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Currently, there is no effective treatment for the marked neuronal loss caused by neurodegenerative diseases, such as Huntington’s
disease (HD) or ischemic stroke. However, recent studies have shown that new neurons are continuously generated by endogenous
neural stem cells in the subventricular zone (SVZ) of the adult mammalian brain, including the human brain. Because some of
these new neurons migrate to the injured striatum and differentiate into mature neurons, such new neurons may be able to replace
degenerated neurons and improve or repair neurological deficits. To establish a neuroregenerative therapy using this endogenous
system, endogenous regulatory mechanisms that can be co-opted for efficient regenerative interventions must be understood, along
with any potential drawbacks. Here, we review current knowledge on the generation of new neurons in the adult brain and discuss
their potential for use in replacing striatal neurons lost to neurodegenerative diseases, including HD, and to ischemic stroke.

1. Introduction

Huntington’s disease (HD) is an adult-onset autosomal-
dominant inherited neurodegenerative disorder with pro-
gressive symptoms that include involuntary movements,
cognitive deficits, and various psychiatric disturbances [1–3].
HD is caused by an expanded CAG repeat in the huntingtin
gene [4–6]. The expanded CAG repeat gives rise to an abnor-
mally long polyglutamine stretch in the mutant huntingtin,
which is toxic to neurons in the striatum and frontal cortex
[7]. The most striking pathophysiology of HD is the pro-
gressive degeneration of projection neurons and heightened
gliosis, leading to a marked atrophy of the striatum and
cerebral cortex [8]. So far, although potential therapeutic
interventions aimed at suppressing the production of the
mutant huntingtin protein and reducing its toxicity have
been aggressively pursued [9–13], no effective treatment for
HD has been developed. Offering hope, however, are findings
by recent studies suggesting that the adult brain’s capacity to
generate new neurons may be a resource for replacing the
affected neurons with newly generated ones.

In the mammalian brain, the subventricular zone (SVZ),
which is a thin cell layer in the lateral walls of lateral
ventricles, continues to produce new neurons during adult-
hood. Postmortem analyses have shown that the SVZ in
HD patients is thickened by increased cell proliferation
[14, 15]. In addition, in an HD transgenic mouse model,
R6/2 mice carrying the human HD gene with long CAG
repeats [16] generate new neurons in the SVZ that migrate
into the affected striatum and differentiate into mature
neurons. Unfortunately, although these alterations may
reflect protective responses provoked by the progressive
degeneration of striatal neurons owing to HD, they are
insufficient to compensate for the pathological process.
Nonetheless, these observations may signal the possibility
of future interventions that promote the production and
migration of new neurons to the damaged striatum and
improve the neurological impairments of this disease and/or
stop its progression. Here, we review current knowledge
on the generation of new neurons (neurogenesis) in the
adult brain and discuss its potential for replacing neurons
damaged by pathological conditions, including HD.
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Figure 1: Neurogenesis in the adult brain. (a) Schematic drawing of adult rodent brain showing the two regions, the SVZ and the DG, where
new neurons are continuously generated. (b) Location and structure of the SVZ. The SVZ consists of four types of cells, ependymal cells
(purple), neural stem cells (blue), transit-amplifying cells (green), and new neurons (red). Neural stem cells directly contact the ventricle
with their apical membrane and extend long basal processes that end on blood vessels within the ventricular wall. The neural stem cell
proliferates slowly to replicate itself (self-renewal) and to generate transit-amplifying cells. Transit-amplifying cells proliferate quickly, and
the progeny differentiate into immature new neurons. (c) Migration of new neurons. New neurons generated in the SVZ migrate into the
OB through the RMS, where they form elongated chain-like cell aggregates, which are surrounded by astrocytic tunnels, called glial tubes.
The new neurons (red) in the RMS secrete Slit1, whose receptor, Robo, is expressed on astrocytes (blue). Through the Slit1-Robo pathway,
the new neurons regulate the morphology of the astrocytes, promoting the formation and maintenance of the glial tubes, which are needed
for the neurons’ rapid and directional migration. (d) Differentiation of new neurons in the OB. New neurons (red) that reach the OB detach
from the chain and migrate radially toward their final destinations, where they differentiate into two types of olfactory interneurons, granule
cells (pink) and periglomerular cells (orange) in different layers, the GCL and GL, respectively. (e) Sagittal section of the RMS and OB
immunostained for the new neuron marker, DCX. The right panel shows a higher-magnification image of the boxed area at left. Whereas
DCX-positive new neurons migrate tangentially in chains, new neurons that migrate radially do so as individuals. Scale bars: left, 500 μm;
right, 200 μm. SVZ, subventricular zone; DG, dentate gyrus; OB, olfactory bulb; RMS, rostral migratory stream; GCL, granule cell layer;
MCL, mitral cell layer; GL, glomerular layer; DCX, doublecortin.

