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Mesenchymal stem cells (MSCs) contribute to tumor pathogenesis and elicit antitumor
immune responses in tumor microenvironments. Nuclear proteins might be the main
players in these processes. In the current study, combining spatial proteomics with
ingenuity pathway analysis (IPA) in lung non-small cell (NSC) cancer MSCs, we identify a
key nuclear protein regulator, SFPQ (Splicing Factor Proline and Glutamine Rich), which is
overexpressed in lung cancer MSCs and functions to promote MSCs proliferation,
chemical resistance, and invasion. Mechanistically, the knockdown of SFPQ reduces
CD44v6 expression to inhibit lung cancer MSCs stemness, proliferation in vitro, and
metastasis in vivo. The data indicates that SFPQ may be a potential therapeutic target for
limiting growth, chemotherapy resistance, and metastasis of lung cancer.

Keywords: mesenchymal stem cells (MSCs), lung non-small cell (NSC) cancer, nuclear fraction, quantitative
proteomics, ingenuity pathway analysis, SFPQ, CD44v6
INTRODUCTION

Non-small cell (NSC) lung cancer is one of themost common fatal cancers. Understanding the biological
development of NSC lung cancer is critical to improving the treatment efficacy. The progression of lung
cancer is dependent on the interaction between tumor cells and the microenvironment composed of
different cellular components, including mesenchymal stem cells (MSCs). Due to their various
transdifferentiation plasticity, MSCs have recently attracted widespread attention in the development
of various diseases and cancers, however, the roles of MSCs in the tumor microenvironment are
controversial. They may contribute to tumor growth and elicit anti-tumor immune responses in tumor
pathogenesis. The functional mechanisms ofMSCs in themicroenvironment of NSC lung cancer remain
to be clarified (1–5).

We have previously identified intrinsically fibrogenic MSCs as the source of IPF fibrosis in the
human idiopathic pulmonary fibrosis (IPF) lung and found that the gene expression profile of IPF
MSCs is different from MSCs isolated from lung tissue of control patients (6–8). Discovery of genes
or proteins in MSCs from NSC lung cancer and how they contribute to lung cancer progression
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could greatly help in understanding the development of NSC
lung cancer and the discovery of novel therapeutic targets.

Spatial proteomics is an evolving powerful technology where
the objective is to define the proteome in specific subcellular
compartments (9, 10). Quantitative mass spectrometry,
combined with interactomics, is a powerful advantage for this
purpose (11–17). Abnormalities in nuclear proteins and
chromatin organization can alter key cellular processes, lead to
cellular dysfunction, and be hallmarks of many diseases (18–20).
Our proteomics analysis of MSC nuclear fraction,
bioinformatics, and functional analysis with lung cancer MSCs
found that SFPQ (Splicing Factor Proline and Glutamine Rich) is
the top upstream regulator of lung cancer MSC cell activity when
compared with control MPCs. SFPQ has both DNA and RNA-
binding domains involved in a variety of cellular activities,
including RNA transport, cell cycle regulation, DNA damage
and repair, and apoptosis control. Several studies have reported
that SFPQ can increase the growth, metastasis, and chemo-
resistance of cancer cells such as liver cancer, breast cancer,
ovarian cancer, and colorectal cancers, although the precise
mechanism by which SFPQ promotes cancer malignant
phenotypes remains unknown (21–26).

As a transmembrane receptor for hyaluronic acid (HA) and a
co-receptor for many growth factors and cytokines, CD44 is
widely overexpressed in a vast array of tumor cells, including
cancer stem cells, and is a critical regulator for cell-matrix
adhesion, cell growth, EMT, and tumor progression. CD44
frequently shows the heterogeneity of alternative spliced
variants (CD44v), which are expressed primarily on stem cells
and cancer cells, and is thought to contribute to cancer
development and progression (27–31). Among CD44v
isoforms, the aberrant expression of CD44v6 has been found
in many cancers and is believed to be responsible for cancer
progression and metastasis in colorectal cancer, ovarian cancer,
prostate cancer, etc (32–39). Our previous studies have shown
that CD44 expression in MSCs supports the self-renewal of IPF
MSCs. In the current study, we found that CD44v6 expression
was reduced when SFPQ was knocked down in lung cancer
MSCs. Understanding the relationship between SFPQ and CD44
may help to elucidate the pathological mechanism of NSC
lung cancer.
RESULT

Nuclear Protein Profile Analysis
Reveals Protein Markers of
MSCs From NSC Lung Cancer
In previous studies, we used the cell surface markers CD44 and
stage-specific embryonic antigen-4 (SSEA-4) to isolate stem cell-
like cells from IPF. It has been shown that CD44+SSEA-4+
double-positive cells preferentially express some stem cell genes
(28, 29). Therefore, in the current study, CD44 and SSEA-4 were
used as markers for the isolation of MSC cells from the NSC lung
cancer and normal lung cells. We found that CD44 and SSEA4
positive MSCs isolated from normal lung cells and NSC lung
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cancer cells showed the differences in proteomics and ingenuity
pathways related to cell stemness, cell proliferation, and invasion
(Figure 1A). Proteins from the nuclear fraction of those MSCs
were then applied to TMT (Tandem Mass Tag) mass
spectrometry to be identified and quantified. Global proteomic
analyses with MSCs from NSC lung cancer and control group
identified and quantified 6,015 proteins, which present in the
nuclear fraction of all cell groups. Between these cell groups,
1,576 proteins (26% of the total protein) were observed to be
significantly different (Supplementary Table 1).

