Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(1E,4E)-1,5-Bis(thiophen-3-yl)penta-1,4-dien-3-one

S. Shalini, ${ }^{\text {a }}$ C. R. Girija, ${ }^{\text {a }}$ Mukesh M. Jotani, ${ }^{\text {b }} \ddagger$
B. Rajashekhar, ${ }^{\text {c }}$ Nageswar Rao ${ }^{\text {c }}$ and Edward R. T. Tiekink ${ }^{\text {d }}$ *

${ }^{\text {a }}$ Chemistry Research Centre, SSMRV College, 4th T Block, Jayanagar, Bangalore 560 041, India, 'bepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, ${ }^{\text {º Department of Chemistry, Sri Sathya Sai }}$ Institute of Higher Learning, Andhra Pradesh, Ananthapur 515 134, India, and ${ }^{\text {d }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 9 August 2011; accepted 10 August 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$;
R factor $=0.040 ; w R$ factor $=0.121$; data-to-parameter ratio $=19.0$.

The title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{OS}_{2}$, exhibits twists between the central $\mathrm{C}_{3} \mathrm{O}$ and ethene residues $[\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles $=-8.4(3)$ and $\left.11.8(3)^{\circ}\right]$, and between the ethene and adjacent thiophenyl residues $[\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles $=$ $-4.2(3)$ and $\left.10.5(3)^{\circ}\right]$. As a result, the molecule is non-planar, the dihedral angle formed between the terminal thiophenyl groups being $15.45(10)^{\circ}$. The presence of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions involving the bifurcated carbonyl O atom leads to supramolecular arrays in the ac plane. These are linked into a three-dimensional architecture by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving both thiophenyl residues.

Related literature

For the use of chalcones in organic synthesis, see: Nehad et al. (2007); Xu et al. (2001). For the biological activity of chalcones, see: Lambert et al. (2009); Boumendjel et al. (2008). Semi-empirical quantum chemical calculations were performed using MOPAC2009, see: Stewart (2009).

Experimental

Crystal data
$\begin{array}{ll}\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{OS}_{2} & \text { Orthorhombic, } P b c a \\ M_{r}=246.33 & a=11.8908(3) \AA\end{array}$
$M_{r}=246.33$
$a=11.8908$ (3) \AA

$$
\begin{aligned}
& b=7.1807(1) \AA \AA^{b}(6) \AA \\
& c=28.3004(6) \AA^{3} \\
& V=2416.41(9) \AA^{3} \\
& Z=8
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.40 \times 0.20 \times 0.10 \mathrm{~mm}$
Data collection
Bruker SMART APEX CCD
diffractometer
39245 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.121$
$S=1.09$
2760 reflections

2760 independent reflections
2187 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

145 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{S} 1, \mathrm{C} 1-\mathrm{C} 4$ and $\mathrm{S} 2, \mathrm{C} 10-\mathrm{C} 13$ rings, respectively.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {i }}$	0.93	2.49	3.256 (2)	140
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 1^{\text {ii }}$	0.93	2.44	3.355 (2)	169
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cg} 1{ }^{\text {iii }}$	0.93	2.86	3.671 (2)	147
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 1^{\text {iv }}$	0.93	2.97	3.809 (2)	151
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{Cg} 2^{\text {iv }}$	0.93	2.83	3.702 (2)	156
Symmetry codes: $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$	$\begin{aligned} & \quad x+\frac{1}{2}, y,-z+\frac{3}{2} ; \\ & \text { i) } \\ & \text { (}-x-\frac{1}{2}, y-\frac{1}{2}, z . \end{aligned}$		$x+\frac{1}{2},-y-\frac{1}{2},-z+1 ; \quad$ (iii)	

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors are thankful to the Department of Science and Technology (DST) and the Indian Institute of Science, Bangalore, India, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5079).

