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Functional and biophysical constraints result in site-dependent patterns of protein sequence variability. It is commonly assumed
that the key structural determinant of site-specific rates of evolution is the Relative Solvent Accessibility (RSA). However, a recent
study found that amino acid substitution rates correlate better with two Local Packing Density (LPD) measures, the Weighted
Contact Number (WCN) and the Contact Number (CN), than with RSA. This work aims at a more thorough assessment. To this
end, in addition to substitution rates, we considered four other sequence variability scores, four measures of solvent accessibility
(SA), and other CNmeasures. We compared all properties for each protein of a structurally and functionally diverse representative
dataset of monomeric enzymes. We show that the best sequence variability measures take into account phylogenetic tree topology.
More importantly, we show that both LPD measures (WCN and CN) correlate better than all of the SA measures, regardless of
the sequence variability score used. Moreover, the independent contribution of the best LPD measure is approximately four times
larger than that of the best SA measure. This study strongly supports the conclusion that a site’s packing density rather than its
solvent accessibility is the main structural determinant of its rate of evolution.

1. Introduction

The evolutionary divergence of protein amino acid sequences
is subject to purifying selection against amino acid substi-
tutions imposed by functional and biophysical constraints
[1–6]. Due to such constraints, the sites (residues) of a
protein amino acid sequence differ in their evolutionary
rate (the number of amino acid substitutions per unit of
evolutionary time). As a result, multiple alignments of evo-
lutionary related (homologous) proteins show clear site-dep-
endent conservation patterns. Typically, only a few sites are
directly related to function and their high conservation is
due to direct function-specific selection. Mutations at most
other sites affect fitness indirectly through their effect on the
protein’s folding, stability, structure, or dynamics [6]. Here,

we focus on the effect of structural constraints on site-specific
sequence divergence.

There are two structural properties that have emerged
as the best candidates to account for site-specific rates of
evolution: Solvent Accessibility (SA) and Local Packing
Density (LPD). Several studies have shown that site-specific
substitution rates correlate with SA, measured by the
Relative Solvent Accessibility (RSA) [7–11]. Generally, RSA
is considered to be the main structural determinant of
evolutionary rate at site level. However, site-specific sequence
variability has also been reported to correlate significantly
with LPD, measured using either the Contact Number (CN)
[9, 11, 12] or the Weighted Contact Number (WCN) [11, 13].

Of the cited studies, the only two that compared SA and
LPD measures as determinants of site-specific evolutionary
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rates found opposite results [9, 11]. Franzosa and Xia consid-
ered several structural measures regarding their correlation
with rates of evolution and found RSA and CN to be the
best correlates, with RSA performing slightly better but CN
making a significant independent contribution [9].Moreover,
they found that the other structural measures had either no
effect or no independent effect on sequence variability. In
contrast, Yeh et al. compared RSA with two LPD measures,
WCN and CN, on a larger and more divergent dataset of
proteins with much better signal and found that both LPD
measures correlate better with evolutionary rates than RSA
[11]. Moreover, they showed that once LPD is controlled
for, the independent contribution of RSA is very small.
Furthermore, we recently developed a mechanistic model of
protein evolution that explains why rate of evolution is related
to LPD [14]. The purpose of the present work is to perform a
thorough assessment of the thesis that the packing density of
a protein site rather than its solvent accessibility is the main
structural determinant of its sequence variability.

There are different ways to quantify sequence variabil-
ity, SA, and LPD. In a previous study [11], we quantified
sequence variability using rates of evolution, RSA values were
calculated following Ramsey et al. [10], and we used two
LPD measures: WCN and CN with 13 Å cut-off radius. To
further assess the packing density versus solvent accessibility
as determinants of evolutionary rates issue, here we consider
other measures of sequence variability, SA, and LPD. First,
we considered five popular measures of sequence variabil-
ity/conservation that differ methodologically and conceptu-
ally [15–17]. Second, we considered four measures of SA: the
Absolute Solvent Accessibility (ASA) and the three different
measures of RSA [18]. Finally, we considered the effect of
changing the cut-off radius used in the definition of CN.
Given a sequence or structural measure 𝑋

𝑠
for each site of

a protein’s sequence, one can obtain a site-dependent profile
𝑋 = (𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑁
) for a protein of length𝑁.The sequence

and structure profiles we consider are summarized in Table 1.
We compared sequence and structural profiles for a

diverse representative dataset of monomeric enzymes. For
each protein, we compared site-dependent structural profiles
with sequence variability profiles, quantified their similari-
ties, and analyzed the resulting data to address the two ques-
tions. First, what are the best measures of sequence variability
for the sake of studying the sequence-structure evolutionary
relationship at site level? Second, what are the structural
measures that best quantify the structural evolutionary con-
straints on sequence divergence? More specifically, does this
more thorough analysis support the conclusion that LPD
measures outperform SA measures as quantifiers of site-
specific evolutionary constraints on sequence divergence?