When using Ingenuity Pathway Analysis to analyze these
nuclear protein data, there are significant differences between
lung cancer MSCs and normal control MSCs in terms of cell
function, upstream regulatory factors, and signal transduction
pathways. Following a published differentiation protocol, the
proteomics data was applied to IPA and signal transduction
pathway was analyzed with IPA. A review of active cell
functions in cancer and normal MSCs indicated the most active
are cell DNA damage, cell differentiation, and proliferation, and
cell movement. Many proteins were expressed differently and
were involved in different functions. For example, ASCC3,
POLR2A, CBX8, SMURF2, AQR, PARP, etc. were related with
cell DNA damage. UBE2M, C1QBP, CAT, TNC, ACTN4, RNF40,
EGFR, CLIC4, etc. were related with cell differentiation. AK4,
PFN1, PIP4K2C, RAC1, EGFR, etc. were related with cell
movement and migration. In IPA analysis, DNA repair and cell
proliferation are higher in cancer MSCs than in normal controls,
while cell apoptosis was lower than controls (Figure 1B;
Supplementary Table 1). In canonical pathway analysis, the
most active pathways in NSC lung cancer-MSCs were oxidative
phosphorylation, cell cycle control, and EIF2 signaling pathways
(Figure 1C; Supplementary Table 2). CEBPB, TP53, FOXO1,
SFPQ, etc. are top upstream regulators, which are more dominant
in NSC lung cancer-MSCs than controls (Supplementary
Table 2) (Figure 1D; Supplementary Table 3). When we
review the details of those regulators, they are all relative to
cancer development (40–46), and SFPQ plays a role in a variety of
biological processes related to cancer progression.

SFPQ Is Highly Expressed in NSC Lung
Cancer-MSCs
Our proteomics and IPA results showed that the SFPQ level in
lung cancer-MSC is well distinguished from the controls and is at
the top of upstream regulators. SFPQ is an important protein
that maintains the function of stem cells throughout the
development process and plays a role in DNA damage, repair,
and the cell cycle regulation (22–24). IIPA found that SFPQ
interacts with many important proteins (Figure 2A), such as
YY1, RTN4, RICTOR, HDACs, BMI1, and HNRNPC, which are
important in the development of cancer (44, 47–50). When we
examined SFPQ expression in NSC lung cancer-MSCs and
control MSCs, we confirmed that the expression of SFPQ in
mRNA and protein level was significantly higher in NSC lung
cancer-MSCs than the controls by RT-PCR and western blot
analysis (Figures 2B, C), indicating the SFPQ may be an
important potential functional biomarker for NSC lung cancer.
May 2022 | Volume 12 | Article 862250
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SFPQ Knocking Down Reduces the
Abnormal Phenotypes of Cell Stemness,
Proliferation, Chemo-Resistance, and
Invasion in NSC Lung Cancer-MSC Cells
SFPQ was previously reported to be involved with DNA repair (21,
23). In order to determine if SFPQ affects DNA damage and repair
in NSC lung cancer -MSCs, we knocked down SFPQ with SFPQ
shRNA, and then we measured the levels of DNA repair marker
PARP1 and DNA damage marker g2HAX. We found that the
expression of PARP1 was higher in lung cancer–MSCs, and the
SFPQ knocking down reduced the levels of PARP1 and g2HAX in
NSC lung cancer -MSCs (Figures 3A, B). These results imply that
SFPQ is an important regulator in DNA damage and repair.
Frontiers in Oncology | www.frontiersin.org 3
SFPQ was reportedly involved in the maintenance of cell
stemness (23). We then observed the effect of SFPQ on the
expression of stemness marker Sox2 and colony-forming ability
in lung cancer-MSCs. When knocked down SFPQ with SFPQ
shRNA in lung cancer MSCs, the number of colonies was
reduced and the expression of stemness marker Sox2 was
inhibited in mRNA and protein levels by RT-PCR and western
blot analysis (Figures 3C, D). These suggest that SFPQ regulates
stemness and self-renewal in lung cancer-MSCs.

