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Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder with X-linked dominant inheritance

caused mainly by mutations in the methyl-CpG-binding protein 2 (MECP2) gene. The

effects of various Mecp2 mutations have been extensively assessed in mouse models, but

none adequately mimic the symptoms and pathological changes of RTT. In this study, we

assessed the effects of Mecp2 gene deletion on female rats (Mecp2+/−) and found severe

impairments in social behavior [at 8 weeks (w), 12 w, and 23 w of age], motor function [at 16

w and 26 w], and spatial cognition [at 29 w] as well as lower plasma insulin-like growth factor

(but not brain-derived neurotrophic factor) and markedly reduced acetylcholine (30%–50%)

in multiple brain regions compared to female Mecp2+/+ rats [at 29 w]. Alternatively, changes

in brain monoamine levels were relatively small, in contrast to reports on mouse Mecp2

mutants. Female Mecp2-deficient rats express phenotypes resembling RTT and so may

provide a robust model for future research on RTT pathobiology and treatment.

Introduction

Rett syndrome (RTT) (OMIM 312750) is an X-linked progressive neurodevelopmental disor-

der with an incidence of about 1:10,000 among newborn females, making it the second most

frequent cause of female mental retardation after Down syndrome [1]. It also shortens life

expectancy by ~30–40 years in females, while males usually demonstrate early onset and die

shortly after birth. Mutations in the gene encoding transcription regulator methyl-CpG-bind-

ing protein 2 (MeCP2) are identified in more than 95% RTT patients [2, 3]. Females with RTT

appear to develop normally until 6 to 18 months after birth, but then begin to exhibit deficits

in cognitive function, motor function, and sociality, with continued developmental regression

characterized by a loss of acquired communication and purposeful hand skills [4, 5].

Over 300 MECP2 mutations and genomic abnormalities have been documented in RTT

patients as well as in other mental health disorders, including intellectual disability, autism spec-

trum disorder, bipolar disorder, and schizophrenia [6]. Based on these genetic studies, several

mouse models with various Mecp2 mutations have been developed and studied over the past
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two decades [7, 8]. One of the most striking findings is that many phenotypes reported in

Mecp2 gene null mutants [9] are also observed in mouse mutants generated using a post-mitotic

neuron-specific knockout strategy [10], consistent with postnatal neurodevelopmental regres-

sion as a predominant symptom. Moreover, some of these phenotypes can be normalized by re-

expression of the Mecp2 gene after birth [11–13]. This potential postnatal reversibility of RTT

phenotypes has prompted research on therapeutics to compensate for Mecp2 and associated

deficiencies [14], but there has been no successful clinical translation of these findings.

While mouse models allow for convenient genetic manipulation and large-scale breeding,

small body and brain sizes limit critical research methods such as region-specific in vivo
electrophysiology and neurochemistry (e.g., microdialysis). Further, some complex and

sophisticated behaviors are not observed in mice [15, 16], which may make it difficult to cap-

ture RTT-related regressive pathologies. Considering these shortcomings, a rat model was

recently developed to investigate the effects of Mecp2 deficiency on brain development, cogni-

tion, and behavior [17–19].

Since human RTT is limited to females, it is preferable to conduct all animal model experi-

ments on females, although few studies have examined female mutant mice exclusively, likely

because of the more delayed and complex phenotypic progression associated with cellular

mosaicism [8]. To further explore the pathological progression associated with Mecp2 gene

deficiency, we examined differences in spatial learning and memory, histopathology, and

regional neurotransmitter levels between wild-type (Mecp2+/+) and Mecp2+/− female rats.

These studies revealed progressive deficits in social behavior and motor function as well as

impaired spatial learning and memory. Further, regional acetylcholine levels were substantially

reduced, suggesting that disrupted cholinergic transmission or metabolism may contribute to

the behavioral and cognitive abnormalities of RTT.

Materials and methods

All experimental protocols were approved by the Institutional Animal Care and Use Commit-

tee of Nihon Bioresearch Inc. (protocol number: 201601), and performed in compliance with

the Guidelines for Management and Welfare of Experimental Animals of both Nihon Biore-

search and the National Institutes of Health. All efforts were made to minimize animal suffer-

ing and to reduce the number of animals used. We adopted the following protocol: if a rat

showed any symptoms of suffering, such as abnormal breathing and pulse, decreased body

temperature, lying down with less response to external stimuli, or showed rapid weight loss

(>20% in several days), we would take euthanasia measures by exsanguination with the open-

ing of the abdominal aorta under isoflurane anesthesia. None of the rats, however, showed any

such symptoms. We therefore used all the datasets without any exclusion throughout this

study.

Animals

Female Mecp2 gene mosaic heterozygotic Sprague Dawley (SD) rats (Mecp2+/−) were obtained

from SAGE Labs (part of Horizon Discovery, UK). The genotype of these animals is guaran-

teed by SAGE Labs. The zinc-finger nuclease technology was used to establish an animal

model for generating a 71-base pair deletion in exon 4 [18]. Female wild-type control SD rats

(Mecp2+/+) were obtained from Charles River Laboratories (Yokohama, Japan) at 6 weeks (w)

of age and housed under the same conditions as mutants (n = 6 for each genotype, respec-

tively). Briefly, all animals were housed in an animal room with temperature maintained at

18.0˚C to 28.0˚C, relative humidity at 30.0%–80.0%, and a 12-hour/12-hour light/dark cycle

(lighting: 6:00 a.m. to 6:00 p.m.) with filtered fresh air changes 12 times per hour. The animals
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were housed individually in plastic cages (W: 310 × D: 360 × H: 175 mm) lined with autoclaved

paper bedding and allowed free access to food and water.