We found significant sequence-structure correlations
regardless of the specific method used to estimate LPD, SA,
and sequence variability. Among the sequence variability
measures, the ones that take into account the topology of
the phylogenetic tree lead to significantly higher sequence-
structure correlations with all structural profiles. Regarding
structural properties, LPD measures clearly outperform SA
measures as predictors of sequence variability, regardless of
the specific sequence variability measure used. Therefore,

this study provides strong support to our previous finding
that site-specific evolutionary rates are determinedmainly by
packing density rather than solvent accessibility [11].

2. Materials and Methods

2.1. Dataset. Weused the nonredundant dataset of 216mono-
meric enzymes of our previous study [11]. The pairwise seq-
uence identity of all pairs of proteins of the dataset is less than
25%.TheX-ray structures have less than fivemissing residues,
and they are monomeric (i.e., their biological unit is a single
chain).The lengths range from96 to 1287 sites, with amean of
361 sites.There are enzymes of all sixmain EC classes [19] and
domains of all main SCOP structural classes [20]. Details of
the dataset can be found in Table S1 in Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2014/572409.
This set is representative of soluble globular monomeric
enzymes.

2.2. Multiple Sequence Alignment. For each protein of the da-
taset, amultiple sequence alignment (MSA)was obtained fol-
lowing the ConSurf protocol [21, 22]. First, PSI-BLAST [23]
with an 𝐸-value cut-off of 10−3 and three iterations was used
to retrieve homologous sequences from the Clean Uniprot
database [24]. Second, all sequences that satisfy the following
criteria were removed: (1) sequences with more than 95%
identity to the query sequence; (2) sequences shorter than
60% of the query sequence; (3) fragment sequences that over-
lap by under 10%. Third, CD-HIT [25] was used to select up
to maximum 300 most significant representative sequences.
Finally, the MSA was obtained using MUSCLE [26].

2.3. Sequence Profiles. For each protein, we used its MSA to
calculate five sequence variability profiles separately, which
are summarized in Table 1 and described here.

ConSurf. 𝐶𝑆 = (𝐶𝑆
1
, 𝐶𝑆
2
, . . . , 𝐶𝑆

𝑁
), where 𝐶𝑆

𝑖
is the relative

rate of evolution of site 𝑖 and𝑁 is the number of sites. Given
the MSA, the site-specific relative rates are calculated using
Rate4Site [27, 28]. Rate4Site builds the phylogenetic tree
using the neighbor-joining algorithm and estimates the rates
using an empirical Bayesianmethod and the JTT substitution
matrix.

Real-Valued Evolutionary Trace. 𝐸𝑇 = (𝐸𝑇
1
, 𝐸𝑇
2
, . . . , 𝐸𝑇

𝑁
) is

a profile of scores that measures the variability of each site
taking into account the topology of the phylogenetic tree and
the variability within groups of sequences defined by such
topology [29]. Given the MSA, the tree’s topology is obtained
using the UPGMA algorithm [30]. The tree is used to define
groups of sequences, the Shannon entropy is used to measure
within-group variability, and ET is a sum of such entropies
with group-dependent weights. Branch-lengths are not taken
into account in the calculation.

Karlin & Brocchieri Sum-of-Pairs. 𝐾𝐵𝑆𝑃 = (𝐾𝐵𝑆𝑃
1
, 𝐾𝐵𝑆𝑃

2
,

. . . , 𝐾𝐵𝑆𝑃
𝑁
) consists of conservation scores obtained by

adding the amino acid similarity scores from a normalized
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Table 1: Site-specific properties.

Symbol Property measured Name and description

CS Rate of evolution
ConSurf rate of evolution: estimated rate relative to the overall average, computed using
an empirical Bayesian approach using the phylogenetic tree topology and branch lengths
and the JTT probability matrix of amino acid substitutions as implemented in the
ConSurf web server.

ET Sequence variability
Real-valued evolutionary trace: sequence variability score computed using a weighted
average of sequence entropy with weights accounting for the topology of the phylogenetic
tree.

KBSP Sequence conservation
Karlin & Brocchieri Sum-of-Pairs: sequence conservation score computed by summing
amino acid similarity scores over all amino acid pairs of the site’s column in a multiple
sequence alignment. Similarity scores are obtained using a normalized JTT250 matrix.

VTSP Sequence conservation
Valdar &Thornton Sum-of-Pairs: sequence conservation score computed by summing
amino acid similarity scores over all amino acid pairs of the site’s column in a multiple
sequence alignment. Sequences are weighted, and similarity scores are obtained using a
min-max normalized JTT250 matrix.