SFPQ is also related to cancer cell proliferation (26). When
comparing the proliferation rate between the lung cancer-MSCs
and the control group, the cell growth of lung cancer-MSCs was
38% higher than that of the controls. Ki67 staining with cultured
A

B C D

FIGURE 1 | Proteomics and Ingenuity pathway analysis with lung NSC cancer and control MSC nuclear Profile. (A) Colony formation, cell proliferation and invasion
assay were conducted with the normal and lung cancer MSCs. Lung NSC cancer MSCs have higher capability of proliferation(Left panel), colony forming (middle)
and invasion (Right panel) than that of normal MSC cells. 4 normal lung cell lines (C210, C205, C215, C249) and 4 lung NSC cancer cell lines (Can661, Can522,
Can838, A549) were used in these experiments. All data are shown as mean ± S.E. (n=3 independent experiments). (B–D) Proteins identified from control and lung
NSC cancer MSC nuclear fraction with relative quantification in Proteomics analysis were applied to IPA to generate the biological networks from Lung cancer MSC
and control MSCs dataset. (B) Top cell functions associated with the differentially expressed genes. (C) Top upstream regulators associated with different proteins.
(D) Top canonical pathways associated with different proteins. Cell functions, upstream regulators or pathways identified are represented on the y-axis. The x-axis
corresponds to the –log of the P-value (Fisher’s exact test) and the orange points on each pathway bar represent the ratio of the number of proteins in a given
pathway that meet the cutoff criteria, divided by the total number of proteins that map to that pathway.
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MSCs showed that knocking down SFPQ reduces lung cancer-
MSC proliferation and Ki67 expression (Figures 3E, F). We also
measured cytotoxicity of the Cisplastin in those lung cancer-
MSCs and results showed that MSCs with knocking down SFPQ
were more sensitive to Cisplastin and IC50 dropped from 9.0 µM
in scramble shRNA-transduced cells to 1.9 µM in SFPQ shRNA-
transduced MSCs (Figure 3G). These results suggest that
SFPQ affects cancer MSCs proliferation and resistance to
cancer chemotherapy.

Several studies have indicated that SFPQ is involved in cancer
cell invasion and metastasis (22, 51). In our invasion assay, the
invaded cell rate of cancer MSCs transduced with scramble
shRNA was much higher than that of SFPQ knockdown MSCs
(Figure 3H). NMIIA and MMP2 are considered as a cell
migration marker and invasion marker, respectively. RT-PCR
Frontiers in Oncology | www.frontiersin.org 4
and western blot analysis were performed on the expression of
NMIIA and MMP2 in MSCs. The results showed that the
expression levels of MMP2 and NMIIA were significantly
reduced in SFPQ knockdown NSC lung cancer-MSCs
(Figure 3I). These demonstrate that loss of SFPQ expression
significantly decreased the invasive phenotype of NSC lung
cancer-MSCs.
SFPQ Promotes the Malignant
Phenotypes of NSC Lung Cancer-MSCs
via Regulating CD44v6 Expression
We further investigated possible mechanisms of SFPQ in lung
cancer-MSCs. As a multifunctional nuclear protein and a key
splicing factor, SFPQ plays its important roles in RNA splicing.
A

C

B

FIGURE 2 | The expression level of SFPQ in lung NSC cancer MSC is higher than that in IPF and control MSC. (A) Predicted interactive proteins of SFPQ and their
functional interactions are shown by IPA pathway analysis. Primary cell lines were used to measure SFPQ expression level in MSCs. The MSCs were sorted and
verified from 4 normal lung cell lines (Con210, Con205, Con215, Con249) and 4 lung NSC cancer cell lines, (Can661, Can522, Can838 and A549) as described in
method. (B, C) SFPQ expression was analyzed with (B) RT-PCR in mRNA and (C) western blot analysis in protein levels. Densitometry values were shown in the
right graph. All data are shown as mean ± S.E. (n=3 independent experiments).
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FIGURE 3 | SFPQ is essential for cell stemness, proliferation, and invasion of lung NSC cancer MSCs. Lung NSC cancer MSCs isolated from A549 and Can661 cell
lines were transduced with scramble or SFPQ shRNA and 48 hours later the cells were used for following analysis. (A) PARP1 mRNA level was quantitatively
analyzed with RT-PCR in control and lung NSC cancer MSCs (far left: cell Con210, Con205, Con249; NSC cancer cell lines, Can661, Can838 and A549). (B) DNA
damage marker H2AX was reduced in PARP1 knockdown lung cancer MSCs. gH2AX and PARP1 mRNA level in RT-PCR (left) and protein levels were analyzed with
western blot analysis (middle). Densitometry analysis of WB were shown in the right graph. (C) Colony Formation Assay of lung cancer MSCs. Colony number was
accounted microscopically from 6 random fields/well. Colony number was reduced in lung cancer MSCs transduced with SFPQ shRNA. (D) Sox2 expression in lung
NSC cancer MSCs was quantified with RT-PCR (left panel) and western Blot analysis (middle panel). Densitometry analysis of WB are shown in the right graph.
(E) Cell Proliferation assay. Lung cancer MSC proliferation was inhibited when SFPQ expression was knocked down with SFPQ shRNA. (F) Ki67 levels in lung
cancer MSCs were analyzed with RT-PCR (Left) and western blot analysis (Middle). Densitometry values are shown in the right graph. (G) IC50 assay for Cisplatin.
Dose responses of cisplatin were plotted as the percent of MTS staining vs. untreated cells from three replicate experiments. Lung NSC Cancer MSCs transduced
with SFPQ shRNA were more sensitive to Cisplatin than the control group. (H) Cell invasion assay. Bars represent the total number of invading cells from 6 random
fields/well. Invasive capacity of lung NSC cancer MSCs was decreased after SFPQ knockdown. (I) NMIIA and MMP2 expression in lung NSC cancer MSCs were
quantified with RT-PCR (Left) and western blot analysis (Middle). Densitometry values are shown in the right hand graph. All data are shown as mean ± S.E. (n=3
independent experiments).
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CD44 is one of the proteins affected by RNA splicing, largely
observed in cancer cells (27, 52). We first examined if CD44
isoform expression in lung cancer MSC was different from that of
normal MSCs. The results showed that CD44v6 was higher in
lung cancer MSC cells than that in lung normal cell MSCs
(Figure 4A). Next, we determined whether the expression of
CD44v6 is related to SFPQ. We found the CD44v6 was co-
localized with SFPQ in the nucleus of NSC lung cancer-MSCs
(Figure 4B). Furthermore, CD44v6 expression was reduced in
SFPQ knockdown NSC lung cancer-MSCs compared to the
control group transduced with scramble shRNA. We then
compared the changes in cell function among SFPQ-
knockdown, CD44v6-knockdown, and the lung cancer MSCs
control group. The number of colonies, cell proliferation rate,
and invaded cell number were reduced in lung cancer MSCs with
CD44v6 knockdown and SFPQ knockdown compared to the
control group transduced with scramble shRNA (Figure 4C).
The expression levels of related marker Sox2, Ki67, MMP2, and
NMIIA were also reduced with the loss of the expression of SFPQ
and CD44 v6 (Figures 4D, E). When observing the levels of
DNA repair marker PARP1 and DNA damage marker g2HAX in
lung NSC cancer MSCs, the SFPQ knock down reduced PARP1
and g2HAX levels, but CD44v6 knockdown did not affect PARP1
and g2HAX levels obviously (Figure 4F). These results suggest
that SFPQ affects colony-forming, cell invasion, and proliferation
in NSC lung cancer MSCs via regulation of CD44v6 level and has
additional mechanisms independent of its impact on CD44v6 for
regulating DNA damage and repair.