Study schedule

Behavioral test batteries are described in the order conducted. The social interaction test was

performed at 8, 12, and 23 w of age, the locomotor activity test at 16 and 23W, rotarod perfor-

mance test at 26W, and Morris water maze (MWM) test at 29 w (Fig 1). One week after the

final MWM tests, blood was collected from the postcava into 1-mL disposable polypropylene

syringe (Terumo Corporation, Tokyo, Japan) using a 23G needle (Terumo Corporation)

under isoflurane anesthesia (Isoflurane Inhalation Solution [Pfizer], Mylan Inc., Osaka,

Japan). The animals were then euthanized by bleeding, and the brain was collected. Half of the

brain was fixed in 4% paraformaldehyde phosphate buffer solution and processed for immu-

nohistology while the other half was used for measurement of brain neurotransmitters.

Behavioral test batteries

Social interaction test. The social interaction test was performed in a clean plastic cage of

the same type used for animal housing. Two female Mecp2+/−or Mecp2+/+ rats that had never

Fig 1. Experimental schedules. This figure describes the experimental schedules for behavioral test batteries and

tissue sample preparations.

https://doi.org/10.1371/journal.pone.0258830.g001
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been in contact were placed together in the cage, and social behaviors were observed for 20

minutes under interior light through a transparent cage top with air vents. Frequencies and

accumulated durations of contact behaviors (genital investigation, sniffing, and social groom-

ing) and independent self-grooming were measured separately with a counter and a

stopwatch.

Locomotor activity test. Locomotor activity over 2 consecutive 24-periods with 12-hour

light and dark cycles (48 h) was analyzed at 30-minute intervals in the home cage using a com-

puterized system (Multi digital 32 port count system, Neuroscience, Inc. Osaka, Japan).

Rotarod test. To evaluate motor coordination, the animal was placed on a rotarod (Rota-

rod, ENV-577, Med. Associates, Inc., St. Albans, VT, U.S.A). The rotation speed was gradually

accelerated from 4 to 40 rpm and the time (in seconds) and speed at which the rat fell off were

measured within 5 minutes.

Morris water maze (MWM) test. Spatial learning and memory were assessed in the

MWM. The MWM apparatus consisted of a gray vinyl chloride circular pool (diameter: 148

cm, height: 44 cm) filled with water (17˚C to 18˚C) up to a height of about 32 cm so that a

clear acrylic escape platform (12-cm in diameter) was submerged approximately 2 cm under-

neath the surface. The pool was divided onto four equal quadrants, with the escape platform

located in the center of the fourth quadrant (see Fig 6A). In the acquisition phase, the animal

was randomly placed in the water at a wall position between ‘a’ and ‘e’ (see Fig 6A) with the

head facing the wall, and swimming behavior was recorded by a video camera set above the

pool and displayed on a TV monitor. In acquisition trials, time to reach the platform (escape

latency in seconds) and swimming distance (cm) were analyzed using a video tracking system

(Etho Vision XT, Noldus Information Technology Inc., PA Wageningen, Netherlands) as indi-

ces of spatial learning. Acquisition trials were performed twice a day for 4 days (8 times in

total). If the animal did not find the platform within 90 s, latency was recorded as 91 s and it

was gently guided onto the platform and allowed to remain for 30 s. One day following the

final acquisition trial, animals were subjected to a probe trial for spatial memory in which the

escape platform was removed. The animal was released from c and allowed to swim freely for

90 s. Time in the former platform quadrant (quadrant 4) and number of platform position

crossings were recorded as indices of spatial memory.

High-performance liquid chromatography (HPLC) analysis of biogenic

amine levels

Regional neurotransmitter levels were measured in excised brain tissue by isocratic HPLC sep-

aration and electrochemical detection. Briefly, the animals were euthanized by bleeding from

the postcava under isoflurane anesthesia one week after the MWM test, and the brain tissues

were collected in ice-cooled physiological saline. Using a metallic zinc brain matrix (ASI

Instruments Inc. Warren, MI, U.S.A), each hemisphere was sliced into 2-mm thick coronal

sections and divided into frontal cortex, amygdala, hippocampus, caudate nucleus, thalamus,

hypothalamus, and medulla oblongata according to the rat brain atlas of Paxinos and Watson

[20]. Each region was collected in a separate container, weighed, frozen in liquid nitrogen, and

stored at −90˚C to −70˚C in a deep freezer (ULT-1186-3SI-A36, Thermo Electron Corporation

Co., Ltd., Tokyo, Japan) until neurotransmitter measurements.

The frozen brain tissue was homogenized in 0.2 mol/L perchloric acid and centrifuged at

20227g and 4˚C for 5 minutes. The following neurotransmitters and metabolites were mea-

sured from the supernatant using the HPLC-ECD system (Eicom Corporation, Kyoto, Japan):

dopamine (DA) and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanil-

lic acid (HVA), serotonin (5-HT) and its metabolite 5-hydroxy indole-3-acetic acid (5-HIAA),
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norepinephrine (NE) and its metabolite 3-methoxyphenyl-4-hydroxy-glycol (MHPG), gluta-

mate, γ-aminobutyric acid (GABA), and acetylcholine as follows.