EN Sequence variability Entropy: Shannon information entropy computed using the amino acid frequencies
observed at the site’s MSA column.

CN Local packing Contact number: the number of 𝐶
𝛼
within various distances of the site’s 𝐶

𝛼
.

The cut-off distance ranges from 9 to 30 Å.

WCN Local packing Weighted contact number: measure of contact density obtained by summing the inverse
square distances between the site’s 𝐶

𝛼
and the rest of the sites of the protein.

ASA Solvent accessibility Accessible surface area: solvent accessibility of the site computed by rolling a 1.4-Å sphere
over the residue’s molecular surface.

RSA Solvent accessibility
Relative solvent accessibility: solvent accessibility of the site computed by rolling a 1.4-Å
sphere over the residue’s molecular surface, divided by the maximum value for residues of
the same type. We consider three different tables of values of maximum ASA resulting in
three RSA measures: RSAR, RSAM, and RSAT.

substitution matrix over all pairs of sequences of the MSA
[31]. In this study, we used the JTT250 substitution matrix
[16].

Valdar & Thornton Sum-of-Pairs. 𝑉𝑇𝑆𝑃 = (𝑉𝑇𝑆𝑃
1
, 𝑉𝑇𝑆𝑃

2
,

. . . , 𝑉𝑇𝑆𝑃
𝑁
) consists of conservation scores obtained by

adding over sequence pairs the amino acid similarity scores
from a normalized substitution matrix [32]. The difference
between the VTSP and the KBSP is that VTSP uses a different
procedure to normalize the substitution matrix and weights
sequences to reduce possible biases introduced by closely
related sequences. We used the JTT250 substitution matrix
[16].

Entropy. 𝐸𝑁 = (𝐸𝑁
1
, 𝐸𝑁
2
, . . . , 𝐸𝑁

𝑁
) consists of variability

scores measured by Shannon’s information entropy obtained
from the site-specific amino acid frequencies [33]. The
entropy at each sequence position is defined as 𝐸𝑁

𝑖
=

−∑
𝑎
𝑓
𝑖𝑎
ln𝑓
𝑖𝑎
, where 𝑓

𝑖𝑎
is the frequency of an amino acid

type 𝑎 at sequence position 𝑖. The entropy is zero for a
completely conserved site and increases with
variability.

2.4. Structural Profiles. For each protein, we used its PDB file
[34] to calculate the structural profiles summarized in Table 1
and described here.

2.4.1. Local Packing Density

Weighted Contact Number. 𝑊𝐶𝑁 = (𝑊𝐶𝑁
1
,𝑊𝐶𝑁

2
, . . . ,

𝑊𝐶𝑁
𝑁
) is a local packing density profile defined in [35].

WCN of residue 𝑖 is𝑊𝐶𝑁
𝑖
= ∑
𝑁

𝑗 ̸= 𝑖
1/𝑟
2

𝑖𝑗
, where 𝑟

𝑖𝑗
is the dis-

tance between the𝐶
𝛼
of residues 𝑖 and 𝑗 and𝑁 is the number

of residues.

Contact Number. 𝐶𝑁 = (𝐶𝑁
1
, 𝐶𝑁
2
, . . . , 𝐶𝑁

𝑁
) is a local

packing density profile.TheCNof a site is defined as the num-
ber 𝐶
𝛼
within a spherical neighbourhood of cut-off radius 𝑟

0
.

We calculated CN values with 𝑟
0
ranging from 9 to 30 Å, with

an interval of 1 Å to find the optimum cut-off radius.

2.4.2. Solvent Accessibility

Absolute Solvent Accessibility. 𝐴𝑆𝐴 = (𝐴𝑆𝐴
1
, 𝐴𝑆𝐴
2
, . . . ,

𝐴𝑆𝐴
𝑁
) is a solvent accessibility profile. The absolute solvent

accessibility of a site is computed by rolling a 1.4 Å sphere,
simulating a water molecule, over the residue’s molecular
surface. We used the program DSSP [36].

Relative Solvent Accessibility Profile. 𝑅𝑆𝐴 = (𝑅𝑆𝐴
1
, 𝑅𝑆𝐴
2
, . . . ,

𝑅𝑆𝐴
𝑁
) consists of site-specificmeasures of solvent accessibil-

ity. The Relative Solvent Accessibility (RSA) of a residue is its
ASA divided by the maximum ASA for the given amino acid
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type. We used three different values of the maximum ASA:
those of Rose et al. [37], Miller et al. [38], and Tien et al. [18],
leading to, respectively, three different RSA profiles: RSAR,
RSAM, and RSAT.