SFPQ Is Essential for NSC Lung Cancer-
MSCs Distant Metastasis In Vivo
In order to further validate that SFPQ plays a key role in the
development of NSC lung cancer, NSC lung cancer-MSCs
transduced with SFPQ shRNA and scramble shRNA were
intraperitoneal injected (i.p) into the NSG mice, and the different
mouse tissues were harvested 6 weeks later to observe the tumor
formation and distribution. In mice that received NSC lung
cancer-MSCs transduced with scramble shRNA, tumor lumps
were presented in the lung (3/5), liver (3/5), and spleen (2/5),
but no tumors were observed in mice that received SFPQ shRNA-
transduced NSC lung cancer MSCs (Figure 5O). Consistent with
this result, in tissue IHC analysis of mice that received the control
cancer MSCs, large areas of metastatic cancer cells were present in
the lung, liver, and spleen tissues (Figures 5A–D, I). In contrast,
fewer metastatic tumors were observed in the lung, liver, and
spleen tissues in mice that received SFPQ-knockdown lung cancer
MSCs (Figures 5E–H, L). IHC analysis further demonstrated that
there were a large number of human CD44v6 and SFPQ positive
cells in the lung tissues of mice receiving the control NSC lung
cancer-MSCs (Figures 5J, K), while there were no cells expressing
human CD44v6 in the lung tissues of mice receiving SFPQ
knockdown MSCs (Figures 5M, N), indicating SFPQ plays an
important role in cancer metastasis and SFPQ knockdown could
block metastasis. Together, this data indicates that SFPQ plays a
key role in promoting the metastasis of NSC lung cancer-MSCs
in vivo.
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

Understanding the biology of cancers is critical to improving the
treatment of lung cancer. MSCs appear as a key player in tumor
pathogenesis by contributing in tumor microenvironments,
tumor growth, and eliciting antitumor immune responses (4,
53–56). Screening the different proteins between the normal and
cancer MSCs could find key players which are responsible for
cancer initiation and development (9, 10). Spatial proteomics
and TMT are the most powerful proteomics methods to identify
and quantify the hallmarks of many diseases including cancer
(57, 58). Reviewing our proteomics and IPA results, we notice
there are some proteins translocated abnormally into the nucleus
in NSC lung cancer-MSCs compared to the normal control
MSCs. Many of them (such as CD44, thioredoxins) are known
as cytoplasm, plasma membrane proteins, or extracellular
proteins. In the IPA results of NSC lung cancer-MSCs, it was
found that some highly expressed nuclear proteins such as
POLR2A, CBX8, SMURF2, AQR, PARP, TNC, ACTN4,
RNF40, EGFR, CLIC4, are related with DNA damage, cell
proliferation, apoptosis, and migration, which are the
characteristics of cancer stem cells. These nuclear proteins
could be resources for further studies on their relationship
with cancer stem cells. Our proteomic results reveal that
CEBPB, TP53, FOXO1, SFPQ, etc. are the top upstream
regulators, which are more dominated in NSC lung cancer-
MSCs than the control group and there are many other
proteins such as PML, BACH1 and CEBPB, etc that have not
been investigated well in lung cancer. Those proteins are good
candidates for further functional studies of NSC lung
cancer-MSCs.