2. Adult Neurogenesis

In the mammalian brain, the production of new neurons
in the SVZ and the subgranular zone (SGZ) in the dentate
gyrus (DG) of the hippocampus continues during adulthood
(Figure 1(a)) [17–21]. Here, we particularly focus on the SVZ

because the new neurons generated there have the notable
ability to migrate fast and for a long distance in the adult
brain.

There are four types of cells in the adult SVZ: neural stem
cells, transit-amplifying cells, newly generated immature
neurons, and ependymal cells (Figure 1(b)) [22]. The neural
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stem cells in the adult SVZ express the astrocyte-specific
protein GFAP, and their morphology is not clearly dis-
tinguishable from nonneurogenic astrocytes in other brain
regions [23, 24]. The SVZ is thought to provide a specific
microenvironment, a “stem cell niche,” that supports the
neural stem cells’ ability to maintain their self-renewing,
multipotent state. The process and regulatory mechanisms
of neurogenesis in the adult brain have been studied in
detail, particularly in rodents. In the SVZ, the stem cells
proliferate slowly and continuously to generate transit-
amplifying cells, which proliferate quickly; their progeny
become immature new neurons. New neurons in the adult
rostral migratory stream (RMS), which leads to the olfac-
tory bulb (OB) at the anterior tip of the telencephalon,
are still proliferative during their migration. Interestingly,
whereas the Wnt-β-catenin signaling is involved in the
proliferation and differentiation of transit-amplifying cells
[25], we found that Diversin, a component of the Wnt
pathway, is important in the proliferation of the new neurons
[26].

It is particularly notable that the new neurons migrat-
ing through the RMS move quite quickly, 100 μm/h in
rodents. This rapid, directional migration is controlled by
signals involved in cytoskeletal modification, directional
guidance, and interactions between the new neurons and
their microenvironment [27–41].

During their migration in the RMS, the new neurons
exhibit a highly polarized morphology with an extended
leading and trailing process, and they form elongated cell
aggregates called “chains,” within which they move over and
past one another (Figure 1(c)). Polysialic acid-neural cell
adhesion molecule (PSA-NCAM) and β1-integrin expressed
on the surface of the new neurons and intracellular Cdk5
signaling are involved in this chain migration [28, 31, 32, 39].
These chains of new neurons move inside tunnels formed
by astrocytic processes, termed “glial tubes” (Figure 1(c))
[33, 35, 36], which assist the migration of the new neurons.
We recently demonstrated that the relationship between
the neurons and glia appears to be interdependent. The
tunnel-like arrangement of astrocytes depends on a diffusible
protein, Slit1, secreted by the new neurons migrating inside
them. (Figure 1(c)) [34]. The neuron-glia interaction may be
particularly important for neuronal migration in the adult
brain, since it includes a large glial population. In addition,
matrix metalloproteases produced by the new neurons,
and extracellular matrix molecules including tenascin-C,
proteoglycans, and the laminins are all involved in the
migration of new neurons in the RMS [28, 33, 37].

New neurons are guided by extracellular cues to migrate
toward the OB, and we found that the directional flow of
cerebrospinal fluid (CSF) in the lateral ventricle plays a
critical role in their rostral migration [41]. CSF flow is cre-
ated by the coordinated beating of the multiple ependymal
cell cilia, and generates concentration gradients of diffusible
proteins, including chemorepellents, secreted into the lateral
ventricle. The concentration gradients guide new neurons
rostrally toward the OB. In addition, new neurons are guided
to the OB by a number of secreted proteins that are produced
in the OB, including prokineticin 2 [38], glial cell-line-

derived neurotrophic factor (GDNF), and brain-derived
neurotrophic factor (BDNF) [29, 40].