2.5. Profile Comparison. For each protein, we compared
all sequence profiles with all structural profiles. To reduce
noise, all profiles were smoothed using a sliding window
of size three as recommended in Pei and Grishin [15]. The
similarity between two profiles was quantified using Pearson’s
correlation coefficient, which ranges from −1 for perfectly
anticorrelated profiles to 1 for perfectly correlated ones. For
unrelated profiles, the expected value is 0. Since KBSP and
VTSP are measures of conservation rather than variability,
we changed their sign, so that the most conserved sites have
lower score. We did the same for WCN and CN so that the
sites with higher local packing density, which are expected
to be more conserved, get the lowest score. In this way, all
significant relationships will result in positive correlations.

Pearson correlations are especially useful for linear rela-
tionships between the variables compared. In the present
case, their use is justified because site-specific rates of
evolution are linearly related to both RSA and LPD [9, 10,
14]. However, in order to further support the conclusions
regardless of whether the relationship is linear or not, we also
calculated the rank-based Spearman correlation coefficients
between the different profiles and performed nonparametric
rank-based statistical assessments described next.

2.6. Statistical Assessment to Compare Two Predictor Vari-
ables. Given a reference sequence (structure) profile 𝑦, we
compared two structural (sequence) profiles 𝑥

1
and 𝑥

2
using

their Pearson or Spearman correlation coefficients 𝜌(𝑦, 𝑥
1
)

and 𝜌(𝑦, 𝑥
2
). To assess whether 𝜌(𝑦, 𝑥

1
) > 𝜌(𝑦, 𝑥

2
), we

performed three statistical tests. First, we used a paired 𝑡-test
to assess whether themeans over proteins satisfy ⟨𝜌(𝑦, 𝑥

1
)⟩ >

⟨𝜌(𝑦, 𝑥
2
)⟩. Second, we calculated the proportion proteins

for which 𝜌(𝑦, 𝑥
1
) > 𝜌(𝑦, 𝑥

2
) and used a binomial test to

assess whether such proportion is larger than 50%.Third, we
tested whether 𝜌(𝑦, 𝑥

1
) > 𝜌(𝑦, 𝑥

2
) using Wilcoxon’s signed-

rank test with matched pairs. Wherever we use the term
“significant” we mean that the 𝑃 value of the test that gives
the worst 𝑃 value is smaller than 0.01.

We note here that the 𝑃 value of the 𝑡-test is strictly valid
only under the assumption of a normal distribution of the
random variable considered, which in the present case is a
good approximation. Despite this, we note that in general the
𝑡-test is robust with respect to departures from normality.
Therefore the 𝑡-test is suitable for the present case. In spite
of this, for the sake of a more thorough assessment, we
also used the binomial test and Wilcoxon’s test that do not
depend on any assumptions about the form of the underlying
distributions.

2.7. Statistical Assessment of the Redundant and Independent
Contributions of LPD and RSA to Rates of Evolution. To
address the issue of the relative importance of WCN (the
best LPD measure) and RSAT (the best RSA measure) as

predictors of CS (the best sequence variability measure), we
used a variance partitioning analysis in which the overall
explained variance is split into overlapping and unique
contributions of WCN and RSAT. For the case of a linear fit
CS ∼ WCN + RSAT, the variance of CS explained together
by WCN and RSAT is the square of the bivariate correlation
coefficient 𝑅2. This can be partitioned into the sum of three
contributions:

𝑅
2

= 𝜌
2

(CS,WCN or RSAT
)

+ 𝜌
2

(CS,WCN | RSAT
) + 𝜌
2

(CS,RSAT
| WCN) .

(1)

The first term accounts for the redundant contribution
of the independent variables and is due to the fact that they
correlate with each other. The last two terms are the square
semipartial correlations of CS with each of the independent
variables controlling the other and they represent their
unique contributions [11, 39, 40]. Another way to interpret
this partitioning is that the unique contribution of a variable
is the increase in 𝑅2 that results from adding that variable to
the linear fit.

3. Results and Discussion

For each of the 216 proteins of our dataset, we obtained
the structure from the Protein Data Bank [34] and built a
multiple sequence alignment. Given a protein, we calculated
all the site-dependent sequence and structural profiles sum-
marized in Table 1 and described in Section 2. The sequence
variability profiles are the ConSurf rate of evolution (CS),
the Evolutionary Trace score (ET), the Karlin & Brocchieri
Sum-of-Pairs score (KBSP), the Valdar & Thornton Sum-
of-Pairs score (VTSP), and the Shannon Entropy (EN). The
structural profiles are theWeightedContactNumber (WCN),
the simpler Contact Number (CN) with varying cut-off radii,
the Absolute Solvent Accessibility (ASA), and three measures
of Relative Solvent Accessibility: RSAR, RSAM, and RSAT.