SFPQ is an important protein in the maintenance of stem cell
development and is also related to cancer proliferation and
metastasis (21–26). Our results suggest that SFPQ is critical in
the stemness, proliferation, chemoresistance, and cell invasion of
lung cancer MSCs. Studies in other laboratories have reported
that SFPQ depletion reduces the proliferation of colorectal
cancer cells and melanoma cells and induces S phase arrest in
the cell cycle. In epithelial ovarian cancer cells, the SFPQ/SRSF2
pathway has been shown to play a key role in regulating
chemotherapy-induced apoptosis (24). These results are
consistent with ours, indicating that SFPQ may play a similar
function in lung NSC cancer-MSCs, but the detailed mechanism
of SFPQ on lung cancer cell proliferation, chemoresistance, and
metastasis needs further studies.

Since SFPQ plays a key role in RNA splicing, which is important
for protein processing (24), we assume it might promote cancer
progression via regulating RNA splicing. CD44 is a protein involved
in cancer initiation and development and highly affected by RNA
splicing, thus we hypothesized that CD44 splicing were regulated by
abnormal expression of SFPQ in lung cancer. Among CD44v
isoforms, CD44v6 plays a major role in cancer progression. The
aberrant expression of CD44v6 has been found in many cancers
such as colorectal cancer, ovarian cancer, and prostate cancer, and is
an independent negative prognostic marker (32–36, 59). In breast
cancer, via binding growth factors produced by tumor
May 2022 | Volume 12 | Article 862250
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FIGURE 4 | SFPQ promotes the malignant phenotype of lung NSC cancer MSCs via regulating CD44v6 expression. (A) Control and lung NSC cancer MSCs
isolated from 4 normal lung cell lines (Con210, Con205, Con215, Con249) and 4 lung NSC cancer cell lines (Can661, Can522, Can838 and A549) were used to
evaluate the CD44v6 levels, Which were quantified with RT-PCR (left, control vs IPF: CD44 p<0.01; CD44v6 p<0.05) and western blot analysis (middle).
Densitometry analysis of WB was shown in the right graph. (B) localizations of SFPQ and CD44v6 were analyzed by the confocal microscopy with anti-SFPQ
(Abcam, USA) and anti-CD44v6 (Abcam, USA) in lung NSC cancer MSCs. CD44v6 is located in both cytoplasm and nucleus. Scale Bar=20µm. (C–E) Lung NSC
cancer MSCs isolated from A549 and Can 661 cell lines were transduced with scramble or SFPQ shRNA or CD44v6 shRNA Lenti virus for 48 hours, and the cells
were used for following analysis: (C) Colony Assay (left), Cell proliferation assay (middle) and Cell invasion assay (right). Colony number, cell proliferation rate and
invaded cells in lung NSC cancer MSCs transduced with SFPQ shRNA or CD44v6 shRNA were reduced when compared with the control group. (D) SFPQ, CD44,
and CD44v6 levels were analyzed by RT-PCR (left) and western blot analysis (middle) on the same cell groups. Densitometry values are shown in the right hand
graph. (E) Expression levels of Sox2, Ki67 and MMP2 were analyzed with RT-PCR (left) and western blot analysis (middle) on the same cell groups. Densitometry
analysis was shown in the graph on the right. (F) mRNA level of PARP1 was analyzed with RT-PCR (left), and western blot analysis (middle) of PARP1 protein and
phosphorylated gH2AX were conducted on the same cell groups. Densitometry analysis was shown in the right graph. All data are shown as mean ± S.E. (n=3
independent experiments).
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microenvironment, CD44v6 through MAPK pathway promotes
cancer cell migration and invasion (32, 34, 60–62). Our results
suggest SFPQ affects CD44 isoform v6 level to regulate cell
stemness, cell invasion, and cell proliferation, but the change of
CD44v6 expression does not affect DNA damage and repair,
therefore SFPQ may affect other proteins in those biological
processes. How SFPQ affects cancer cell stemness and its
upstream regulators are unclear, and mechanism works among
SFPQ, CD44v6, and other proteins in lung cancer MSCs need be
further investigated.

SFPQ has been reported responsible for metastasis in colorectal
cancer and nasopharyngeal carcinoma (22, 51). In vivo study,
knockdown of SFPQ in NSC lung cancer-MSCs reduces their
ability to metastasize distantly, which suggests that SFPQ is a
potential therapeutic target for cancer metastasis, although clear
mechanisms need to be described. In summary, our data shows
that SFPQ not only regulates cancer cell proliferation, stemness,
chemoresistance, invasion, and metastasis, but also serves as an
Frontiers in Oncology | www.frontiersin.org 8
upstream regulator of CD44v6. Therefore, it could be a powerful
therapeutic target for lung NSC cancer.
MATERIALS AND METHODS

