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Simple Summary: The etiology of cancer is linked to the occurrence of mutations during the
reduplication of genetic material. Mutations leading to low replication fidelity are the culprits of
many hereditary and sporadic cancers. The archetype of the current model of replication fork was
proposed 30 years ago. In the sequel to our 2010 review with the words “years after” in the title
inspired by A. Dumas’s novels, we go over new developments in the DNA replication field and
analyze how they help elucidate the effects of the genetic variants of DNA polymerases on cancer.

Abstract: Recent studies on tumor genomes revealed that mutations in genes of replicative DNA
polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years
have uncovered exciting details about the structure and function of replicative DNA polymerases
and the replication fork organization. The principal idea of participation of different polymerases in
specific transactions at the fork proposed by Morrison and coauthors 30 years ago and later named
“division of labor,” remains standing, with an amendment of the broader role of polymerase δ in the
replication of both the lagging and leading DNA strands. However, cancer-associated mutations
predominantly affect the catalytic subunit of polymerase ε that participates in leading strand DNA
synthesis. We analyze how new findings in the DNA replication field help elucidate the polymerase
variants’ effects on cancer.

Keywords: DNA polymerases; proofreading exonucleases; replication fidelity; mutation rates;
cancer predisposition

1. Prologue: Mutations in DNA Pol Genes and Cancer

Research in the past decade has revealed the lofty role of alterations in replicative DNA polymerases
(pols) in sporadic and hereditary cancer [1,2]. The predisposition to tumorigenesis is attributed to
the low fidelity of DNA replication by inaccurate pol versions [3,4]. Among the replicative B-family
enzymes, pol ε stands out. The alterations in the proofreading exonuclease domain caused by mutations
in the POLE gene (see Table 1 for the nomenclature of DNA polymerase subunits in humans and
in yeast and mouse models) are proven to be causative factors in the etiology of the malignant
transformation (Figure 1), with predominant, but not exclusive prevalence, in colon and endometrial
cancers. The review analyzes how the modern understanding of the replication fork based on the
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synthesis of information gained in model systems and genomics of tumors may explain the peculiarities
of the connection of pols and cancer in humans.

Table 1. Nomenclature of subunits of yeast and human B-family DNA polymerases *.

Polymerase Subunit **

Yeast, S. cerevisiae Human, H. sapiens

Gene Protein,
(Size, kDa) Also Known As: Gene Protein,

(Size, kDa) Also Known As:

primase
-pol α

Small
(catalytic
primase)

PRI1 Pri1
(48) YIR008C PRIM1 PRIM1

(50) p48, p49

Large of
primase PRI2 Pri2

(62) YKL045W PRIM2 PRIM2
(59)

PRIM2A,
p58

Catalytic POL1 Pol1
(167)

CDC17, CRT5,
HPR3,

YNL102W
POLA1 POLA1

(166)
POLA, NSX,

p180

B-subunit POL12 Pol12
(79) YBL035C POLA2 POLA2

(66)
FLJ21662,

p70

pol ε

Catalytic POL2 Pol2
(256)

DUN2,
YNL262W POLE POLE

(262)

FILS,
POLE1,

IMADEI,
CRCS12,

p261

B-subunit DPB2 Dpb2
(78) YPR175W POLE2 POLE2

(60)
DPE2,
p59

Third DPB3 Dpb3
(23) YBR278W POLE3 POLE3

(17)

CHRAC2,
YBL1,
p17

Fourth DPB4 Dpb4
(22) YDR121W POLE4 POLE4

(12)
YHHQ1,

p12

pol δ

Catalytic POL3 Pol3
(125)

CDC2, HPR2,
TEX1,

YDL102W
POLD1 POLD1

(124)

CDC2, MDPL,
CRCS10,

p125

B-subunit POL31 Pol31
(55)

HYS2, HUS2,
SDP5,

YJR006W
POLD2 POLD2

(51) p50

Third POL32 Pol32
(40)

REV5,
YJR043C POLD3 POLD3

(51)