The levels of monoamines (DA, 5-HT, and NE) and monoamine metabolites (DOPAC,

HVA, 5-HIAA, and MHPG) in the brain tissue were estimated using an HPLC system

equipped with a C18 reverse-phase column (Eicompak SC-5ODS, 150 mm × 3.0 ID, Eicom

Corporation, Kyoto, Japan), guard column (PC-04, Eicom Corporation, Kyoto, Japan), and

column thermostat (ATC-700) set to 25˚C. Molecules were separated by a mixture of 0.1 mol/

L acetic acid–citrate buffer (pH 3.5), methanol, 100 mg/mL sodium 1-octanesulfonate solution,

and 5 mg/mL ethylenediaminetetraacetic acid (EDTA)-2Na solution (820:180:2.2:1) under the

control of a pump system (EP-700) at a flow rate of 0.5 mL/min. For each measurement, 20 μL

of the brain lysate supernatant was injected automatically using an automated sample injector

(M-500). An electrochemical detector (ECD-700) with a graphite electrode (WE-3G), gasket,

and Ag/AgCl reference electrode (RE-500) set to +750 mV was used for quantification.

Glutamate level was measured using an HPLC system equipped with a C18 reverse-phase

column (Eicompak E-GEL, 150 mm × 4.6 ID, Eicom Corporation, Kyoto, Japan), enzyme col-

umn (E-EMZYMPAK, 4 mm × 3.0 ID, Eicom Corporation, Kyoto, Japan), guard column (PC-

03, Eicom Corporation, Kyoto, Japan), and column thermostat (ATC-700) set to 33˚C. A mix-

ture of 60 mM ammonium chloride–ammonia solution (pH 7.2), hexadecyltrimethylammo-

nium bromide, and 5 mg/mL EDTA-2Na solution (1000 mL:250 mg:0.01 mL) was used as the

mobile phase under the control of the pump system (EP-700) at 0.37 mL/min. For each mea-

surement, 20 μL of the brain lysate supernatant was injected automatically and the level mea-

sured using the electrochemical detector (ECD-700) with a platinum electrode (WE-PT),

gasket, and Ag/AgCl reference electrode (RE-500) set at +450 mV.

GABA level was measured using an HPLC system equipped with a C18 reverse-phase col-

umn (Eicompak FA-3ODS, 50 mm × 3.0 ID, Eicom Corporation, Kyoto, Japan), guard column

(PC-03, Eicom Corporation, Kyoto, Japan), and column thermostat (ATC-700) set to 40˚C. A

mixture of 0.1 mol/L phosphate buffer solution (pH 6.0), acetonitrile, and 5 mg/mL EDTA-

2Na solution (500 mL:500 mL:1 mL) was used as the mobile phase under the control of the

pump system (EP-700) at a flow rate of 0.5 mL/min. For each measurement, 20 μL sample was

injected automatically using the automated sample injector (M-500) and the level measured

using the electrochemical detector (ECD-700) with a graphite electrode (WE-GC), gasket, and

Ag/AgCl reference electrode (RE-500) set at +600 mV.

Acetylcholine level was measured using an HPLC system equipped with a C18 reverse-

phase column (Eicompak AC-GEL, 150 mm × 4.6 ID, Eicom Corporation, Kyoto, Japan),

enzyme column (E-EMZYMPAK, 4 mm × 1.0 ID, Eicom Corporation, Kyoto, Japan), guard

column (PC-03, Eicom Corporation, Kyoto, Japan), and column thermostat (ATC-700) set to

33˚C. A mixture of 0.1 mol/L potassium bicarbonate solution, sodium decanesulfonate, and 5

mg/mL EDTA-2Na solution (1000 mL:400 mg:0.01 mL) was used as the mobile phase under

the control of the pump system (EP-700) at a flow rate of 0.15 mL/min. For each measurement,

20 μL sample was injected automatically using the automated sample injector (M-500) and the

level measured by the electrochemical detector (ECD-700) with a platinum electrode

(WE-PT), gasket, and Ag/AgCl reference electrode (RE-500) set at +450 mV.

Tissue preparation and immunohistochemical analysis

The fixed brain tissue was embedded in paraffin using the routine method of our testing facil-

ity and cut into 5-μm thick sections. Every third section was processed for immunohistochem-

ical staining with anti-glial fibrillary acidic protein (GFAP) antibody (×2000, Abcam, ab 7260).

The three to five sections of choice were those closest to dorsal–ventral level interaural 3.20
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mm (for frontal cortex) and -3.80 mm (for the hippocampus, hypothalamus, and amygdala)

according to Paxinos and Watson [20]. Immunostained sections of the frontal cortex and hip-

pocampus were photographed using an optical microscope with a digital camera, and GFAP-

positive cells were counted using WinROOF V7.0 software.

Hematological examination

Plasma was collected by centrifugation of the collected blood (at 4˚C and 2150×g for 15 min-

utes). Plasma insulin-like growth factor 1 (IGF-1) was estimated using the Quantikine1 ELISA

kit (Mouse/Rat IGF-I immunoassay, Cosmo Bio Co., Ltd., Tokyo, Japan) and plasma BDNF

using the RayBio1 Rat BDNF ELISA Kit (Ray Biotech. Inc., Peachtree Corners, GA, U.S.A).

Statistical analysis

Data are presented as the mean ± standard error of the mean (SE). All statistical analyses were

performed using GraphPad Prism version 9.1.2 for Windows (GraphPad Software Inc., San

Diego, CA, U.S.A, www.graphpad.com), according to Prism9 Statistics Guide (https://www.

graphpad.com/guides/prism/latest/statistics/index.htm). All details of statistics have been indi-

cated in figure legends. Because the sample size for each experiment was small, it was not

appropriate to consider that the sample was normally distributed. Therefore, when comparing

two independent groups, the unpaired two-tailed Mann–Whitney U-test was used. For the

analysis of statistical significance in comparisons involving more than two groups, Kruskal–

Wallis with Dunn’s post hoc multiple comparisons test was used. When comparing three or

more matched groups, the Friedman test was used. In all cases, statistical significance was

assessed with a 95% confidence interval; therefore, p< 0.05 was considered significant.