For each protein, we calculated Pearson’s correlation coef-
ficients between each sequence profile and each structural
profile. Table 2 shows the average over proteins of such corre-
lations. Similar results are found using Spearman correlations
(Table S8). All values are significantly positive. Therefore,
in general, all structural profiles are significantly correlated
with all sequence profiles. However, there are significantly
different sequence-structure correlations depending on the
sequence and structural measures compared.

3.1. Comparison of Sequence Measures. What are the seq-
uence variability measures resulting in higher sequence-
structure correlations? Table 2 (reading it rowwise) and
Figure 1 show the effect of different sequence measures on
average sequence-structure correlations. The five sequence
profiles cluster into three groups. For all structural measures,
Shannon’s entropy EN gives by far the worst sequence-
structure correlations. The Sum-of-Pairs scores KBSP and
VTSP give almost identical sequence-structure correlations,
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Table 2: Mean structure-sequence Pearson correlations.

Property Profile CS ET KBSP VTSP EN

LPD WCN 0.608 0.609 0.567 0.567 0.413
CN∗ 0.596 0.596 0.551 0.551 0.422

SA

RSAT 0.559 0.553 0.508 0.507 0.365
RSAM 0.558 0.551 0.505 0.504 0.364
RSAR 0.557 0.551 0.505 0.504 0.364
ASA 0.551 0.542 0.497 0.496 0.371

∗For each sequence variability profile, the cut-off radius of CN was chosen
to maximize the CN-sequence average correlation coefficients. The cut-
off radii for CS, ET, KBSP, VTSP, and EN are 19 Å, 19 Å, 18 Å, 18 Å, and
20 Å, respectively. Values are the structure-sequence Pearson correlation
coefficients averaged over all proteins of the dataset.

much better thanEN.CS andET lead to the highest sequence-
structure correlations, with CS either similar to or slightly
better than ET depending on structural measure. As we will
see in the next section, the best solvent accessibility measure
is RSAT and the best packing density measure is WCN.
Regarding the correlation with RSAT, the means follow the
order CS ≅ ET > KBSP ≅ VTSP > EN, as can be seen from
Table 2. This order is supported by all statistical tests (Table
S2). Further, a protein-by-protein comparison shows that CS
and ET have higher correlations with RSAT than KBSP and
VTSP for more than 70% of the proteins and the latter are
better than EN for more than 80% of the cases, both values
being significantly larger than 50% according to a binomial
test (Table S2). A similar assessment shows that, with respect
to their correlations with WCN, sequence profiles, again,
follow the order CS ≅ ET > KBSP ≅ VTSP > EN, as seen in
Table 2, and supported by all statistical tests (Table S3). The
same conclusions are reached using Spearman coefficients
(see Figure S1, Table S8, Table S9, and Table S10).

To interpret the previous results, we notice that CS
and ET are the only methods that take into account the
topology of the phylogenetic tree, which seems to be the
key factor responsible for the improvement over the Sum-of-
PairsmethodsKBSP andVTSP. Entropy, EN,which takes into
account neither the tree topology nor the substitution proba-
bilities, gives very poor sequence-structure correlations. Even
though difference between CS and ET is in general not
statistically significant, CS does give slightly better results (see
Figure 1 and Figure S1). Moreover, while ET is an empirical
score, CS has a clear evolutionary meaning, since it is the
site-specific rate of evolution inferred using a robust Bayesian
approach and an explicit evolutionary model. Therefore, we
consider CS to be the best measure of sequence variability for
the purpose of studying the sequence-structure evolutionary
relationship.

3.2. Comparison of Structural Measures. What are the struc-
tural properties correlating better with sequence variability
measures? Inspection of Table 2 (columnwise) and Figure 2
shows clearly that LPD measures (WCN and CN∗) correlate,
on average, better with all sequence variability measures than

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

WCN

ASA

RSAR

RSAM

RSAT

CN∗

CS
ET
VTSP

KBSP
EN

Figure 1: Comparison of sequence variability profiles by their
average Pearson’s correlation coefficients with different structural
profiles. The sequence variability scores (listed in the figure legend)
are ConSurf rate of evolution (CS), Evolutionary Trace score (ET),
Karlin & Brocchieri Sum-of-Pairs score (KBSP), Valdar &Thornton
Sum-of-Pairs score (VTSP), and Entropy (EN). The structural
properties (the apices of the hexagon) are Weighted Contact Num-
ber (WCN), Contact Number (CN), Relative Solvent Accessibility
(RSA), and Absolute Solvent Accessibility (ASA). The asterisk mark
on CN means that the cut-off radius was chosen to maximize each
CN-sequence average correlation.The cut-off radii for CS, ET, KBSP,
VTSP, and EN are 19 Å, 19 Å, 18 Å, 18 Å, and 20 Å, respectively.
Superscript letters distinguish RSA profiles obtained using different
methods.