New neurons that reach the OB detach from the chain,
and the individual cells migrate radially into the granule cell
layer and the glomerular layer, where they differentiate into
granule cells and periglomerular cells, respectively (Figures
1(d) and 1(e)). The granule cells and periglomerular cells
are GABAergic interneurons, which include a small number
of periglomerular dopaminergic interneurons. Although
the functional significance of these new neurons remains
unclear, the neurogenic capacity of the adult rodent brain
encourages the hope that this ability might be harnessed to
replace neurons destroyed by injury or disease.

The human SVZ and DG also retain some ability to
generate neurons in adulthood [21, 42], but it is difficult
to evaluate human neurogenesis quantitatively, because the
experimental procedures are limited. Studies using non-
human primates and postmortem or surgically dissected
human brain tissues indicate that neurogenesis is much
less active in the human SVZ than in that of rodents [43–
45]. However, new neurons in the human SVZ exhibit a
migratory-like polarized morphology and are distributed
between the SVZ and OB. These morphological and his-
tological characteristics suggest that new neurons might
migrate for long distances in the adult human brain, but this
possibility is still controversial [45–49]. In any case, some of
the mechanisms that regulate neurogenesis are likely to be
common in humans and rodents.

3. Alteration of Adult Neurogenesis under
Pathological Conditions

Neurogenesis in the adult brain is affected by various brain
insults. Following the loss of neurons caused by pathological
conditions including stroke and neurodegenerative diseases,
newly generated neurons appear in and around the damaged
areas.

Studies of grade 3 HD patients reported that the SVZ
becomes 2.8-fold thicker, with a 2.6-fold increase in the
production of new neurons [49, 50]. Although the numbers
of transit-amplifying cells and new neurons in the patients’
SVZ had increased moderately, the most prominent increase
observed was of neural stem cells. In addition, the SVZ of
R6/2 mice, a transgenic model for HD, becomes thicker, with
a marked increase in the proportion and proliferation of
neural stem cells. The self-renewal ability of neural stem cells
dissociated from the R6/2 mouse SVZ gradually increases in
parallel with disease progression. The rostral migration of
new neurons from the SVZ toward the OB is significantly
suppressed in these mice; instead, a large population of new
neurons migrates laterally into the affected striatum where
they differentiate into mature neurons (Figure 2(a)) [16].
The precise mechanism that leads these changes remains
to be elucidated; however, the stem cells in the SVZ may
function to replace degenerated striatal neurons with new
ones, at least in the rodent HD model. In addition, the SVZ-
associated neuroregenerative response observed in HD takes
place in other pathologies, including ischemic stroke and
Parkinson’s disease (PD) [35].
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Table 1: Factors promoting the regeneration of neurons in the striatum. This table lists examples of interventions that could increase
the proliferation of neural stem/progenitor cells in the SVZ, enhance the migration of new neurons into the striatum, and promote their
differentiation/maturation and survival, which could be promising strategies for replacing degenerated neurons with new ones derived from
endogenous neural stem cells of the adult SVZ. SVZ, subventricular zone; RMS, rostral migratory stream; OB, olfactory bulb; TH, tyrosine
hydroxylase; EGF, epidermal growth factor; FGF-2, fibroblast growth factor 2; TGF-α, transforming growth factor α; GDNF, glial cell-derived
neurotrophic factor; SDF-1α, stromal cell-derived factor 1α; BDNF, brain-derived neurotrophic factor; aCSF artificial cerebrospinal fluid;
HI, hypoxic-ischemic cerebral injury; MCAO, middle cerebral artery occlusion; 6-OHDA, 6-hydrodopamine; MPTP, 1-methyl-4-phenyl-
1,2,3,6-tetrahydroxydropyridine; hNSCs, human neural stem cells; ESCs, embryonic stem cells.