PPP1R128,
KIAA0039,

p66

Fourth - - POLD4 POLD4
(12)

POLDS,
p12

pol ζ

Catalytic REV3 Rev3
(173)

PSO1,
YPL167C REV3L REV3L

(353)

REV3,
HREV3, POLZ

p353

Second REV7 Rev7
(29) YIL139C hREV7 HREV7

(24)

MAD2L2,
p30, REV7,

FANCV,
MAD28,
POLZ2,

B-subunit POL31 Pol31
(55)

HYS2, HUS2,
SDP5 POLD3 POLD3

(50) p50

Fourth POL32 Pol32
(40) REV5 POLD4 POLD4

(12)
PPP1R128,

p66

*—mouse gene symbols are the same as humans but written using different capitalization: example for a gene is
Pole, for a protein—POLe. **—the information on catalytic subunits is highlighted by bold font.
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Figure 1. Most cancer-associated mutations affect the catalytically active half of POLE. Colored bars
represent the main subunits of DNA pols, a catalytic subunit of pol α, POLA1, in light blue; of pol ε,
POLE, in yellow; of pol δ, POLD1, in red; and pol ζ, REV3L, in purple. Note that POLE is a tandem of
active pol (N-terminal half) and inactive pol (C-terminal half) [5,6]. Evolutionarily conserved motifs
characteristic for all exonuclease (exo) domains, are labeled I-V in green and pol domains are labeled
I-VI and KxY in red [5–12]. The order of the motifs along all four proteins is the same, but they occupy
different parts of the whole protein. For example, REV3L has a very long N-terminal part not related to
pols. In POL1, REV3L, and the C-terminal half of POLE, the exonuclease motifs are inactivated during
evolution; they are shown in blue. Inactivated pol motifs in the C-terminal half of POLE are shown in
black. The key for these and other elements of the pol primary structure is in the left upper quarter
of the figure. Rows of circles of different sizes and shades of grey below the catalytic pol subunits
represent the number of missense mutations found in tumors along the protein regions in 100 amino
acid increments. Variants were collected from the cBioPortal database from a curated non-overlapping
collection of tumor genomes (https://www.cbioportal.org/ (cbioportal.org)). A guide explaining the
relation between size and intensity of grey to the number of mutations found in the database in the
100 amino acids interval is on the left lower quarter of the figure.

2. Loss of Replication Fidelity Control Elevates Mutation Rates: Classic Rules

Three steps, base selection, exonucleolytic proofreading, and DNA mismatch repair (MMR),
ensure the high fidelity of DNA replication [13,14]. As determined first in the microorganism’s models,
if one of the three steps is inefficient, mutation rates elevate 10–100-fold. In yeast, low base selectivity
caused by amino acid changes in pol region II (mutation is in POL1 [15], POL3 [16,17], POL2 [18],
and REV3 [19], Figure 1) leads to increases in spontaneous mutation rates. These variants are called
“mutators”. Two pols, pol δ and pol ε, possess a functional exonuclease (exo) domain and correct
replication errors. The substitutions of amino acids responsible for the exo activity (exo dead variants,
exo-) (exo region I, Figure 1) lead to less than a ten-fold mutator effect when happening in Pol2 [20]
and up to a 100-fold mutator effect when happening in Pol3 [21]. It is interesting to note that strains
with equally exo dead pol δ due to changes in exo motif III are only 20-fold mutators [22], suggesting
that the absence of exo activity by itself does not accurately predict the mutator effect. In the case of a
mutant with changes in catalytic residues in motif I in Pol3, checkpoint involvement in the very high
mutation rate has been proposed [23].

Because three fidelity steps occur in a series, a combination of defects in any of the two consecutive
steps results in multiplicative, more than a 1000-fold increase of mutation rates, up to levels that are
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incompatible with the life of haploids: exo− pol ε or pol δ with MMR defect (MMR-) [21]; exo- pol
ε with exo- pol δ [24,25]; relaxed base selectivity of pol α, or pol ε, or pol δ with MMR- [15,26,27];
and low base selectivity of pols ε or δwith their proofreading defects [25,28].