SA measures (ASA, RSAR, RSAM, and RSAT). Similar results
are seen using Spearman correlations (Table S8 and Figure
S2). In the following sections, we perform a more detailed
comparison.

3.2.1. Comparison of Solvent Accessibility (SA) Measures.
What is the best solvent accessibility measure? From Table 2
and Figure 2, it is clear that all SA measures give similar
sequence-structure correlations for all sequence variability
measures. Except for EN, which is a poor sequence variability
score, RSAmeasures are larger than ASA (see Table 2), which
is supported by all statistical tests (Table S4). Among the
relative SAmeasures, RSAR, RSAM, and RSAT, differences are
very small. However, all statistical tests indicate that the best
RSA-sequence correlation is obtained using RSAT, based on
the recentmaximumallowedASAproposed byTien et al. [18]
(Table S4). Thus, regarding sequence-structure correlations,
RSAT is the best measure of solvent accessibility. The same
conclusions follow from similar analyses of Spearman corre-
lations (Table S8, Figure S2, and Table S11).
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VTSP KBSP
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RSAR
RSAM

RSAT
CN∗

WCN
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Figure 2: Comparison of structural profiles by their average
Pearson’s correlation coefficients with different sequence variabil-
ity profiles. The sequence variability measures (the axes of the
pentagon) are ConSurf rate of evolution (CS), Evolutionary Trace
score (ET), Karlin & Brocchieri Sum-of-Pairs score (KBSP), Valdar
& Thornton Sum-of-Pairs score (VTSP), and Entropy (EN). The
structural properties (listed in the figure legend) are Weighted
Contact Number (WCN), Contact Number (CN), Relative Solvent
Accessibility (RSA), and Absolute Solvent Accessibility (ASA). The
asterisk mark on CN means that the cut-off radius was chosen to
maximize each CN-sequence average correlation. The cut-off radii
for CS, ET, KBSP, VTSP, and EN are 19 Å, 19 Å, 18 Å, 18 Å, and 20 Å,
respectively. Superscript letters distinguish RSA profiles obtained
using different methods.

3.2.2. Comparison of Local Packing Density (LPD) Measures.
What is the best LPD measure? In Table 2 and Figure 2, we
show the mean sequence-structure correlations for WCN
and CN∗ with the different sequence variability measures.
WCN is a parameter-free measure. CN, on the other hand,
depends on a cut-off radius. CN∗ was obtained by varying the
cut-off radius and finding the maximum (Table S5). Table 2
and Figure 2 show that, except for the poorest sequence
variability score EN,WCN correlates, on average, better than
CN∗ for all other site-dependent sequence profiles (Table
S6). Moreover, for more than 50% of the proteins, WCN
outperformsCN∗ for all sequence variabilitymeasures except
EN (Table S6). Similar conclusions follow from analyses of
Spearman correlations (Figures S2, Table S8, Table S12, and
Table S13). To summarize,WCN is a better LPDmeasure than
CN to study the LPD-sequence relationship.

3.2.3. Weighted Contact Number (WCN) versus Relative Sol-
vent Accessibility (RSA). To complete this study, we per-
form a more detailed comparison between the best LPD
measure (WCN) and the best SA measure (RSAT). Table 2,

Table 3: Comparison between WCN and RSAT using sequence
profiles as reference.

Reference WCN RSAT
Δ
1 %2

CS 0.608 0.559 0.049∗ 79†

ET 0.609 0.553 0.056∗ 80†

KBSP 0.567 0.508 0.059∗ 82†

VTSP 0.567 0.507 0.060∗ 83†

EN 0.413 0.365 0.048∗ 77†
1Difference between the mean correlations of WCN and RSAT.
2The percentage of cases for WCN > RSAT.
∗

𝑃 value≪ 10−3 according to a paired 𝑡-test.
†

𝑃 value≪ 10−3 according to a binomial test.
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Figure 3: Local packing density versus solvent accessibility as deter-
minants of site-specific evolutionary rates. Points above (below) the
diagonal are proteins for which WCN (RSAT) correlates better than
RSAT (WCN) with the site-specific rates of amino acid substitution
as estimated using the phylogenetic-based approach ConSurf (CS).
The percentages of points above and below the diagonals are shown.

Table 3, and Figure 2 clearly show that the mean WCN-seq-
uence correlation coefficients are larger than mean RSAT-
sequence correlations for all measures of sequence variability.
This is supported by all statistical tests (Table S7). Similar
conclusions are reached from analyses based on Spearman
correlations (Table S8, Figure S2, and Table S14).

