changes. Our method performs good
robustness on different camera imaging disturbances in real
scenes.

6. Conclusion

'e robustness in the camera imaging disturbances of the
direct method-based SLAM is studied in this paper, and a
concept of side windows is introduced into this visual SLAM
system. Based on this concept, a multilayer stacked pixel
blender is used to process the input images, which can
significantly reduce the blurring effects on the edges of the
images. In addition, the size of the fusion window can be
adjusted based on semantic information to reduce the
proportion of selected points on semistatic objects. At last, to
more clearly evaluate the robustness of the proposed method
under different camera imaging disturbances, the public
datasets enhanced with different camera imaging distur-
bances are used to perform detailed quantitative and
qualitative experiments. 'e results demonstrate that our
strategy can improve the robustness of the direct method-
based SLAM against the different camera imaging distur-
bances, including various sensor noises and camera over-
exposure. Furthermore, the results of the real-world
experiment show that the proposed method can work ef-
ficiently in real-world applications. In the future, how to
further improve the robustness of the visual SLAM method
while improving efficiency by using different fusionmethods
should be studied, such as deep neural networks.

(a) (b)

Figure 10: Result of experiment in real scene. (a) 'e trajectory estimated by our method, which is marked with a yellow curve. (b) 'e
approximate trajectory on the satellite map, which is marked with a red dashed line.
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eval_odometry.php and https://vision.in.tum.de/data/
datasets/rgbd-dataset/download.

Conflicts of Interest

'e authors declared that they have no conflicts of interest in
this work.

Acknowledgments

'is work was supported by the National Natural Science
Foundation of China (61873086) and the Science and
Technology Support Program of Changzhou (CE20215022).

References

[1] J. Chang, N Dong, and D. Li, “A real-time dynamic object
segmentation framework for SLAM system in dynamic
scenes,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 70, 2021.

[2] J. Ni, L. Wu, X. Yang, and X. Y. Simon, “Bioinspired intel-
ligent algorithm and its applications for mobile robot control:
a survey,” Computational Intelligence and Neuroscience,
vol. 2016, Article ID 3810903, 16 pages, 2016.

[3] Y. Ying, H. Yan, Z. Li, K. Feng, and X. Feng, “Loop closure
detection based on image covariance matrix matching for
visual SLAM,” International Journal of Control, Automation
and Systems, vol. 19, no. 11, pp. 3708–3719, 2021.

[4] J. Ni, C. Wang, X. Fan, and X. Y. Simon, “A bioinspired neural
model based extended Kalman filter for robot SLAM,”
Mathematical Problems in Engineering, 905826, vol. 2014,
11 pages, 2014.

[5] H. Deilamsalehy and C. H. Timothy, “Sensor fused three-
dimensional localization using IMU, camera and LiDAR,” in
Proceedings of the IEEE Sensors, Orlando, FL, USA, October
2016.

[6] W. Xie, P. Xiaoping Liu, and M. Zheng, “Moving object
segmentation and detection for robust RGBD-SLAM in dy-
namic environments,” IEEE Transactions on Instrumentation
and Measurement, vol. 70, 2021.

[7] J. Zhao, T. Li, Y. Tong, L. Zhao, and S. Huang, “2D laser SLAM
with closed shape features: fourier series parameterization and
submap joining,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 1527–1534, 2021.

[8] J. Ni, Y. Chen, K. Wang, and X.Y Simon, “An improved
vision-based SLAM approach inspired from animal spatial
cognition,” International Journal of Robotics and Automation,
vol. 34, no. 5, pp. 491–502, 2019.

[9] T. H. Nguyen, T.-M. Xie, and L. Xie, “Tightly-coupled ultra-
wideband-aided monocular visual SLAM with degenerate
anchor configurations,” Autonomous Robots, vol. 44, no. 8,
pp. 1519–1534, 2020.

[10] Z. Liang and C. Wang, “A semi-direct monocular visual
SLAM algorithm in complex environments,” Journal of In-
telligent and Robotic Systems: �eory and Applications,
vol. 101, no. 1, 2021.

[11] H.-J. Liang, J Sanket, C. Aloimonos, and Y. Aloimonos,
“Salientdso: bringing attention to direct sparse odometry,”

IEEE Transactions on Automation Science and Engineering,
vol. 16, no. 4, pp. 1619–1626, 2019.

[12] J.-W. Kam, H.-S. Kim, S.-J. Lee, and S.-S. Hwang, “Robust and
fast collaborative augmented reality framework based on
monocular SLAM,” IEIE Transactions on Smart Processing
and Computing, vol. 9, no. 4, pp. 325–335, 2020.

[13] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[14] S. Sarhan, A. A. Nasr, and M. Y. Shams, “Multipose face
recognition-based combined adaptive deep learning vector
quantization,” Computational Intelligence and Neuroscience,
vol. 2020, Article ID 8821868, 11 pages, 2020.

[15] E. Rublee, R. Vincent, K. Kurt, and B. Gary, “ORB: an efficient
alternative to SIFT or SURF,” in Proceedings of the 2011 In-
ternational conference on computer vision, pp. 2564–2571,
IEEE, Barcelona, Spain, November 2011.

[16] E. Rosten, R. Porter, and T. Drummond, “Faster and better: a
machine learning approach to corner detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 1, pp. 105–119, 2008.

[17] M. Calonder, V. Lepetit, and M. Ozuysal, “BRIEF: computing
a local binary descriptor very fast,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 34, no. 7,
pp. 1281–1298, 2011.

[18] Ke Wang, S. Ma, R. Fan, and J. Lu, “SBAS: salient bundle
adjustment for visual SLAM,” IEEE Transactions on Instru-
mentation and Measurement, vol. 70, 2021.

[19] J. Ni, T. Gong, Y. Gu, J. Fan, and X. Fan, “An improved deep
residual network-based semantic simultaneous localization
and mapping method for monocular vision robot,” Compu-
tational Intelligence and Neuroscience, vol. 2020, Article ID
7490840, 14 pages, 2020.
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and D. T. Juan, Orb-Slam3: An accurate open-source library for
visual, visual–inertial, and multimap SLAM,” IEEE Transactions
on Robotics, vol. 37, no. 6, pp. 1874–1890, 2021.

[55] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers, “A benchmark for the evaluation of rgb-d slam
systems,” in Proceedings of the International Conference on
Intelligent Robot Systems (IROS), Vilamoura-Algarve, Por-
tugal, October 2012.

[56] C. Hu, B. B. Sapkota, J. Alex 'omasson, and
M. V. Bagavathiannan, “Influence of image quality and light
consistency on the performance of convolutional neural net-
works for weed mapping,” Remote Sensing, vol. 13, no. 11, 2021.

[57] S. Hasan, M. Digman, and D. L. Brian, “Utility of a com-
mercial unmanned aerial vehicle for in-field localization of
biomass bales,” Computers and Electronics in Agriculture,
vol. 180, 2021.

18 Computational Intelligence and Neuroscience