3. The Cornerstone Model of the Replication Fork

In 1990, a Cell paper described the discovery of the third replicative DNA polymerase, pol ε in
yeast [29], and a paper in the Proceeding of the National Academy of U.S.A. characterized pol ε purified
from HeLa cells [30]. While trying to find the answer to why the eukaryotic cell needs three pols
to replicate its DNA, Morrison and coauthors [29] ingeniously proposed that “each of the three
polymerases is specialized for one of the different modes of synthesis required as a replication fork
moves from a specific origin”. The presence of the proofreading exo domain (thus a potential to correct
replication errors as pol δ can do) and the high processivity of pol ε led Morrison and coauthors
to a simple model where pol ε synthesizes leading and pol δ synthesizes the lagging DNA strands
(Figure 2A). Genetic experiments suggested that exos of both pols δ and ε can compete for the same
pool of replication errors, but it was not clear if they can freely correct errors made by another pol [24].
The role of pol α was, together with primase, to synthesize short RNA-DNA hybrids as primers in
leading and lagging DNA synthesis (Figure 2A).

Figure 2. The replication fork seen in 1990 looks almost right in 2020. (A) Schematic representation of
the model proposed by Morrison et al. in 1990 [29]. The bidirectional replication starts at the origin,
and part of the fork moving to the left is not shown. Primase/Pol α synthesizes short RNA/DNA primers
extended by pol ε on the leading strand and by pol δ on the lagging strand. Most of these primers are
excised from the newly synthesized DNA [31]. Proofreading exonucleases associated with pol δ and
ε have access to 3′-DNA ends on both strands and thus compete to proofread replication errors [24].
The mismatch repair step is not shown for simplicity. (B) The current vision of replication fork. Pol ε
does not participate in any transactions on the lagging DNA strand. Pol δ and pol α contribute to the
replication of both strands. It is estimated that only 1.5% of DNA synthesized by primase-pol α is
retained in newly synthesized DNA in humans [32]. Moreover, 80% of the leading strand is synthesized
by pol ε. Pol δ synthesized DNA is at least 18% of the leading [33], and more than 90% of lagging DNA
strands [34,35].

The first evidence in favor of the model came from genetic experiments in yeast when it was
demonstrated that the proofreading exonucleases of pol δ and pol ε correct replication errors on
different DNA strands [36,37]. After almost a 17-year lag in searches for the truth (examples of
different models: [38–41]), this model became generally accepted, driven by the fact that eukaryotic
helicase CMG complexed with pol ε travels along the leading strand, and was backed by genetic
and biochemical data [42,43]. Recently, it has been updated by acknowledging the role of pol δ in
leading strand synthesis [35] (Figure 2B), as we proposed in our previous review on the subject a
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decade ago [44]. It is conceivable that short RNA-DNA fragments synthesized by primase/pol α and
pol δ during the start of lagging strand synthesis serve as a start of leading strands, thus evading
the need for a separate mechanism for pol α/pol ε switch (Figure 2B) [45]. Pol δmight participate in
DNA synthesis at the replication termination zones [46]. Also, Pol δ operates on the leading DNA
strand after replication restart when DNA is damaged [47]. Finally, pol δ proofreads errors not only
on the lagging but also on the leading DNA strands, while pol ε is strictly assigned to the leading
strand (Figure 2B) [25,44,48] and it is unimaginable that after successful proofreading the pol does not
continue DNA synthesis to some extent on the same strand.