References

Boumendjel, A., Boccard, J., Carrupt, P. N., Nicolle, E., Blanc, M., Geze, A., Choisnard, L., Wouessidjewe, D., Matera, E.-L. \& Dumontet, C. (2008). J. Med. Chem. 51, 2307-2310.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lambert, D. M., Aichaoui, H., Guenadil, F., Kapanda, C. N., Poupaert, J. H. \& McCurdy, C. R. (2009). Med. Chem. Res. 18, 467-476.
Nehad, A., El-Latif, A., El-Galil, A., Amr, E. \& Ibrahiem, A. A. (2007). Monatsh. Chem. 138, 559-567.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stewart, J. P. (2009). MOPAC2009. Stewart Computational Chemistry. http:// OpenMOPAC.net.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Xu, J., Wang, C. \& Zhang, Q. (2001). Heteroat. Chem. 6, 557-559.

[^0]
supplementary materials

($1 E, 4 E$)-1,5-Bis(thiophen-3-yl)penta-1,4-dien-3-one

S. Shalini, C. R. Girija, M. M. Jotani, B. Rajashekhar, N. Rao and E. R. T. Tiekink

Comment

Chalcones attract interest as important chemical intermediates in the synthesis of various organic compounds containing five- (Nehad et al., 2007) and seven-membered (Xu et al., 2001) heterocycles. They also have a wide spectrum of biological activity, e.g. as anti-oxidants, neuroprotective, anti-miotics, anti-malarials, etc. (Lambert et al., 2009; Boumendjel et al., 2008). In this contribution the synthesis, crystal structure determination and theoretical structure of the title compound, 1,5-bis(3-thiophenyl)-1,4-pentadiene-3-one (I), are reported.

The configuration about each of the ethene $[\mathrm{C} 5=\mathrm{C} 6=1.327$ (2) \AA and $\mathrm{C} 8=\mathrm{C} 9=1.324$ (2) $\AA]$ bonds in (I) is E, Fig. 1. Small but significant twists in the molecule are observed so that there are notable deviations from planarity. In particular, the carbonyl and ethene groups deviate from co-planarity as seen in the values of the $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1$ and $\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 1$ torsion angles of $-8.4(3)$ and $11.8(3)^{\circ}$, respectively. While the S 1 -thiophenyl ring is effectively co-planar with the adjacent ethene bond [C2-C3-C5-C6 is -4.2 (3) ${ }^{\circ}$], the S2-thiophenyl ring is twisted with the $\mathrm{C} 13-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$ torsion angle being $10.5(3)^{\circ}$. Overall, with reference to the central $\mathrm{C}_{3} \mathrm{O}$ atoms, the thiophenyl groups lie to the same side of the molecule, and form a dihedral angle of $15.45(10)^{\circ}$ with each other. The conformation of the crystallographic determined molecule structure was subjected to energy minimization calculations using the MOPAC2009 programme with the Parametrization Model 6 (PM6) approximation together with the restricted Hartree Fock closed-shell wavefunction (Stewart, 2009). The minimizations were terminated at a r.m.s. gradient less than $0.01 \mathrm{~kJ} \mathrm{~mol}^{-1} \AA^{-1}$. The optimized structure showed that the molecule adopts a non-planar conformation in the gas phase with the dihedral angle between the thiophenyl groups being 9.9°. A planar arrangement in (I) is precluded owing to the unfavourable $\mathrm{H} \cdots \mathrm{H}$ interactions that would ensure.

In the crystal packing, the carbonyl-O1 atom plays a prominent role in that it is bifurcated, forming two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, Table 1. These lead to supramolecular layers in the ac plane, Fig. 2. Connections between layers are of the type $\mathrm{C}-\mathrm{H} \cdots \pi$ and involve both thiophenyl rings, Table 1. These interactions result in a three-dimensional architecture, Fig. 3.