Results

Impaired social behaviors in Mecp2-deficient female rats

We first analyzed the effect of Mecp2 gene deficiency on rat social behaviors at 8, 12, and 23 w.

The frequency and duration of contact behaviors gradually increased with age among female

Mecp2+/+ rats but gradually declined with age among female Mecp2+/− rats, and both parame-

ters were significantly lower compared to female Mecp2+/+ rats by 23 w (Fig 2A and 2B). We

next analyzed self-grooming behavior during the social interaction test as higher frequency

and longer duration are considered endophenotypic hyper-repetitive behaviors of autism spec-

trum disorder [21–23] and male Mecp2 mutant mice [24–26]. The frequencies (Fig 3A) of self-

grooming were significantly reduced and the duration (Fig 3B) tended to be reduced but not

significant in female Mecp2+/− rats. Thus, the deficiency in Mecp2 impaired social behaviors

with reduced self-grooming.

Impaired spontaneous locomotor activity and motor coordination in

Mecp2-deficient female rats

To evaluate the effects of Mecp2 deficiency on motor function, we first analyzed spontaneous

locomotor activity over 2 consecutive 24-periods with 12-h/12-h light/dark cycles at 16 w and

23 w. Spontaneous locomotor activity was significantly or tended to be lower among female

Mecp2+/− rats compared to female Mecp2+/+ rats (Fig 4) during both light and dark phases. In

addition, judging from the locomotor activity counts every 30 minutes, Mecp2 deficiency did

not seem to affect circadian rhythms because female Mecp2+/- rat shows a tendency to decrease

activity over the entire measurement time, not at any specific time point (S1 Fig). To assess

motor coordination, animals were tested on the accelerating rotarod at 26 w. Both rotation

PLOS ONE Behavioral, cognitive, and neurochemical abnormalities of Rett syndrome model rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0258830 October 21, 2021 6 / 20

http://www.graphpad.com/
https://www.graphpad.com/guides/prism/latest/statistics/index.htm
https://www.graphpad.com/guides/prism/latest/statistics/index.htm
https://doi.org/10.1371/journal.pone.0258830


Fig 2. Age-dependent alterations in social behaviors among female Mecp2+/− rats. Female Mecp2+/− rats exhibited progressively less frequent social

interactions with age, while social interactions increased with age among female Mecp2+/+ (wild-type) rats. Bar graphs indicate frequency of contact behaviors

(A) and total duration of interactions (B) during a 20-min social interaction test (mean ± SE; n = 6 rats per genotype). #p< 0.05, and ���p< 0.001 vs. same

genotyped female Mecp2+/− rats at 8 weeks (w) (Friedman test), and the age-matched female Mecp2+/+ rats at 23 w of age (Kruskal–Wallis with Dunn’s post hoc
multiple comparisons test), respectively.

https://doi.org/10.1371/journal.pone.0258830.g002

Fig 3. Age-dependent changes in self-grooming behavior among female Mecp2+/− rats. Both frequency (A) and total time (B) of self-grooming tended to be

lower in female Mecp2+/− rats compared to female Mecp2+/+ rats during the 20-min social interaction test at 8, 12, and 23 w of age (mean ± SE; n = 6 rats per

genotype). �p< 0.05 vs. age-matched female Mecp2+/+ rats (Kruskal–Wallis with Dunn’s post hoc multiple comparisons test).

https://doi.org/10.1371/journal.pone.0258830.g003
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time and speed at which the rat fell off were lower in the Mecp2+/− group compared with the

Mecp2+/+ group (Fig 5A and 5B). Thus, based on the RTT symptoms, both spontaneous and

task-evoked motor activity were impaired by Mecp2+/− deficiency.

Impaired spatial learning and memory in Mecp2-deficient female rats

To examine the effect of Mecp2 deficiency on spatial learning and memory, we compared

escape latency and target memory between female Mecp2+/− and Mecp2+/+ rats in the MWM

starting on 27 w (first acquisition trial). Compared to Mecp2+/+ rats, Mecp2+/− rats

Fig 4. Impaired locomotor activity among female Mecp2+/− rats during both light and dark phases at 16 and 23 weeks of age. Bar graphs are mean ± SE

(n = 6 rats per genotype). �p< 0.05, and ��p< 0.01 vs. age-matched female Mecp2+/+ rats (Kruskal–Wallis with Dunn’s post hoc multiple comparisons test).

https://doi.org/10.1371/journal.pone.0258830.g004

Fig 5. Impaired motor coordination among female Mecp2+/− rats at 26 weeks of age. The animal was placed on a rotarod, which

was accelerated from 4 to 40 rpm. The time at which the animal fell off (A) and the speed at which the animal fell off (B) were

measured. Bar graphs are mean ± SE (n = 6 rats per genotype). �p< 0.05 vs. female Mecp2+/+ rats (unpaired two-tailed Mann–

Whitney U-test).

https://doi.org/10.1371/journal.pone.0258830.g005
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demonstrated significantly longer escape latencies (Fig 6B) and swimming distances (Fig 6C)

over the four acquisition trial days. Further, Mecp2+/− rats made fewer crossing over the for-

mer platform location (Fig 6D) and tended to spend less time in the target (former platform)

quadrant (Fig 6E). Thus, Mecp2 deficiency appears to impair spatial learning and memory.