Protein Model Technique Function in neurogenesis References

EGF
Intact

Infusion into the lateral ventricle using an
osmotic pump

Proliferation of SVZ progenitors (18-fold
increase compared with saline infusion
group)

[69]

Intact
Infusion into the lateral ventricle using an
osmotic pump

Proliferation of SVZ progenitors (9.5-fold
increase compared with aCSF infusion
group)

[70]

MCAO Overexpression in the SVZ
Proliferation of SVZ progenitors (1.7-fold
increase compared with control vector
treatment group)

[64]

FGF-2
Intact

Infusion into the lateral ventricle using an
osmotic pump

Proliferation of SVZ progenitors (2.4-fold
increase compared with serum albumin
infusion group)

[69]

Intact
Infusion into the lateral ventricle using an
osmotic pump

Proliferation of SVZ progenitors (3.3-fold
increase compared with aCSF infusion
group)

[70]

MCAO Infusion into the cisterna magna
Proliferation of SVZ progenitors (increase
compared with vehicle treatment group)

[65]

Angiopoietin 2 6-OHDA Infusion into the lateral ventricle
Proliferation of SVZ progenitors (increase
compared with BSA treatment group)

[71]

TGF-α
Intact

Infusion into the lateral ventricle using an
osmotic pump

Proliferation of SVZ progenitors (14-fold
increase compared with albmin infusion
group)

[69]

6-OHDA
Infusion into the striatum using an
osmotic pump

Proliferation of SVZ progenitors (increase
compared with PBS infusion group)

[72]

6-OHDA
Infusion into the striatum using an
osmotic pump

Generation of neurons in the striatum
(immature neuron, increase compared with
aCSF infusion group)

[73]

GDNF MCAO
Infusion into the striatum using an
osmotic pump

Generation of neurons in the striatum
(immature neuron, 1.86-fold; mature
neuron, 1.2-fold, increase compared with
PBS treatment group)

[66]

SDF-1α HI
Migration of implanted hNSCs toward the
injured area in ischemic brain slice
(increase)

[57]

Tenascin-R
Intact

Tenascin-R expressing cell implantation
into the striatum

Migration of SVZ new neurons toward the
striatum (4-fold increase compared with the
Tenascin nonexpression cell implanted
group)

[74]

Quinolic
acid

TNR-expressing ESCs implantation into
the striatum

Migration of SVZ new neurons into the
striatum (increase compared with
TNR-nonexpression ESCs implanted group)

[75]

BDNF
Intact

Infusion into the lateral ventricle using an
osmotic pump

Generation of neurons in the OB (increase
compared with PBS infusion group)

[76]

Intact
Infusion into the lateral ventricle using an
osmotic pump

Generation of neurons in the striatum
(increase compared with PBS infusion
group)

[77]

R6/2 Overexpression in the SVZ
Generation of neurons in the striatum
(21-fold increase compared with saline
group)

[68]



Neurology Research International 5

HD

Damaged
area 

SVZ

(a)

SVZ

MCAO 1 week after MCAO 2 to 3 weeks after MCAO

Damaged
area 

(b)

SVZ

StriatumSVZ

Damaged
area 

(c)

SVZ

New neurons

Blood vessels

Damaged area 

(d)

DCX
PECAM1

SVZ Striatum

(e)

Figure 2: Neurogenesis after neuron loss. (a) Spontaneous neuronal regeneration in HD. In parallel with the progressive degeneration of
striatal neurons caused by HD, the production of new neurons in the SVZ increases significantly. These new neurons migrate into the affected
striatum, where only some differentiate into mature neurons. (b) Migration of new neurons toward the damaged area in the mouse MCAO
model. MCAO causes an infarction in the striatum and adjacent parietal cortex. Within a week of the insult, neural stem cells (blue) and
transit-amplifying cells (green) in the SVZ begin to proliferate, and by two or three weeks after MCAO, new neurons (red) migrate and appear
at the border of the damaged area in the striatum. (c) At left, a schematic drawing of the coronal brain section 18 days after MCAO. At right
a section immunostained for DCX. Boxed area is shown at higher magnification at far right. Many new neurons migrate into the ipsilateral
striatum, but not the contralateral striatum. Some new neurons migrate into the striatum in chain-like clusters (far right, arrowheads). Scale
bars: left, 500 μm; right, 200 μm. (d) Schematic drawing of new neurons migrating along blood vessels toward the damaged striatum. (e)
Confocal projection image of new neurons migrating along blood vessels, in a coronal brain section, 18 days after MCAO. The section was
immunostained for DCX (green) and an endothelial cell marker, PECAM-1 (red). Scale bar: 50 μm. MCAO, middle cerebral artery occlusion;
SVZ, subventricular zone; OB, olfactory bulb; DCX, doublecortin; PECAM-1, platelet endothelial cell adhesion molecule-1.