Experimental

$\mathrm{NaOH}(5 \mathrm{~g})$ was dissolved in distilled water $(50 \mathrm{ml})$ and cooled to room temperature. The alkali solution and ethanol (50 ml) were transferred to a 250 ml round bottomed flask. The temperature of the solution was maintained at 298 K and stirred vigorously using a magnetic stirrer. One-half of previously prepared mixture of 0.05 moles of thiophene-3-carboxaldehyde and 0.025 moles of acetone was added to the $\mathrm{NaOH}-\mathrm{EtOH}$ solution which was then stirred manually. A flocculent precipitate formed within 2-3 minutes of addition. After 15 minutes, the remaining half of the aldehyde-acetone mixture was added to the round bottomed flask, and the mixture was stirred for a further 45 minutes. The solids were filtered under vacuum and washed repeatedly with ice-cold water to eliminate alkali. The solid was pressed between filter paper and dried at room temperature in a desiccator overnight. The compound was recrystallized from EtOH. Yield 82\%. M. pt. 407-408 K. Colourless needles were obtained by its re-crystallization from hot ethanol solution.

supplementary materials

Refinement

The C-bound H atoms were geometrically placed $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Figures

Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Fig. 2. View of the supramolecular array in the $a c$ plane in (I) mediated by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, shown as orange dashed lines.

Fig. 3. A view in projection down the a axis of the unit-cell contents for (I). The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are shown as orange and purple dashed lines, respectively.

(1E,4E)-1,5-Bis(thiophen-3-yl)penta-1,4-dien-3-one

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{OS}_{2}$
$M_{r}=246.33$

Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=11.8908$ (3) \AA
$b=7.1807$ (1) \AA
$c=28.3004(6) \AA$
$V=2416.41$ (9) \AA^{3}
$Z=8$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube graphite
ω and φ scans
39245 measured reflections
2760 independent reflections
$F(000)=1024$
$D_{\mathrm{x}}=1.354 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 50 reflections
$\theta=5.0-30.0^{\circ}$
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, colorless
$0.40 \times 0.20 \times 0.10 \mathrm{~mm}$

2187 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=1.4^{\circ}$
$h=-15 \rightarrow 15$
$k=-8 \rightarrow 9$
$l=-36 \rightarrow 36$

Refinement

Refinement on F^{2}

Primary atom site location: structure-invariant direct methods

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.121$
$S=1.09$
2760 reflections
145 parameters
0 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0528 P)^{2}+0.9807 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.32$ e \AA^{-3}

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1	$0.38360(5)$	$0.12409(9)$	$0.833684(17)$	$0.0655(2)$
S2	$0.38292(5)$	$-0.15855(9)$	$0.398067(18)$	$0.0658(2)$
O1	$0.17784(11)$	$0.0181(2)$	$0.61498(4)$	$0.0581(4)$
C3	$0.35238(14)$	$0.0577(2)$	$0.74599(6)$	$0.0422(4)$
C5	$0.29957(15)$	$0.0511(2)$	$0.69974(6)$	$0.0441(4)$
H5	0.2294	0.1072	0.6971	0.053^{*}
C8	$0.33643(16)$	$-0.0925(3)$	$0.57374(6)$	$0.0476(4)$
H8	0.4061	-0.1500	0.5770	0.057^{*}
C2	$0.45551(15)$	$-0.0286(3)$	$0.75867(6)$	$0.0516(4)$
H2	0.5002	-0.0944	0.7375	0.062^{*}
C10	$0.34646(15)$	$-0.1238(2)$	$0.48658(6)$	$0.0462(4)$
C6	$0.34072(15)$	$-0.0264(3)$	$0.66085(6)$	$0.0467(4)$
H6	0.4121	-0.0794	0.6617	0.056^{*}
C11	$0.30593(18)$	$-0.0723(3)$	$0.44352(7)$	$0.0569(5)$
H11	0.2427	0.0024	0.4395	0.068^{*}
C9	$0.29452(16)$	$-0.0692(3)$	$0.53080(6)$	$0.0472(4)$
H9	0.2246	-0.0118	0.5288	0.057^{*}
C4	$0.30471(17)$	$0.1448(3)$	$0.78394(6)$	$0.0518(4)$
H4	0.2366	0.2084	0.7827	0.062^{*}
C7	$0.27673(15)$	$-0.0308(2)$	$0.61635(6)$	$0.0447(4)$
C1	$0.48190(17)$	$-0.0050(3)$	$0.80489(7)$	$0.0616(5)$
H1	0.5460	-0.0536	0.8191	0.074^{*}
C13	$0.44370(16)$	$-0.2385(3)$	$0.48152(7)$	$0.0550(5)$