Reduced acetylcholine but relatively normal biogenic amine levels in

multiple brain regions of Mecp2-deficient rats

Several studies have reported significant downregulation of biogenic amines in the brains of

Mecp2 mouse mutants [27–31]. Surprisingly, however, biogenic amine and its metabolite levels

(Table 1) and the glutamate/GABA ratio (Table 2) were also near normal in most measured

regions of female Mecp2+/− rats. The genotypic differences in the biogenic amine/metabolite

levels were observed in such brain regions as follows: DA and DOPAC levels were comparable

to those in the caudate nucleus and medulla oblongata, although HVA level tended to be lower

in the caudate nucleus and was slightly but significantly lower in the medulla oblongata of

female Mecp2+/− rats. 5-HT level was lower in the thalamus and hypothalamus of female

Mecp2+/− rats (Table 1). By contrast, the relative reductions in acetylcholine level were greater

than those of other transmitters, including biogenic amines: acetylcholine level was substan-

tially lower in the amygdala, hippocampus, caudate nucleus, and medulla oblongata (Table 3).

These results suggest that impaired cholinergic signaling could severely affect the behavioral

abnormalities observed in Mecp2+/− rats. Indeed, cholinergic inputs to the hippocampus are

essential for spatial learning and memory [32, 33].

Changes in GFAP-positive astrocytes and serum IGF

To further examine neurodevelopment abnormalities associated with Mecp2 deficiency, we

examined the number and morphological characteristics of GFAP-positive astrocytes. Astro-

cytes are known to support neuronal function through production and secretion of various

extrinsic factors and by the uptake of neurotransmitters, and the number and morphological

features are associated with neurodevelopmental abnormalities as well as neurodegeneration

and neuroinflammation [34, 35]. Further, abnormal astrocyte morphology has been observed

in RTT patients and models [36, 37]. Comparing with those of female Mecp2+/+ rats (hippo-

campus, Fig 7A, a-c; frontal cortex, Fig 7B, a and b; amygdala, Fig 8A, a and b; hypothalamus,

Fig 8B, a and b; respectively), the somata of GFAP-positive cells were smaller and possessed

less complex processes in the hippocampus (Fig 7A, d-f), frontal cortex (Fig 7B, c and d) and

amygdala (Fig 8A, c and d) but not in the hypothalamus (Fig 8B, c and d) of female Mecp2+/−

rats. In addition, cell numbers were significantly lower in frontal cortex, hippocampus and

amygdala, but not in hypothalamus (Table 4). Finally, we also examined potential neurotro-

phin signaling deficits by measuring serum levels of IGF and BDNF [38]. Both neurotrophic

factors play important roles in survival, differentiation and functional development for brain

neuronal circuits. Compared to female Mecp2+/+ rats, plasma IGF-I was significantly reduced

but plasma BDNF was normal in the female Mecp2+/− rats (Table 5).

Discussion

We demonstrated that Mecp2-deficient female rats (Mecp2+/−) exhibit multiple behavioral

abnormalities resembling those of RTT, including progressively impaired social behavior with

reduced self-grooming (at 8, 12, and 23 w, Figs 2 and 3), reduced spontaneous locomotor

activity (at both 16 and 23 w, Fig 4, and S1 Fig), poor motor coordination (at 26 w, Fig 5), and

deficient spatial cognition (at 27 w, Fig 6). Further, these animals exhibited substantially lower

acetylcholine levels in multiple brain regions compared to wild types (Mecp2+/+), suggesting
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Fig 6. Impaired spatial learning and memory among female Mecp2+/− rats in the Morris water maze test. The Morris water maze test was performed at 27

weeks of age. (A) Images of the Morris water maze indicating the release positions (a–h) and the first to fourth (target) quadrants. Acquisition trials for spatial

learning with a hidden escape platform in quadrant 4 were performed twice per day for 4 days (8 times in total). Escape latency (B) and swimming distance (C)

were measured. Graphs are mean ± standard error of the mean (SE) for the two daily trials (n = 6 rats per genotype). #p< 0.05 and ##p< 0.01 vs. female

Mecp2+/+ rats on the same acquisition day, Friedman test). A probe trial was performed without the hidden platform for the confirmation of spatial memory on

the day after completing acquisition trials. The frequency of entry into the platform area (D) and swimming time in the fourth (target) quadrant (E) were

measured. Bar graphs are mean ± SE (n = 6 rats per genotype). �p< 0.05 vs. female Mecp2+/+ rats (unpaired two-tailed Mann–Whitney U-test).

https://doi.org/10.1371/journal.pone.0258830.g006
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pervasive deficits in cholinergic signaling. The phenotype of this rat model basically recapitu-

lates that of Mecp2-deficient mouse mutants [8, 17, 18] but in addition also suggests the impor-

tance of cholinergic signaling deficits to RTT pathogenesis or symptom expression. In fact, the

regional reductions in acetylcholine were relatively larger than the reductions or elevations in

other neurotransmitters and their metabolites, including the changes in monoamine levels.

The relative stability of monoamine levels is in contrast to predominantly male Mecp2tm 1.1 Bird

exon 3/4 null mutant mice [27–30] and Mecp2tm 1.1 Jae exon 3 null mutant mice [31]. We sug-

gest that these low acetylcholine levels across multiple brain regions may contribute to the

postnatal behavioral abnormalities observed in Mecp2+/− rats and possibly to RTT [4, 5].

Progressive impairments in social behavior and abnormalities in motor

coordination and spatial cognition

Patients with RTT have autistic symptoms such as social behavior abnormalities. While these

symptoms have been reported to improve with age [39], some persist through life [40, 41].