We can conclude that the best description of pols’ arrangement at the fork is that three pols
synthesize most genomic DNA, but pol ε is excluded from the lagging DNA strand transactions,
being helicase-associated leading strand DNA polymerase [35]. Therefore, yeast strains without the
catalytic half of Pol2 but with the C-terminal part bound to CMG are viable but have a severe growth
defect [49–52], suggesting that pol δ can completely substitute for the missing helicase-associated
pol, albeit with reduced effectiveness. Indeed, pol δ can synthesize both strands in more natural
circumstances, during viral replication [39] or during break-induced replication [53]. Moreover,
mutations in the cyclin-dependent kinase gene, CDC28, restore near-normal growth characteristics
of strains without the catalytic half of Pol2, implying that cell cycle control machinery can facilely
accommodate for its absence [54]. The connection between CDKs and pol ε has also been demonstrated
for breast cancer cell lines [55].

4. Progress on the Structure-Function of B-Family DNA Polymerases and Organization of the
Replication Fork

The past ten years brought groundbreaking discoveries about B-family DNA pols. Currently,
with the help of X-ray crystallography and the improvement of cryo-EM resolution, we understand the
atomic details of the structures of catalytic cores and whole complexes (Table 1) of yeast and human
(Table 1) primase-pol α [56–58], yeast and human pol δ [59–61], yeast pol ε alone or in complex with
CMG [62–65], yeast pol ζ [66] (Figure 3).

Figure 3. Multi-subunit replicative DNA pols. Artistic representations were made based on crystal
and cryo-EM structures and models of human primase-pol α [58], yeast pol ε [65,67], yeast pol δ [60],
yeast pol ζ [66]. Two latter structures were determined with a truncated third subunit (Table 1), Pol 32,

without the C-terminal part, and thus, this part is missing from our drawings. Fe-S cluster ( )
is present in each of the four pol complexes.
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As we can see from the list, two human pols’ structures can only be modeled based on solved yeast
counterparts, thus making the solution of structures of human pols a high priority. The structures of
yeast and human pols appear to be similar in general features but differ in nuances. For example, human
pol δ has an additional small subunit, p12 (Table 1) hypothesized to regulate pol δ activity during
normal replication versus conditions of DNA damage or replicative stress [61,68]. The catalytic subunit
of human pol ζ has extended the N-terminal part of unknown significance (Table 1, Figures 1 and 3).
Structural and functional studies helped understand transactions in the active site of polymerases and
within the pol complexes. Examples of success are the basis of RNA primer synthesis by primase and
transfer of RNA primer 3′-end into pol α active site to start DNA synthesis; the reasons for the high
fidelity of pols δ and ε; and the ability of pol ζ to extend mismatches or unpaired DNA ends found
opposite lesions.

One exciting finding is that all DNA pols coordinate Fe-S clusters, known regulatory/structural
elements of various proteins [69], alluding to the connection of iron metabolism in mitochondria to
replication and novel opportunities for regulation of pol reactions (Figures 1 and 3) [70,71]. The cluster
can accept or donate electrons and might be involved in sensing the redox potential of cells and DNA
damage [72,73]. The first finding was the detection of the Fe-S cluster in the second subunit of archaeal
and yeast primase [74], which was proven to play a seminal role in the primer synthesis by human
enzyme [58,75–77]. Then, Fe-S clusters were found and verified in C-terminal regions of yeast and
human pols δ and ζ (Figures 1 and 3) and were shown to be necessary for pol function [70,78,79].
The Fe-S cluster in the catalytic subunit of pol εwas found in an unusual location: in the N-terminal
half in the vicinity of pol II motif (Figure 1), structurally characterized, and shown to be necessary for
pol but not exo activity in functional assays [80,81]. A recent study revealed the unique sensitivity of
pol ε to suppression of Fe-S biosynthesis in basal-like breast cancer cell lines [55].