H 13	0.4836	-0.2873	0.5069	0.066^{*}
C12	$0.47191(17)$	$-0.2690(3)$	$0.43574(8)$	$0.0616(5)$
H12	0.5326	-0.3415	0.4261	0.074^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0834(4)$	$0.0759(4)$	$0.0373(3)$	$-0.0050(3)$	$-0.0023(2)$	$0.0014(2)$
S2	$0.0802(4)$	$0.0740(4)$	$0.0433(3)$	$0.0006(3)$	$0.0076(2)$	$-0.0057(2)$
O1	$0.0456(7)$	$0.0847(10)$	$0.0442(7)$	$0.0005(7)$	$-0.0025(5)$	$-0.0016(7)$
C3	$0.0453(9)$	$0.0400(8)$	$0.0411(8)$	$-0.0032(7)$	$-0.0018(7)$	$0.0029(7)$
C5	$0.0441(9)$	$0.0442(9)$	$0.0440(9)$	$-0.0013(7)$	$-0.0045(7)$	$0.0027(7)$
C8	$0.0482(10)$	$0.0500(9)$	$0.0447(9)$	$-0.0014(8)$	$-0.0005(8)$	$-0.0020(8)$
C2	$0.0456(10)$	$0.0615(11)$	$0.0476(10)$	$0.0033(8)$	$-0.0019(8)$	$0.0032(8)$
C10	$0.0496(10)$	$0.0457(9)$	$0.0432(9)$	$-0.0017(8)$	$-0.0014(7)$	$-0.0031(7)$
C6	$0.0463(9)$	$0.0509(10)$	$0.0428(9)$	$-0.0003(8)$	$-0.0030(7)$	$0.0022(7)$
C11	$0.0659(12)$	$0.0604(11)$	$0.0445(10)$	$0.0106(10)$	$-0.0001(9)$	$-0.0047(8)$
C9	$0.0485(9)$	$0.0485(9)$	$0.0447(9)$	$0.0013(8)$	$0.0004(7)$	$-0.0025(7)$
C4	$0.0583(11)$	$0.0530(10)$	$0.0441(9)$	$0.0040(9)$	$-0.0001(8)$	$0.0026(8)$
C7	$0.0455(10)$	$0.0478(9)$	$0.0408(9)$	$-0.0068(8)$	$-0.0012(7)$	$0.0023(7)$
C1	$0.0542(11)$	$0.0799(14)$	$0.0507(11)$	$-0.0015(10)$	$-0.0095(9)$	$0.0139(10)$
C13	$0.0482(10)$	$0.0634(12)$	$0.0535(11)$	$0.0015(9)$	$-0.0024(8)$	$-0.0028(9)$
C12	$0.0508(11)$	$0.0693(13)$	$0.0648(12)$	$0.0012(10)$	$0.0094(9)$	$-0.0111(10)$

Geometric parameters $\left({ }_{A},^{\circ}\right)$

$\mathrm{S} 1-\mathrm{C} 4$	$1.6982(19)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.700(2)$
$\mathrm{S} 2-\mathrm{C} 11$	$1.6960(19)$
$\mathrm{S} 2-\mathrm{C} 12$	$1.699(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.228(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.366(2)$
$\mathrm{C} 3-\mathrm{C} 2$	$1.420(2)$
$\mathrm{C} 3-\mathrm{C} 5$	$1.452(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.327(2)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 8-\mathrm{C} 9$	$1.324(2)$
$\mathrm{C} 8-\mathrm{C} 7$	$1.468(2)$
$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 2-\mathrm{C} 1$	$1.356(3)$
$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 1$	$91.73(9)$
$\mathrm{C} 11-\mathrm{S} 2-\mathrm{C} 12$	$91.76(10)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$111.06(16)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 5$	$122.97(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5$	$125.93(16)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 3$	$127.01(17)$
C6-C5-H5	116.5
C3-C5-H5	116.5