Cerebral ischemia is the most commonly studied model
of neuronal regeneration after extensive neuronal death
(Figure 2(b)). In patients after ischemic stroke, cell prolif-
eration and the production of new neurons in the SVZ are
increased, and immature new neurons appear in the cortex
close to injured areas and in the striatum close to the SVZ
[51–53]. The mechanism and functional significance of the
ischemia-induced neurogenesis have mostly been studied

using rodent models of transient middle cerebral artery
occlusion (MCAO), an experimental model of focal brain
ischemia that causes infarction of the ipsilateral striatum and
adjacent neocortex [54]. The new neurons generated in the
SVZ have a migratory morphology that is directed toward
the infarct area, and frequently form chain-like aggregates
similar to those observed in the RMS (Figure 2(c)). Our
lineage-specific tracing study revealed that the SVZ is almost
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the sole source of migrating new neurons in the striatum
[55]. We also found that new neurons in the striatum
are closely associated with astrocytic processes and migrate
along blood vessels (Figures 2(d) and 2(e)) [55, 56]. Several
proteins produced by the glia and endothelial cells around
the infarct area are implicated in this migration, as are their
receptors and the MMPs expressed by the new neurons [57–
60]. After the migration, most of the new neurons die before
they mature, but some survive to differentiate into functional
neurons with synaptic contacts.

In a rat MCAO model, the number of new striatal neu-
rons increased 31-fold compared with that in sham-operated
animals [54]. Using the immunocytochemical detection of
BrdU, a thymidine analog that is incorporated into DNA
during cell proliferation, and of NeuN, a neuronal marker,
newly generated neurons have been identified in the injured
striatum of several MCAO models. When BrdU (50 mg/kg)
was administered twice a day for 14 days to post-MCAO
rats, the density of BrdU/NeuN-colabeled new neurons in the
striatum 6 weeks after MCAO was more than 700 cells/mm3.
On the other hand, in a nonhuman primate (common
marmoset) MCAO stroke model, BrdU (50 mg/kg) injec-
tions once a day for 18 days after MCAO resulted in a
density of BrdU/NeuN-colabeled new striatal neurons 45
days after MCAO that was less than 3 cells/mm2, that is,
about 50 cells/mm3, considering the thickness of the brain
sections [61]. These reports suggest that the efficiency of
neuronal regeneration is lower in the primate brain, although
a precise comparison is not possible due to the difference
in BrdU-treatment procedures. Moreover, even in the rat
MCAO model, these new neurons could replace only about
0.2% of the dead striatal neurons [54], suggesting that the
spontaneous neuronal regeneration would be insufficient to
replace the functions of the lost neurons in human patients.

Because of the low efficiency of neuronal regeneration,
interventions that promote this process are now the focus
of intense study. Growth factors that promote cell prolifer-
ation, differentiation, migration, and/or survival have been
reported to act on neural stem cells and/or their progenies to
enhance neuronal regeneration [62, 63] (Table 1). In MCAO
model animals, epidermal growth factor (EGF) overexpres-
sion in the SVZ and the intracisternal administration of
fibroblast growth factor 2 (FGF-2) induced increases in the
number of proliferating cells in the SVZ [64, 65] whereas
infusion of GDNF around the infarct area increased the new
neurons in the region by 2-fold [66]. On the other hand,
the stromal cell-derived factor-1α (SDF-1α) CXCR4 signal
has been reported to be involved in neuronal migration
toward the infarct area [57, 59, 67]. Furthermore, in the
R6/2 model mice, BDNF overexpression in the SVZ increased
the production of new striatal neurons by about 21-fold,
which was enhanced by the co-overexpression of Noggin, a
soluble inhibitor of the bone morphogenic proteins (BMPs)
[68]. Some of these growth factors may thus be effective in
reducing the pathology associated with neuronal loss.

Alterations in neurogenesis are also observed in PD, a
more common neurodegenerative disease than HD. PD is a
motor system disorder characterized by the selective degen-
eration of dopaminergic neurons in the substantia nigra pars

compacta, a basal ganglion of the midbrain, that project
into the striatum. Therefore, treatments that increase the
dopaminergic stimulation of the striatum improve neuro-
logical symptoms. In animal models of PD, after chemically
induced dopaminergic denervation of the striatum, new
neurons migrate from the SVZ to the striatum, where they
differentiate into dopaminergic neurons [78–80]. However,
these reports are controversial because other researchers
showed that the new neurons did not efficiently migrate into
the denervated striatum, but into the OB, and that the SVZ-
derived migrating progenitors that did arrive in the striatum
never differentiated into mature dopaminergic neurons [81].