Since CS is the best sequence variability measure, we
compared WCN-CS and RSAT-CS correlations protein-by-
protein. Results are shown in Figure 3. Counting the number
of cases above and below the diagonal, we found that 𝜌(CS,
WCN) > 𝜌(CS, RSAT) for 171/216 = 79% of cases, and
Table 3 indicates that the proportion is significantly larger
than 50% (supported by a binomial test, Table S7). The mean
sequence-structure correlations are ⟨𝜌(CS,WCN)⟩=0.61 and
⟨𝜌(CS, RSA)⟩ = 0.56. Therefore, both the number of cases
and themean values support thatWCN correlates better with
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Table 4: Variance partitioning.

Fit Contribution 𝑅
2 %

CS∼WCN + RSAT

Total 0.408 ± 0.010 100
Common 0.314 ± 0.009 75.20 ± 1.22

Unique WCN 0.078 ± 0.004 19.49 ± 1.03
Unique RSAT 0.016 ± 0.001 5.31 ± 0.66

NOTE: fit is the bivariate linear fit considered, 𝑅2 is the explained variance
averaged over the dataset of 216 enzymes ± its standard deviation, and % is
the proportion of explained variance accounted for by the given contribution.

site-specific evolutionary rates than RSA.This is further sup-
ported by analysis based on Spearman correlations (Figure
S3, Table S14).

3.2.4. Joint and Unique Contributions of WCN and RSA.
Despite LPD measures being better than SA measures, it is
possible that both contribute significantly as determinants
of the rate of evolution. Therefore, to finish, we consider
the extent to which WCN and RSAT provide overlapping
and independent contributions to the explained variance of
CS. For this purpose, we performed a variance partitioning
analysis based on semipartial correlations (see Section 2). In
a previous study, we used such analysis to compare WCN
and RSAM [11]. Here, we showed that the best SA measure
is RSAT, so that it is necessary to repeat the analysis. Results
are shown in Table 4. The total explained variance is 𝑅2 =
0.408. As a result of the large WCN-RSAT correlations, the
redundancy term is the largest. WCN accounts uniquely
for 19.5% of the explained variance, while RSA’s unique
contribution is 5.3%. Therefore, the unique contribution of
the best LPD measure, WCN, is almost four times larger
than the unique contribution of the best SA measure, RSAT.
Another way to interpret these results is that going from a
one-variable CS ∼WCN linear fit to a two-variable CS ∼

WCN+RSAT fit increases the explained variance only by 5.3%
(from 𝑅

2

= 0.392 to 𝑅2 = 0.408) at the cost of introducing an
extra parameter and possibly overfitting. Similar results are
obtained using Spearman correlations (Table S15).

4. Conclusion

Franzosa and Xia studied many structural measures that
characterize the microenvironment of protein sites looking
for the main structural determinants of evolutionary rate
at site level [9]. They found that the only two structural
properties with significant independent contributions are
RSA, a measure of solvent accessibility, and CN (with a 13 Å
cut-off radius), a measure of packing density.They concluded
that, in agreement with the well-known observation that
surface sites evolve more rapidly than buried ones, the main
determinant is RSA, with CN having a smaller but significant
independent contribution. In contrast, in recent study, Yeh
et al. found that site-specific amino acid substitution rates
correlate better with two LPD measures, WCN and CN,
than with RSA, suggesting that packing density rather than
solvent accessibility would be the main structural constraint

[11]. Taking into account the conflicting conclusions of these
two studies and considering that there are different ways
of scoring sequence variability, packing density, and solvent
accessibility, here we performed amore thorough assessment.
To this end, we considered five differentmeasures of sequence
variability and four measures of solvent accessibility and
varied the cut-off radius used to calculate CN.We performed
a protein-by-protein comparison of these properties on a
representative dataset of 216 structurally and functionally
diverse monomeric globular enzymes.

There are several ways to quantify sequence variability.
We compared five sequence variability profiles, CS, ET, KBSP,
VTSP, and EN, with four solvent accessibility profiles and
two local packing density profiles. We found that CS and
ET profiles correlate with all structural profiles better than
Sum-of-Pairs similarity scores (KBSP and VTSP), which
in turn outperform the simple entropy conservation score
(EN). The key factor that differentiates CS and ET from the
other methods is that they take into account the topology of
the phylogenetic tree. Since CS gives slightly better results
and, moreover, has a clear evolutionary interpretation—it
is the profile of site-specific evolutionary rates—we think
that it should be the method of choice, at least for the
purpose of investigating the evolutionary sequence-structure
relationship.

The main finding of the present work is that LPD
measures (WCN and CN) clearly outperform all of the
SA measures (ASA, RSAR, RSAM, and RSAT) for all five
of the sequence variability measures. Moreover, WCN is
the best LPD measure and RSAT the best SA measure. A
variance partitioning analysis based on a bivariate fit of evol-
utionary rate (CS) as a function of both variables shows
thatWCN has an independent contribution four times larger
than RSA. Therefore, the present assessment provides very
strong support for the conclusion of Yeh et al. that the main
structural determinant of sequence variability is packing
density rather than solvent accessibility [11].