Cell Cultures and FACS Sorting
Primary cells for NSC lung cancer and control cases were
harvested from the lung tissue biopsy of adult donors
according to a protocol approved by the University of
Minnesota Institutional Review Board. Culture supplies were
obtained from Thermal Scientific except where noted. MSCs
were enriched, purified, and cultured as described previously (28,
63, 64). For isolation of MSCs, primary mesenchymal cells were
labeled with mouse anti-human SSEA4 antibody conjugated to
Alexa Fluor® 647 (Clone MC-813-70; Catalogue #560796; BD
Biosciences, Franklin Lake, NJ) and mouse anti-human CD44
conjugated to FITC (Clone IM7; Catalogue #103006; BioLegend,
FIGURE 5 | SFPQ is essential for lung NSC cancer MSCs distant metastasis in vivo. NSG mice were used for cancer cell metastasis experiment. (A–N). Serial 4 µm
sections of the tissues from mice receiving A549 MSCs transduced with scrambled-shRNA (A–D, I), scale bar: 200 µm; (J, K) scale bar 50 µm) or SFPQ-shRNA
(E–H, L), scale bar: 200 µm; (M, N) scale bar 50 µm). Representative H&E and Trichrome staining to assess fibrosis and cancer cell nests. IHC with anti-SFPQ
antibody (J, M) and anti-CD44v6 antibody (K, N) was used to assess the distribution of cells expressing SFPQ and CD44v6 in the lung tissues of mice receiving
A549 MSCs transduced with scrambled shRNA or SFPQ shRNA.. (O). The tumor masses in the H&E staining from mouse lung, liver and spleen tissues were
counted and summarized in figure O. Compared with mice received SFPQ-knocked down lung NSC cancer MSCs, the mice in the control group had more
cancerous masses (Student T test, N=5).
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San Diego, CA). Cells were sorted on a FACS Aria Cell Sorter
(BD Biosciences). Cells with SSEA4+ and CD44+ (relative to
mouse IgG3 k isotype control conjugated to Alexa Fluor® 647,
clone J606, catalogue #560803 BD Biosciences and mouse IgM k
isotype control conjugated to FITC, catalogue #402207;
BioLegend, respectively) were collected as we previously
described (63). For IPF MSC isolation, the FACS Sorter gate
was set to collect SSEA4 positive cells at the top 3% of CD44
expression (Supplementary Figure 1). The sorted cells were
verified with MSC positive markers CD73, CD90, CD105 (R & D
System, USA) and negative markers (CD45, CD34, CD11b,
CD79a, HLA-DR).

Mesenchymal Progenitor Cells Culture
Cell suspensions of MSCs were maintained in MSC SFM CTS
(Thermo Scientific/Gibco, Rochford IL, USA) (37°C, 5% CO2).
Medium is changed every day.

Isolation of Cell Nucleus
Primary MSCs were used to isolate cell nucleus with cell
organelles fraction kit (Thermo Scientific, USA) by following
manufacturer’s instruction. Nuclear fractions of lung cancer-
MSCs and control MSCs were isolated by NE-PER Nuclear and
Cytoplasmic Extraction reagents (Thermo Scientific, USA).

Strong Cation Exchange (SCX)
Chromatography, LC-MALDI and 4800 MS/
MS, and Peptide and Protein Identification
Peptide/protein isolation and identification were conducted as
described previously (65, 66). Protein concentrations were
determined in desalted samples with Bradford reagent (Bio-
Rad, Hercules, CA) and samples containing equal amounts of
protein (20 µg) were labeled with MTM reagent (Thermal
Scientific, USA) as directed by the manufacturer’s instructions.
TMT-based MS was used to obtain proteomes from 6 samples.
LC-MS data was acquired for each concatenated fraction using
an Easy-nLC 1000 HPLC (Thermo Scientific Inc., Waltham,
MA) in tandem with a Thermo Fisher Orbitrap Fusion (Thermo
Scientific Inc., Waltham, MA). Peptides were loaded directly
onto a 75 cm x 100-µm internal diameter fused silica PicoTip
Emitter (New Objective, Woburn, MA) packed in-house with
ReproSil-Pur C18-AQ (1.9 µm particle, 120 Å pore; Dr. Maish
GmbH Ammerbuch, Germany). The column was heated to 55°C
and a flow rate of 300 µL/minute was applied during the gradient.
The gradient is as follows: 5-22% Buffer B (A: 0.1% formic acid in
water, B: 0.1% formic acid in acetonitrile) for 45 minutes, 22-35%
B for 25 minutes, and 35-95% B over 10 minutes. The column
was mounted in a nanospray source directly in line with an
Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific,
USA). Spray voltage was 2.1 kV in positive mode and the heated
capillary was maintained at 275°C. The orbital trap was set to
acquire survey mass spectra (380–1580 m/z) with a resolution of
60,000 at 100 m/z with automatic gain control (AGC) 1.0E6, 250-
ms min injection. EASY-IC was selected for internal mass
calibration. The 12 most intense ions (2-7 charged state) from
the full scan were selected for fragmentation by higher-energy
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collisional dissociation with normalized collision energy 35%,
detector settings of 60k resolution, AGC 5E4 ions, 250 ms
maximum injection time, and FT first mass mode fixed at 110
m/z. Dynamic exclusion was set to 40s with a 10 ppm high and
low mass tolerance.