Therefore, even if the SVZ can generate new neurons that
migrate to the striatum in pathological conditions, such as
HD, these neurons may not replace the functionality of the
lost neurons, possibly because they do not mature and differ-
entiate into the needed neuronal types. As mentioned above,
new neurons generated in the SVZ become interneurons
in the OB. In contrast, more than 90% of striatal neurons
are medium-sized spiny projection neurons, and these are
the neurons that are mainly injured in HD and cerebral
ischemia [82–87]. Although some previous studies reported
the regeneration of mature neurons with phenotypes of
striatal projection neurons [54, 88], more recent studies
demonstrated that, after ischemic stroke, the new neurons
that were generated in the SVZ and differentiated in the
striatum almost exclusively became calretinin-expressing
neurons, a major type of olfactory interneuron [89–91].
These findings suggested that the neurons generated in the
SVZ have a limited differentiative capacity for neuronal
regeneration. In considering how to attenuate the progres-
sion of HD, it is particularly important to learn whether and
how we can control the fates of new neurons generated in the
adult brain so that they adopt striatal neuronal phenotypes.
Further studies are needed to address these points.

4. Conclusion

The spontaneous regeneration response of the adult SVZ
to pathological neuronal loss does not lead to the regen-
eration of the lost neurons, because of limitations in the
numbers of neurons generated and the fates they adopt.
However, many studies support the idea that interventions
to increase the production of new neurons in the SVZ and
promote their migration, maturation, and survival in the
damaged area could be beneficial for treating a variety of
neurological deficits, including HD (Table 1). To develop
a new therapeutic strategy for pathological neuronal loss,
including in cases of HD and stroke, using this system, it
will be critical to develop a more precise and comprehensive
understanding of the mechanisms that regulate neurogenesis
in both physiological and pathological conditions.
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[40] G. Paratcha, C. F. Ibáñez, and F. Ledda, “GDNF is a
chemoattractant factor for neuronal precursor cells in
the rostral migratory stream,” Molecular and Cellular
Neuroscience, vol. 31, no. 3, pp. 505–514, 2006.

[41] K. Sawamoto, H. Wichterle, O. Gonzalez-Perez et al., “New
neurons follow the flow of cerebrospinal fluid in the adult
brain,” Science, vol. 311, no. 5761, pp. 629–632, 2006.

[42] P. J. Bernier, J. Vinet, M. Cossette, and A. Parent, “Characteri-
zation of the subventricular zone of the adult human brain:
evidence for the involvement of Bcl-2,” Neuroscience Research,
vol. 37, no. 1, pp. 67–78, 2000.

[43] D. R. Kornack and P. Rakic, “The generation, migration,
and differentiation of olfactory neurons in the adult primate
brain,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 98, no. 8, pp. 4752–4757, 2001.

[44] K. Sawamoto, Y. Hirota, C. Alfaro-Cervello et al., “Cellular
composition and organization of the subventricular zone and
rostral migratory stream in the adult and neonatal common
marmoset brain,” Journal of Comparative Neurology, vol. 519,
no. 4, pp. 690–713, 2011.

[45] H. Sanai, A. D. Tramontin, A. Quiñones-Hinojosa et al.,
“Unique astrocyte ribbon in adult human brain contains
neural stem cells but lacks chain migration,” Nature, vol. 427,
no. 6976, pp. 740–744, 2004.

[46] A. Bédard and A. Parent, “Evidence of newly generated neu-
rons in the human olfactory bulb,” Developmental Brain Re-
search, vol. 151, no. 1-2, pp. 159–168, 2004.

[47] M. A. Curtis, M. Kam, U. Nannmark et al., “Human neu-
roblasts migrate to the olfactory bulb via a lateral ventricular
extension,” Science, vol. 315, no. 5816, pp. 1243–1249,
2007.

[48] N. Sanai, M. S. Berger, J. M. Garcia-Verdugo, and A. Alvarez-
Buylla, “Comment on “human neuroblasts migrate to the
olfactory bulb via a lateral ventricular extension”,” Science, vol.
318, no. 5849, p. 393b, 2007.
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