Another sensational discovery was the sharing of subunits between pols δ and ζ [78], Table 1,
Figure 3. For quite an extended period, pol ζ was referred to as a two subunit enzyme consisting
of catalytic Rev3 and accessory subunit Rev7 [82], later found to be one REV3 to two REV7 subunit
complex [66,83]. The two-subunit complex possessed quite low and variable activity [84–86]. The pol δ’s
two accessory subunits appeared to be two additional subunits of pol ζ necessary for the full
activity [78,87–89]. It appeared that the inconsistent activity of former “two-subunit” preps resulted from
uncontrolled traces of a genuine four subunit enzyme [88]. The role of such subunit sharing between the
main replicative pols and pol ζ is under debate. In the original paper describing the discovery, an elegant
mechanism of switches of pol’s catalytic subunits on the already present core of PCNA/POLD2/POLD3
was proposed [78], and the role of Fe-S clusters in CTDs of both pols recognized [90,91], but possible
details of the process have never been elaborated. The argument against the switch mechanism is the
stability of multi-subunit complexes of pols δ and ζ [87,88]. Pols’ architecture with shared subunits
might reflect evolutionary relationships and structural requirements [66].

New findings lead to a better understanding of replication fork in eukaryotes (Figure 4). The CMG
complex bound to the C-terminal part of pol ε travels along on the leading strand. This tight association
explains the participation of pol ε in the leading strand synthesis and exclusion of this pol from synthesis
and proofreading on the lagging strand. In yeast pol, the accessory subunits of Pol2, Dpb3/Dpb4,
may serve as “staples” rigidly connecting the C-terminal part with the active N-terminal part [65].
However, if this rigidity were stable, any transactions by other DNA pols on the leading strand
(for example, when the switch to translesion pol is necessary for DNA damage bypass) would have
been blocked by the N-terminal half of Pol2 stuck with the primer terminus, but this is not the case. Pol δ
proofreads errors made by pol ε [25,44] and pol ζ, with other translesion DNA synthesis pols, operate
on the leading strand to the same extent as on the lagging strand [44,92]. Therefore, there should be a
mechanism of how the active part of the catalytic subunit of pol ε abandons the 3’-end of the nascent
leading strand and yields to other pols.
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Figure 4. Main players at the eukaryotic replication fork. The CMG complex unwinds DNA, primase-Pol
α synthesizes short RNA-DNA primers that are extended by pol δ. On the lagging strand, pol δ synthesis
is halted when the pol reaches the previous Okazaki fragment. On the leading strand, pol ε takes
over and contributes to around 80% of the bulk strand synthesis. Pol δ occasionally proofreads errors
made by pol ε [25] and likely continues synthesis on the leading strand thereafter. The coordination
of the whole process is likely achieved by interactions of primase-pol α with CMG via Ctf4 (yeast)
or AND-1 (humans) [93–96] and some not precisely mapped pol α interactions with pol δ (dashed
black lines) [97–99]. Replication stress caused by unusual DNA structures [100], DNA damage or
defects in replisome [101–104] lead to recruitment and patches of synthesis of the fourth member of the
B-family, pol ζ [105], along with translesion pols and accessory factors to mitigate replication problems,
depending on the nature of replication problems.

The lagging DNA strand is synthesized in relatively short Okazaki fragments whose size coincides
with the nucleosomal repeat (165 bp), as measured under conditions of constrained ligation [106,107].
The evidence from the distribution of inaccurate pol α-dependent mutations in yeast seems to support
this estimate [108]. The need for the ligation of short DNA fragments on the lagging strand led to a
straightforward assumption that nicks and ssDNA regions are more prevalent in this strand. Such a
property of the lagging strand would explain the more efficient operation of MMR on the lagging
strand [109], or preferential damage of the lagging strand by DNA editing cytosine deaminases of the
APOBEC family that act on ssDNA, shown in model systems [110,111] and tumors [112,113]. However,
recent findings suggest that the leading DNA strand is discontinuous as well, and nicks in the yeast’s
leading strand are even more frequent than in the lagging strand [107]. The effect is attributed to
ribonucleotide excision, as seen in bacteria [114,115] and the preferential incorporation and repair of
ribonucleotides in the leading DNA strand in yeast.