Consistent with findings in female Mecp2tm1.1Bird mice [42], female Mecp2+/− rats demon-

strated a lower frequency of social contact in the open field, and both frequency and duration

of contact decreased with age (from 8 to 23 w). Certain abnormalities in social behavior have

been observed among Mecp2+/− female rats even before 4 w [17, 18], so social deficits appear

Table 2. Glutamate/GABA ratios across brain regions.

Frontal cortex Amygdala Hippocampus Caudate nucleus Thalamus Hypothalamus Medulla oblongata

Mecp2+/+ 7.9 ± 0.9 5.5 ± 0.3 6.5 ± 0.3 6.9 ± 0.4 2.3 ± 0.2 1.4 ± 0.2 4.7 ± 0.3

Mecp2+/− 8.3 ± 0.8 6.1 ± 0.8 6.9 ± 0.4 5.0 ± 0.5 2.5 ± 0.1 1.5 ± 0.1 5.1 ± 0.6

Data expressed as mean ± SE (n = 6 for each genotype). Non significance female Mecp2+/- vs. Mecp2+/+ rats (unpaired two-tailed Mann–Whitney U-test).

https://doi.org/10.1371/journal.pone.0258830.t002

Table 1. Monoamine and monoamine metabolite levels in various brain regions of wild-type (Mecp2+/+) and Mecp2-deficient (Mecp2+/−) female rats.

Levels (ng/g wet weight)

NE MHPG DA DOPAC HVA 5-HT 5-HIAA

Frontal cortex Mecp2+/+ 521.4 ± 69.2 281.9 ± 38.0 67.0 ± 7.5 23.3 ± 2.0 6.9 ± 0.9 193.8 ± 27.2 130.9 ± 16.3

Mecp2+/− 400.2 ± 16.5 321.5 ± 34.5 83.2 ± 4.3 30.6 ± 2.7 6.7 ± 1.6 215.7 ± 23.6 162.0 ± 10.7

Amygdala Mecp2+/+ 645.7 ± 55.9 239.4 ± 24.3 132.4 ± 14.8 23.1 ± 5.1 8.9 ± 2.7 263.9 ± 44.3 170.1 ± 22.7

Mecp2+/− 590.7 ± 79.7 313.2 ± 45.8 103.1 ± 22.8 19.3 ± 2.1 5.8 ± 1.1 231.6 ± 61.3 190.9 ± 33.4

Hippocampus Mecp2+/+ 741.6 ± 59.7 334.4 ± 17.9 23.0 ± 2.1 1.4 ± 0.4 1.1 ± 0.1 200.1 ± 15.9 243.5 ± 10.9

Mecp2+/− 606.7 ± 43.0 368.2 ± 30.9 23.8 ± 1.7 1.6 ± 0.3 0.9 ± 0.0 175.5 ± 8.2 220.8 ± 9.1

Caudate nucleus Mecp2+/+ 21.2 ± 0.9 194.8 ± 17.9 4106.8 ± 267.1 621.4 ± 62.6 183.2 ± 28.0 92.9 ± 8.0 207.5 ± 16.2

Mecp2+/− 31.0 ± 5.2 263.4 ± 51.5 4188.6 ± 472.2 607.6 ± 82.7 125.4 ± 28.8 89.5 ± 14.8 216.0 ± 38.2

Thalamus Mecp2+/+ 858.0 ± 32.8 324.6 ± 21.8 131.3 ± 3.3 16.7 ± 1.3 9.4 ± 1.6 512.0 ± 11.0 447.5 ± 18.0

Mecp2+/− 847.9 ± 56.7 349.0 ± 26.5 114.7 ± 10.4 15.8 ± 1.9 7.3 ± 1.2 423.4 ± 22.5� 422.8 ± 27.9

Hypothalamus Mecp2+/+ 2244.2 ± 160.9 286.9 ± 30.2 234.1 ± 44.0 30.4 ± 5.3 5.3 ± 0.9 439.3 ± 29.6 311.5 ± 27.7

Mecp2+/− 2150.7 ± 286.9 328.5 ± 30.9 192.5 ± 20.7 31.4 ± 5.6 5.2 ± 1.1 322.2 ± 38.7� 266.7 ± 19.5

Medulla oblongata Mecp2+/+ 940.1 ± 37.6 435.0 ± 34.1 39.8 ± 1.4 7.4 ± 0.6 5.6 ± 0.9 432.5 ± 14.2 219.9 ± 11.3

Mecp2+/− 1004.4 ± 35.3 540.3 ± 37.6 38.5 ± 0.9 6.4 ± 0.4 3.2 ± 0.2� 434.3 ± 22.6 225.9 ± 12.7

NE: norepinephrine; MHPG: 3-methoxyphenyl-4-hydroxy-glycol hemipiperazium; DA: dopamine; DOPAC: 3,4-dihydroxyphenylacetic acid; HVA: homovanillic acid;

5-HT: 5-hydroxytryptamine (serotonin); 5-HIAA: 5-hydroxy indole-3-acetic acid.

Data was expressed as mean ± SE (n = 6 samples per region and genotype).