Database Searching for
Protein Identification
The tandem mass spectra were analyzed using Sequest (XCorr
Only) in Proteome Discoverer 2.4.0.305 (Thermo Fisher
Scientific, Waltham, MA). We used the Uniprot human
Universal Proteome (UP000005640) sequence database from
July 12, 2019 merged with the common lab contaminant
protein database from https://www.thegpm.org/crap/, with a
total of 174,234 entries, for the database searching. The
Sequest search parameters included: trypsin enzyme, fragment
ion mass tolerance of 0.1 Da, precursor ion tolerance 20 ppm,
carbamidomethyl cysteine as a fixed modification; pyroglutamic
acid from glutamine, deamidation of asparagine, oxidation of
methionine, N-terminal protein acetylation, TMT 10plex for
lysine, and peptide N-termini as variable modifications.

Relative Protein Quantification
Scaffold Q+ (v4.9, Proteome Software Inc., Portland, OR) was
used for relative quantification of proteins. Peptide identifications
were accepted if they could be established at greater than 89.0%
probability to achieve an FDR less than 1.0% by the Scaffold Local
FDR algorithm. Protein identifications were accepted if they could
be established at greater than 5.0% probability to achieve an FDR
less than 1.0% and contained at least 2 identified peptides. Protein
probabilities were assigned by the Protein Prophet algorithm (67).
Proteins that contained similar peptides and could not be
differentiated based on MS/MS analysis alone were grouped to
satisfy the principles of parsimony. Proteins sharing significant
peptide evidence were grouped into clusters. Channels were
corrected for incomplete isotope incorporation in all samples
according to the algorithm described in i-Tracker (68).
Normalization was performed iteratively (across samples and
spectra) on intensities, as described in Statistical Analysis of
Relative Labeled Mass Spectrometry Data from Complex
Samples Using ANOVA (69). Medians were used for averaging.
Spectra data were log-transformed, pruned of those matched to
multiple proteins, and weighted by an adaptive intensity
weighting algorithm. Of 46,922 spectra in the experiment at the
given thresholds, 36,422 (78%) were included in quantitation.
Differentially expressed proteins were determined by applying
Permutation Test with unadjusted significance level p < 0.05
corrected by the Benjamini-Hochberg method.

Ingenuity Pathway Analysis (IPA)
The lung cancer MSC nuclear proteomic analysis data was
imported to the IPA (http://www.ingenuity.com, 2021, May) for
functional analysis, canonical pathways, and upstream regulator
analysis. Fisher’s exact test was used to calculate a P-value, which
determines the probability that each biological function and/or
disease assigned to the dataset is caused only by chance (70, 71).
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Colony-Forming Efficiency
Single-cell suspension of control and NSC lung cancer -MSCs
were incorporated into methylcellulose gels (100ug/ml,
Stemcell Technologies, Vancouver, Canada) and maintained in
MSC SFM CTS medium (Thermo Scientific/Gibco, Rochford IL,
USA) for 1 week at 37°C, 5% CO2. Enumeration of colonies was
performed microscopically and colony size was quantified by
Image J.

MSCs Proliferation Assay
MSCs proliferation was measured using proliferation kits (Roche,
USA). 2X104 single-cell suspension of Scramble or SFPQ shRNA-
transducedMSCs were cultured in 96 well plate withMTT reagent
for 16 hours and the cells were quantified by following
manufacturer’s instruction. Measurements were quantified with
a SpectraMax M3 microplate reader (Molecular Devices).

Invasion Assay
Invasion assay of MSCs was evaluated with the Transwell
inserts (8 µm pore) in 24-well tissue culture plates (Millipore,
USA). MSCs were cultivated in serum-free DMEM for 24 h,
trypsinized and inoculated into the upper chamber at 2X104

cells/well in 300 µl serum-free DMEM. The lower chamber
contained 500 µl 10% FBS DMEM (positive control),
conditioned DMEM or serum-free DMEM (negative control).
After 16 h at 37°C, MSCs were detected with CyQuant GR Dye.
Cells remaining in the upper chamber were removed with a
release buffer and MSCs that migrated across the insert were
quantified with fluorescence reader.

Cisplatin Resistance Assay
Cisplatin stock was diluted in growth medium to the required
concentrations before each experiment. Cells were seeded into
96-well plates at 1.0x1000 cells/well in 100ml of growth media
and allowed to adhere overnight. The following day media was
removed from wells and replaced with 100µl media containing
the indicated treatment or media alone (baseline) in triplicate
wells. After 96 hours of treatment, 20µl of MTS reagent
(Promega, cat#G3580) was added to each well and incubated
in the dark for 2 hours at 37°C, 5% CO2. Absorbance at 570nm
was collected on a Bio-Tek 200 plate reader. Each experiment
was repeated a minimum of three times.

Plasmids/Constructs
For loss of function assay, SFPQ was knocked down using shRNA
(pGIPZ-SFPQ shRNA; IDT and UMNGenomics center). CD44v6
was knocked down using shRNA (pGIPZ-SFPQ shRNA; Applied
Biological Materials Inc. Canada). Scrambled shRNA was served
as the control. Cells were transduced using a lentiviral vector
containing shRNAs with Polybrene (72).