5. DNA Polymerase Genes Mutations in Cancer

Defects in MMR for a long time were the only factors in hereditary non-polyposis, endometrial,
and other cancers in Lynch syndrome, connecting replication fidelity to cancer [116–119]. The topic
of MMR role in cancer is extensively discussed and reviewed [116,120–122] and is not touched here.
Recent studies of cancer genomes discovered mutations in genes of the DNA pols of the B family in
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many sporadic and hereditary cancers [1,2] (Figure 1). Mutations affect all four DNA pols (Figure 1).
For most, their functional significance in malignant transformation is unknown. The exception is
mutations that affect the POLE and POLD1 proofreading domains connected to ultra-mutated sporadic
and hereditary tumors (Figure 1) [2,123]. The studies of such mutations revealed paradoxical facts not
fully understandable in the frame of our current view on pols’ roles and properties of at the fork.

The first question is: does the defect of proofreading exonuclease predict a high mutator effect and
a prerequisite for malignant transformation? There is a general correlation between the mutator effect
in the model system and the particular allele’s frequency in cancer [2]. When mutations in POLE were
first discovered, their effect was hastily attributed to pol ε’s inability to correct errors and thus lower
replication fidelity [1,124]. The idea was consistent with the knowledge in model systems because the
complete defect of pol ε exo activity when two catalytic aspartates are changed to alanine increases the
mutation rate in yeast and causes a mutator effect and cancer predisposition in mice (Table 2, row 1).
However, half of the prominent mutations in human cancers do not entirely abolish exo activity but
possess a superior effect on mutation rates and cancer incidence than “golden standard” mutation
leading to change D292A;E294A. Change P286R is the most abundant in sporadic ultra-mutated tumors
(Table 2, row 3). The mutator effect of its yeast homolog is incredibly high; mice homozygous for
the analogous change do not survive while heterozygous mice rapidly develop cancers, although
their types do not recapitulate human cancer types (Table 2, row 3). The pol ε with the change,
however, has residual exo activity. Variants V411L and L424V are found in hypermutated tumors
and predispose for sporadic and hereditary cancers, but corresponding enzymes have a substantial
exo activity (Table 2, rows 8,9). P286R is quite intensively modeled in yeast [125]. The mutator effect
of the change stunningly exceeds the mutator effect of classic exo deficiency caused by allele pol2–4
by almost two orders of magnitude [126]. However, the purified yeast pol εwith the corresponding
P301R change is surprisingly more accurate in vitro than exonuclease defective D292A;E294A enzyme
(though, of course, less accurate than exo+ pol ε), and produced a spectrum of mutations that was not
drastically different [125]. Therefore, the effect could only be seen in vivo. Several hypotheses have
been proposed to explain the paradox. The first idea relies on the “division of labor” between pols ε
and δ. We can hypothesize that the current vision that pol ε synthesizes most of the leading strand is
wrong, and pol ε works mostly near replication origins and later yields to pol δ [44]. If pol ε P301R
synthesizes much more DNA, its mutator effect will exceed the exo defective pol’s mutator effect.
The hypothesis predicts that commonly observed mutation bias, attributed to different properties
of pols ε and δ [127] should disappear with the increase of the distance from the origin. However,
mutation bias at different locations along the replicon was similar in pol2-P2301R and exo- pol2–4
strains, and the idea was dismissed [128]. The second hypothesis is that pol ε P301R somehow prevents
extrinsic proofreading by pol δ [25]. For example, it is possible if the “rigidity” [65] of pol ε P301R is
much greater than other pol variants. This hypothesis is ruled out by the multiplicative increase of
mutation rates in pol2-P301R strains combined with a proofreading defect of pol δ, allele pol3–5DV
(Table 2, last row) [128]. Similarly, pol2-P301R is multiplicative with MMR defects, implying that
MMR is operational to the full extent on DNA synthesized by pol ε P301R. The third, current working
hypothesis, is based on the solved structure of the mutant variant and biochemical finding of the
elevated pol activity of P301R pol. The change alters the structure of Pol2 in such a way that the access
of 3’-end of the nascent DNA chain to the exo site is blocked [129]. As a result, the enzyme does not
waste time partitioning between pol and exo sites [130,131] and robustly extends mismatches during
the synthesis [125]. To reconcile a huge mutator effect with a high in vitro fidelity, we should postulate
that the enzyme’s unique properties manifest only during replication in live cells. It is currently
unclear how similar logic could be applied to other cancer-associated mutations in the exo domain,
whose mutator effect exceeds the mutator effect of pol2–4 (Table 2).