�p < 0.05 female Mecp2+/- vs. female Mecp2+/+ rats by unpaired two-tailed Mann–Whitney U-test.

https://doi.org/10.1371/journal.pone.0258830.t001
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to be among the earliest onset and most severely progressive. However, the influence of pro-

gressive motor dysfunction on social behaviors cannot be excluded, especially at early ages [17,

18] (Figs 2 and 3). For instance, Adcock et al. reported no significant differences in social

behavior between female Mecp2+/− and Mecp2+/+ rats following auditory discrimination train-

ing or skilled forelimb motor training, suggesting that poor perceptual and (or) motor skills

may contribute to social deficits in untrained rats [43]. Further, environmental enrichment

[44, 45], which is known to improve motor function and cognition, can partially mitigate the

developmental symptoms in female Mecp2+/− rats. Despite such limitations, the influence of

training for behavioral test battery and environment and so on, should be considered on the

interpretation of results; the consistency and progressive nature of these social deficits may be

useful for preclinical studies on treatments to improve autistic symptoms among RTT

patients.

Poor spatial memory is also a critical feature of the rat model as severe intellectual disability

is a hallmark of RTT [46, 47]. Although spatial learning and memory impairments are not

included in the diagnostic criteria for RTT [3, 48, 49], spatial learning and memory are critical

for rodent survival and thus impairments are sensitive indicators of brain maldevelopment

and dysfunction, particularly hippocampal dysfunction. Further, hippocampal dysfunction is a

shared cause of cognitive deficits among numerous neurodegenerative and neurodevelopmen-

tal diseases. In this study, we used MWM [50, 51] to demonstrate that spatial learning and

memory are markedly impaired in adult (29W) female Mecp2+/− rats (Fig 6). The effects of

Mecp2 gene mutations on spatial learning in the MWM are known to vary by mutation type,

with impairments observed among Mecp2tm 1.1 Bird mice [43, 44] but not female Mecp2 tm 1.1 Jae

mice [52, 53]. Alternatively, abnormalities in recognition memory have been observed across

many mutations. Since the Mecp2+/− rat is an outbred strain, it may be useful for extracting

phenotypes common across species and genotypes. Although further studies using inbred

strains and rats with different Mecp2 mutations are needed, the differences in hippocampus-

dependent cognition between mouse and rat models may provide important clues to the

underlying neuroanatomical and neurochemical changes. For instance, our current findings

suggest that poor MWM performance may stem from deficient cholinergic signaling in the

hippocampus of female Mecp2+/− rats.

Relationships between cholinergic and behavioral abnormalities

Many neuroanatomical and neurochemical changes have been reported in RTT patients, but

the molecular mechanisms through which MECP2 gene mutations lead to pathological alter-

ations are unknown. Acetylcholine level was significantly reduced in multiple brain regions of

female Mecp2-deficient rats and associated with impaired social behavior, motor activity, and

spatial cognition (Table 3). In particular, the importance of cholinergic neurons to cognitive

function and mood disorders is well established [32, 33]. Clinical studies have shown decreases

in the cholinergic neuron number [54], acetylcholine biosynthetic enzymes choline

Table 3. Acetylcholine levels across brain regions.

Frontal cortex Amygdala Hippocampus Caudate nucleus Thalamus Hypothalamus Medulla oblongata

Mecp2+/+ 480.9 ± 129.6 1066.1 ± 139.1 949.0 ± 86.3 742.1 ± 77.4 771.5 ± 49.0 546.7 ± 80.8 776.1 ± 146.0

Mecp2+/− 333.1 ± 38.5 475.7 ± 85.5�� 649.4 ± 64.6� 478.3 ± 35.6� 675.8 ± 82.8 376.4 ± 81.9 401.8 ± 23.0��

Data expressed as mean ± SE (n = 6 for each genotype).

�p < 0.05 and

��p < 0.01 female Mecp2+/- vs. Mecp2+/+ rats (unpaired two-tailed Mann–Whitney U-test).

https://doi.org/10.1371/journal.pone.0258830.t003
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Fig 7. Changes in the number of glial fibrillary acidic protein (GFAP)-positive cells (astrocytes) in the hippocampus and frontal cortex of a female Mecp2+/

− rat brain. The brain was collected one week after the Morris water maze test and immunostained for the astrocytic marker GFAP. Shown are the morphology

and the number of GFAP-positive cells in the hippocampus (A: a-c: Mecp2+/+, b and c: higher magnification of square in a; d-f, Mecp2+/−, e and f: higher

magnification of square in d), the frontal cortex (B: a and b: Mecp2+/+; c, d: Mecp2+/−; b and d: higher magnification of square in a and c, respectively). Scale

bar = 300 μm; double bars = 100 μm, respectively.

https://doi.org/10.1371/journal.pone.0258830.g007
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acetyltransferase (ChAT) and vesicular acetylcholine transporter activities, and cholinergic

receptor expression [55, 56] in the brains of patients with RTT, and the changes in cholinergic

neuron markers are linked to the severity of symptoms [57, 58]. Abnormalities in the choliner-

gic system have also been reported in Mecp2 mutant mice, including reduced ChAT expres-

sion in basal forebrain and striatum [59, 60] and locus coeruleus (LC) neurons [61]. In

addition, abnormalities in memory performance and social behavior among Mecp2 null

mutants were reversed by administration of acetylcholine receptor agonists and the cholines-

terase inhibitor donepezil [58, 62].

While acetylcholine level was markedly reduced in female Mecp2+/− rats, relative changes in

monoamines, monoamine metabolites, and the glutamic acid/GABA ratio were smaller and

observed in a more limited number of brain regions. This result was unexpected because the

levels of many monoamine metabolites as well as expression levels of rate-limiting biosynthetic

enzymes have been shown to decline with age in male Mecp2tm1.1Bird mice [27, 30]. The result

was also unexpected because the disorders of involuntary movements in RTT (progressive

rigidity, dyskinesia, and dystonia) have been suggested to be associated with the maldevelop-

ment of the dopaminergic nervous system [63–65]. It is possible that some compensatory

mechanism may make it difficult to detect impairment in the monoaminergic nervous system

Fig 8. Number of glial fibrillary acidic protein (GFAP)-positive cells (astrocytes) in the hypothalamus and amygdala of a female Mecp2+/− rat brain.