Western Blot Analysis
Cells were washed twice in cold PBS and lysed in New RIPA lysis
buffer (150 mM NaCl, 50 mMTris pH 8.0, 1 mM EDTA, 1 mM
EGTA, 0.5 % sodium deoxycholate, 0.1 % SDS, and 1 % Triton X-
100) with protease inhibitor cocktail (0.1 M phenylmethylsulfonyl
fluoride, 5 mg/ml leupeptin, 2 mg/ml aprotinin, and 1 mg/ml
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pepstatin). Protein concentrations of whole cell lysates were
determined using the BCA method and equal amounts of each
protein sample (15 mg) were separated on an 8~14 % SDS–
polyacrylamide gel at 80 V. Separated proteins were then
transferred to a polyvinylidene difluoride membrane for 8
minutes on Turbo transfer System (Invitrogen, USA). After
blocking with 5 % skim milk powder for 1 h at RT, the
membrane was incubated with primary antibody for 1 h at RT
or overnight at 4°C. The membrane was washed three times for
15 minutes with 0.05 % PBS-Tween and then incubated for 1 h at
RT with the horseradish peroxidase-conjugated secondary
antibody. After extensive washing with 0.05 % PBS-T, protein
bands were visualized by ECL Plus according to the
manufacturer’s instructions (Cell signaling, USA).

Real-Time Reverse Transcription PCR
Total RNA was extracted with the RNeasy minikit and the cDNA
was synthesized with miScript92 RT kit (Qiagen). PCR reactions
contained 10 ml SYBR@Green SuperMix (Bio-Rad), 900 nM
forward primer, 900 nM reverse primer, and 50 ng cDNA in
20 ml of reaction volume. GAPDH was used as reference,
GAPDH was normalized to 1. Reactions were performed in
a7900 HT Sequence Detector (Applied Biosystems, USA) with a
cycling protocol described before (Applied Biosystems, USA)
(73). The primers were listed as follows:

GAPDH Forward: 5′- TGTTGCCATCAATGACCCCTT-3′
GAPDH Reverse: 5′-CTCCACGACGTACTCAGCG-3′
CD44 Forward: 5′-GCTACCAGAGACCAAGACACA-3′
CD44 Reverse: 5′-GCTCCACCTTCTTGACTCC-3′
CD44v6Forward: 5′-CCAGGCAACTCCTAGTAGTACAACG-3′
CD44v6 Reverse: 5′-CGAATGGGAGTCTTCTTTGGGT-3′
Sox2 Forward: 5′-GGGAAATGGGAGGGGTGAAAAGAGG-3’
Sox2 Reverse: TTGCGTGAGTGTGGATGGGATTGGTG-3’
Ki67 Forward: 5′- TCCTTTGGTGGGCACCTAAGACCTG-3’
Ki67 Reverse: 5′- TGATGGTTGAGGTCGTTCCTTGATG-3’
MMP2 Forward: 5′-CTCAGATCCGTGGTGAGATCT-3′
MMP2 Reverse: 5′-CTTTGGTTCTCCAGCTTCAGG-3′
NMIIA Forward: 5′- AGAGCTCACGTGCCTCAACG-3’
NMIIA Reverse: 5′- TGACCACACAGAACAGGCCTG-3’
SFPQ Forward: 5’-GATCTACAGGGAAAGGCATTGTTG-3’
SFPQ Reverse: 5’-GATACATTGGATTCTTCTGGGCA-3’

RT–PCR products were quantified at the log-linear portion of
the curve using LightCycler analysis software and compared to
an external calibration standard curve.

Mouse Xenograft Model of
Cancer Metastasis
We utilized NOD/SCID/IL2rg/B2M (NSG) mouse model to assess
the metastatic ability of NSC lung cancer-MSCs in vivo (74) Mice
were housed under pathogen-free conditions in the University of
Minnesota Molecular and Cellular Center Isolation Facility. All
mouse studies followed the protocols reviewed and approved by the
University of Minnesota Institutional Animal Care and Use
Committee (IACUC). An average of 10 weeks of age-matched
NSG male and female mice (Jackson Laboratories, USA) were used
for intraperitoneal injections for metastasis studies. One million of
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lung cancer MSCs suspended in 100 mL PBS were IP injected into
the mice with a 30-gauge needle after mice were anesthetized with
5% isoflurane. All experimental mice were monitored until fully
recovered from anesthesia and were subsequently monitored for
disease progression through measuring body weight and behavior
signs (pain and distress, et al.) daily. When significant or
accelerated losses in body weight (>15%) or mice under distress
were detected, mice were euthanized by CO2 and different organ
tissues were harvested. Histological (H&E and trichrome staining)
and immunohistochemical analysis was performed on paraffin
embedded mice tissues. IHC using anti-SFPQ antibody (1:500,
Ab38148, Abcam, USA) and anti-CD44v6 antibody (1:800,
Ab30436, Abcam, USA) to assess the expression of SFPQ and
CD44 expressing cells. Specimens were cover-slipped with
a Prolong Antifade Kit (Invitrogen/Molecular Probes) and stored
overnight at room temperature without light before image analysis.

Statistical Analysis
All experiments were performed at least in triplicate and results
were analyzed using the Student’s t-test or Two-Way ANOVA
(for proteomics method described as above). The criterion for
significance was P<0.05. Numerical data are reported as means ±
standard deviations.
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