Other explanations of the very high mutator effects of mimics of some cancer-associated mutations
in yeast (e.g., P301R, S474F, and the high mutator effects of other variants, Table 2) could be considered,
but, so far, they have not been tested. The simplest one is that pol ε D290A;E292A is an outlier and
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does not represent a typical pol ε proofreading failure. For example, if, in addition to an exo defect,
the enzyme possesses some other defects masking its involvement in replication. The most powerful
mutator effect (among cancer-associated mutations modeled in yeast) in strains with pol ε P301R is
not understandable because of some proofreading activity compared to, for example, pol ε S474F
(Table 2). If we admit almost the same fidelity of pol ε P301R and pol ε D290A;E292, then the difference
in mutation rates of the strains with these pols means that, at a given site of the genome, the probability
of a fixating replication error is around hundred times more in strains with pol ε P301R than in strains
with the pol ε D290A;E292 variant. This is hard to explain in the frame of a strict “division of labor”
postulate. Perhaps the arrangement of pols at the fork in different cells/genome regions fluctuates,
and P301R change leads to a shift for preferential action of pol ε. The superior activity of pol ε
P301R is consistent with the idea. The selection of yeast variants that relied on the robust growth
of pol exo-variants gave a high proportion of mutants that correspond to mutants found in human
cancers [132].

Another puzzle is why POLE mutations in the exo-coding part overwhelmingly outnumber POLD1
mutations in cancers if these pols both replicate the whole genome with comparable fidelity [133,134],
but on different strands. If pol δ proofreads on both strands, we expect more potent effects of
exo defects in pol δ, precisely what was observed in yeast for classic exo- mutations, causing the
change of the two catalytic residues in Exo I motifs of pols ε and δ (Table 2, compare rows 1 and 10).
It could be argued that mutations affecting amino acids in pol δ analogous to exo- variants in pol
ε could never be found in cancers because they have too strong mutator effects incompatible with
the cells’ functions. High mutation rates lead to catastrophic accumulation of mutations and cell
death [24,28,128]. Consistently, the hypermutator alleles encoding for the analog of P286R change in
homozygous state are inviable in mice, while causing cancer when heterozygous [122,135] (Table 2,
two last columns of row 3). In the critique of this explanation, we can note that different mutations
causing defects of proofreading exo cause different increases of mutation rates (Table 2), and thus it
is not clear why tumors do not accumulate “mild” or “leaky” alleles, moderately affecting the exo
function of pol δ. Another explanation is that cells with severe proofreading defects by pol δ rapidly
turn on mechanisms suppressing mutator effects [136,137]. Some support comes from the mouse
model, where, contrary to the expectations, mutation rates in cells from pol δ exo- mice are lower than
from pol ε exo- [138]. However, the direct comparison is impossible because these mice have different
mutations affecting the exo domain, causing changes in Exo I in POLE but Exo II in POLd1 mice. It is
still a puzzle why pol δ exo- mice accumulate completely different tumors comparing to pol ε exo-

mice (Table 2, last column). Also, we know from yeast, mouse and human cancers that different exo
defects might have very different consequences (Table 2). It is important to note that the spectrum
of accumulated tumors in mice with pol variants differs from human cancers supposedly caused by
similar variants. Thus, the mice model is good for studying the correlation between elevated mutation
rates and tumorigenesis, but does not recapitulate tissue-specific carcinogenesis in humans.