$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 10-\mathrm{C} 11$	$1.362(3)$
$\mathrm{C} 10-\mathrm{C} 13$	$1.427(3)$
$\mathrm{C} 10-\mathrm{C} 9$	$1.450(2)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.472(2)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 11-\mathrm{H} 11$	0.9300
$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{C} 13-\mathrm{C} 12$	$1.356(3)$
$\mathrm{C} 13-\mathrm{H} 13$	0.9300
$\mathrm{C} 12-\mathrm{H} 12$	0.9300
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11$	123.6
S2-C11-H11	123.6
C8-C9-C10	$126.70(17)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	116.7
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	116.7
C3-C4-S1	$112.49(15)$
C3-C4-H4	123.8
S1-C4-H4	123.8

sup-4

supplementary materials

C9-C8-C7	122.26 (17)	O1-C7-C8	121.58 (16)
C9-C8-H8	118.9	O1-C7-C6	121.05 (16)
C7-C8-H8	118.9	C8-C7-C6	117.36 (16)
C1-C2-C3	112.91 (18)	C2- $\mathrm{C} 1-\mathrm{S} 1$	111.80 (15)
C1-C2-H2	123.5	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	124.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	123.5	S1-C1-H1	124.1
C11-C10-C13	110.73 (17)	C12-C13-C10	112.92 (18)
C11-C10-C9	123.24 (17)	C12-C13-H13	123.5
C13-C10-C9	126.03 (17)	C10-C13-H13	123.5
C5-C6-C7	121.90 (17)	C13-C12-S2	111.74 (16)
C5-C6-H6	119.1	C13-C12-H12	124.1
C7-C6-H6	119.1	S2-C12-H12	124.1
C10-C11-S2	112.85 (15)		
C4-C3-C5-C6	178.38 (18)	C5-C3-C4-S1	178.21 (13)
C2-C3-C5-C6	-4.2 (3)	C1-S1-C4-C3	-0.77 (16)
C4-C3-C2-C1	0.2 (2)	C9-C8-C7-O1	11.8 (3)
C5-C3-C2-C1	-177.47 (18)	C9-C8-C7-C6	-167.02 (17)
C3-C5-C6-C7	177.39 (16)	C5-C6-C7-O1	-8.4 (3)
C13-C10-C11-S2	-0.2 (2)	C5-C6-C7-C8	170.49 (17)
C9-C10-C11-S2	-179.36 (15)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	-0.7 (2)
C12-S2-C11-C10	0.47 (17)	$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	0.87 (17)
C7-C8-C9-C10	179.69 (17)	C11-C10-C13-C12	-0.2 (3)
C11-C10-C9-C8	-170.5 (2)	C9-C10-C13-C12	178.87 (18)
C13-C10-C9-C8	10.5 (3)	C10-C13-C12-S2	0.6 (2)
C2-C3-C4-S1	0.5 (2)	C11-S2-C12-C13	-0.61 (18)

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)
Cg 1 and Cg 2 are the centroids of the $\mathrm{S} 1, \mathrm{C} 1-\mathrm{C} 4$ and $\mathrm{S} 2, \mathrm{C} 10-\mathrm{C} 13$ rings, respectively.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H}^{\cdots} A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots 1^{\mathrm{i}}$	0.93	2.49	$3.256(2)$	140
$\mathrm{C} 12 — \mathrm{H} 12 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.93	2.44	$3.355(2)$	169
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Cg}^{\mathrm{iii}}$	0.93	2.86	$3.671(2)$	147
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{Cg}^{\text {iv }}$	0.93	2.97	$3.809(2)$	151
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{Cg}^{\mathrm{iv}}$	0.93	2.83	$3.702(2)$	156

Symmetry codes: (i) $x+1 / 2, y,-z+3 / 2$; (ii) $x+1 / 2,-y-1 / 2,-z+1$; (iii) $-x+1, y-1 / 2,-z+3 / 2$; (iv) $-x-1 / 2, y-1 / 2, z$.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

[^0]: \ddagger Additional correspondence author, e-mail: mmjotani@rediffmail.com.