Shown are the morphology and number of GFAP-positive cells (A. amygdala, B. hypothalamus: a and b: Mecp2+/+; c and d: Mecp2+/−; b and d: higher

magnification of square in a and c, respectively). Scale bar = 300 μm; double bars = 100 μm, respectively.

https://doi.org/10.1371/journal.pone.0258830.g008

Table 4. Number of GFAP-positive cells across brain regions.

Number of GFAP-positive cells/slice

Mecp2+/+ Mecp2+/−

Frontal cortex 1108.2 ± 33.5 609.5 ± 66.0 ��

Hippocampus 476.5 ± 15.4 347.3 ± 11.7 ��

Amygdala 51.8 ± 1.5 49.5 ± 2.3��

Hypothalamus 39.8 ± 4.6 39.0 ± 2.7

Data expressed as mean ± SE (n = 6 for each genotype).

��p < 0.01 female Mecp2+/- vs. Mecp2+/+ rats (unpaired two-tailed Mann–Whitney U-test).

https://doi.org/10.1371/journal.pone.0258830.t004
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because approximately half of the neurons in female Mecp2-mutant mouse brain maintain

normal Mecp2 expression [31, 36]. Recently, Wong et al. reported that the density of dopamine

D2 receptor was significantly decreased in the striatum of Mecp2tm 1.1 Bird null/heterozygous

mutant mice at 7–10 w but not after 15 w. They pointed out that such developmental stage-

dependent alteration could affect the measured density of D2 receptor in the RTT female brain

postmortem [66]. Therefore, we could not exclude the possibility that some behavioral abnor-

malities observed in this study may be influenced by monoaminergic disturbances—particu-

larly at earlier developmental stages. In fact, 5-HT levels in the thalamus and hypothalamus as

well as the level of the dopamine metabolite HVA in the medulla oblongata were significantly

reduced (Table 1), suggesting some abnormalities in the monoaminergic system development.

Self-grooming behavior in Mecp2+/− rats was reported to be equivalent to that of the control

group (at 4 w [18]) and tended to be, or even was, significantly decreased in this study (at 8 w,

12 w, and 23 w, Fig 3). Excessive self-grooming behavior is known to be suppressed by acetyl-

choline antagonists [67–69]. Therefore, progressive impairment in the cholinergic nervous

system is likely to explain the self-grooming behavioral abnormalities. Excessive self-grooming

behavior, however, is a typical symptom of autism model mice [21–23] and has also been

observed in Mecp2 null male mice [24–26]. Monoamine reductions have been found not only

in postmortem brain tissue but also in the cerebrospinal fluid (CSF) of patients with RTT [28,

70]; CSF measures during development should therefore be performed in the rat model also to

clarify the relationship of disturbances in the cholinergic/monoaminergic system and behav-

ioral changes. Such efforts, in future studies, would lead to an understanding of the complex

pathological changes due to mutation in the MECP2 gene, leading to the development of opti-

mal drug treatment strategies.

Value of the Mecp2+/− rat model for RTT diagnosis and treatment

We also observed reduced numbers of astrocytes (GFAP-positive cells) in the frontal cortex

and hippocampus and as well as lower plasma IGF in female Mecp2+/− rats (Fig 7 and Tables 4

and 5), consistent with previous findings of stunted morphological and functional develop-

ment of astrocytes [36, 37, 71] and reduced IGF signaling [38, 72, 73] in both RTT patients

and Mecp2 mutant mice. Astrocytes regulate neuronal functions through production and

secretion of growth factors, nutrients, and cytokines and by the uptake of transmitters and

metabolites [74, 75], while IGF is involved in the differentiation and functional maintenance

of neurons as a blood–brain barrier permeable neurotrophic factor [76, 77]. The identification

of blood or CSF biomarkers associated with specific neuropathological processes may aid in

RTT diagnosis and provide clues to pathogenic mechanisms, and the female Mecp2+/− rat

model may be a powerful tool for this purpose. Candidate biomarkers for pathogenesis may

include metabolites generated by astrocytes [78] and/or molecules associated with IGF signal-

ing [79].

Table 5. Plasma IGF and BDNF levels.

Mecp2+/+ Mecp2+/−

IGF-1 (ng/mL) 1080.2 ± 70.3 769.4 ± 52.4 ��

BDNF (pg/mL) 46.4 ± 5.9 51.9 ± 18.2

Data expressed as mean ± SE [IGF-1: n = 6 and BDNF: n = 2 (n = 4, under detection limit), for each genotype,

respectively)].

��p < 0.01 female Mecp2+/- vs. Mecp2+/+ rats (unpaired two-tailed Mann–Whitney U-test).

https://doi.org/10.1371/journal.pone.0258830.t005
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Supporting information

S1 Fig. Impaired locomotor activity among female Mecp2+/− rats during both light and

dark phases at 16 and 23 weeks of age. A-D: 24-h locomotor activity in female Mecp2+/+

(open symbols) and Mecp2+/- (filled symbols) rats. Data are the average ± SE of data collected

at each half an hour from 16 w (A, B) or 23 w (C, D) old rats over 2 consecutive 24-h periods

(A, C: day1; B, D: day2) (n = 6, for each geneotype). Non significance female Mecp2+/- vs.

Mecp2+/+ rats (Kruskal–Wallis with Dunn’s post hoc multiple comparisons test).

(TIF)
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