From a fundamental point of view, LPD and RSA suggest
different mechanisms for the link between structural con-
straints and sequence variability. RSA is related to overall
protein stability, which would suggest a connection between
the effect of a mutation and global stability. On the other
hand, LPD is related to the interaction energy of a protein site
with its local environment [41]. We have recently developed
a mechanistic model of evolution that shows that LPD is
directly proportional to the mutational stress introduced by
a mutation on the protein’s active structure. This model pro-
vides an explanation for the sequence-LPD link and predicts a
linear relationship [14]. Therefore, the findings of the present
thorough analysis further support such mechanistic model,
which may provide a breakthrough in our understanding
of the biophysical mechanism by which protein structure
constrains sequence divergence.

In addition to fundamental issues, the present conclu-
sions could be applied to the development of better structure-
based models of sequence evolution. For example, Scherrer
et al. have developed sequence evolution models that take
into account the site-specific RSA values [42]. The present
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work suggests the development of similar models based
on WCN. It would be interesting to see whether WCN-
based evolutionary models outperform RSA-based ones. A
secondary issue to note in this respect is that, in contrast
with RSA,WCN is easier to calculate, since it depends just on
the alpha-carbon coordinates, in contrast with RSA, which
considers all of the protein’s atoms. However, a very recent
study shows that it might be possible to obtain RSAmeasures
from coarse-grained representations, which would tackle this
computational-cost problem [43].

The fact that using a weighted contact number, WCN,
improves over the simpler CN measure of local packing
density immediately suggests that other weighting schemes
may further improve the structure-sequence correlations.
WCN uses 1/𝑑2

𝑖𝑗
weights. The first obvious generalization is

to use other powers, 1/𝑑𝑛
𝑖𝑗
; we have tried this and it turns out

that 𝑛 = 2 results in the best sequence-structure correlations
(unpublished results). Another choice would be to use decay-
ing exponential weights, 𝑒−𝑎𝑑𝑖𝑗 ; this does not improve the
sequence-structure agreement either (unpublished results).
A third possibility would be to use statistical potentials as
weights. We used them in the past in a structure-based
model of evolution that predicts successfully the site-specific
patterns of amino acid replacement but fails to account for
the evolutionary rate variation among sites [44–46]. The
reason why an inverse squared distance weighting of contacts
leads to the LPD measure that best correlates with site-
specific rate of evolution is not clear yet and requires further
research. Another issue, suggested by one of the reviewers,
is the inclusion of correlations of pairs or higher groups
of atoms; we think this is a good idea that might deserve
further investigation. To finish this paragraph, we mention
that a strategy that does significantly improve over WCN as
calculated here is to use a two-nodes-per-site representation
including for each site its 𝐶

𝛼
and a second node representing

the side chain located either at the 𝐶
𝛽
or at the center-of-

mass of the side chain and calculating WCN for the node
representing the side chain rather than 𝐶

𝛼
. This makes sense,

since it is the side chain and not the backbone atom which
is mutated. Another approach which leads to similar results
is to use an anisotropic weighting function that takes into
account not only the distance between the reference site and
its neighbors but also its relative orientation with respect to
a unit vector directed from the site’s 𝐶

𝛼
to its 𝐶

𝛽
or side-

chain center of mass. These results go beyond the scope of
the present work and will be published elsewhere.

To finish, we discuss the scope of the present conclusions.
We have used only monomeric enzymes. The set is repre-
sentative of the whole set of monomeric enzymes of known
structures, since, starting from this set, we picked them
randomly with the only condition of filtering out enzymes
with more than 25% sequence identity to avoid redundan-
cies. Above that sequence-identity threshold, proteins are
expected to have essentially the same structures, so that there
would be no further gain in including them. The protocol
used to build this set guarantees that it is representative of the
whole set of monomeric enzymes, in the sense of including
the different functional and structural classes in the same

proportion as in the whole set. This, together with the fact
that the uncertainty of a statistical analysis depends on the
size of the sample but has no relationship to the size of the
population from which the sample was drawn, means that
the present conclusions are expected to hold for monomeric
enzymes in general and probably for globular monomeric
proteins that are not enzymes but have a similar organization,
for example, myoglobin, which is monomeric and globular
and has an active site. Using monomeric globular proteins,
we avoided constraints due to interaction between subunits
in multimeric proteins. For the latter, coupling between sub-
units may affect the correlation between LPD and sequence
variability [47]. Thus, an extension of the present study to
multimeric proteins might be useful to gain insight into
the coevolution between protein subunits. Further research
would also be needed for monomeric proteins whose func-
tion is related to protein-protein or protein-nucleic acid
interactions, which may impose additional constraints.
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