Two cancer-associated changes in the exo domain of POLE deserve special attention, V411L,
and L424V (Table 2, rows 8 and 9). These changes do not abolish exo activity. The change V411L is the
second most frequent mutation in sporadic ultra-mutated cancers, and was even found in hereditary
cancers (rarely), but it is not a mutator when modeled in yeast [2]. A straightforward explanation is
that the structures and properties of the corresponding yeast and human enzymes with the change
are different. The controversy might be resolved when the structure of the human POLE and its
V411L variant will be available. More complicated scenarios predict that the downstream pathways of
mutagenesis affected by the change are different in yeast and humans. L424V is a modest mutator in
yeast, frequently found in cancers with a striking bias to hereditary cancers. The innovative idea is
that the L424V allele might be a hotspot for spontaneous germ-line mutagenesis [2] because of the
site’s location near the base of a putative hairpin, known as a hotspot of Rev1-pol ζ dependent DRIM
mutagenesis [100].
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Table 2. Examples of mutator and carcinogenic potential of POLE and POLD1 exo domain mutations in humans and in model systems.

Pol Amino
Acid Change;

(Exo Activity) §

Pol Region, Sequence,
Conservation.

Changed Amino Acids
Are Underlined.

Amino Acids Different
from Human Protein

Are Highlighted Grey.

Recurrently Found in
Cancers *; Predominant

Types of Cancer [124,139]
and cBioPortal

Mutation
Burden in

Genomes of
Tumors with
the Change **

Sporadic (s) or
Hereditary (h)

Yeast Variants: Mice Variants:

Allele Name;
Amino Acid

Change;
(Exo Activity)

Mutator Effect
Relative to Wild-Type;

(Method of
Determination)

Allele Variant
(Exo Activity)

Mutator Effects Relative
to Wild-Type; (Method of
Determination); Cancer
Incidence; Predominant

Types of Cancer

POLE

D275A;
E277A;

(-)
[122,140]

Exo IHs
PVVLAFDIETTKLPMm
PVVLAFDIETTKLPSc
PVVMAFDIETTKPP

not found, classic model
exo− variant n/a n/a

pol2–4;
D290A;E292A;

(-)
[125]

5;
(Canr) [20]

2.9;
(Canr) [126]

4;
(SNVs /genome)

[141]
~11;

(Lyp-) [141]

PoleD272A;

E274A/D272,E274A(-)
***

10;
(derivatives of BigBlueTM

mice); [138]
>70;

(ouabain resistance) or
170;

thioguanine resistance in
MEFs) [138]

;medium;
intestine adenocarcinoma,

nodal lymphoma [138]

D275V;
(-)

***D275A;
(-)

Exo IHs
PVVLAFDIETTKLPMm
PVVLAFDIETTKLPSc
PVVMAFDIETTKPP

+;
endometrial, breast,

glioblastoma, colorectal,
lung

med s pol2-D290V;
(-)

2.3;
(Canr)
[133]
~9;

(Lyp-)
[141]

P286R;
(−/+)
[122]

Exo IHs
FDIETTKLPLKFPDMm
FDIETTKLPLKFPDSc
FDIETTKPPLKFPD

+++;
colon, endometrial,

ovarian, high grade glyoma
pancreatic, breast, prostate,
bladder and other cancers

ultra-high s
P301R;

(-/+)
[125]

150;
(Canr)

[126]~200;
(Lyp-) [141]

63;
(SNVs/

genome)
[141]

PoleP286R/+

(P286R;
nd

~40;
(NGS #) [135]

>100;
(NGS) [122];

high;
thymic lymphomas, lung

adenocarcinomas,
angiosarcoma [135]; thymic

lymphomas, splenic
lymphomas [122]
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Table 2. Cont.

Pol Amino
Acid Change;

(Exo Activity) §

Pol Region, Sequence,
Conservation.

Changed Amino Acids
Are Underlined.

Amino Acids Different
from Human Protein

Are Highlighted Grey.

Recurrently Found in
Cancers *; Predominant

Types of Cancer [124,133]
and cBioPortal

Mutation
Burden in

Genomes of
Tumors with
the Change **

Sporadic (s) or
Hereditary (h)

Yeast Variants: Mice Variants:

Allele Name;
Amino Acid

Change;
(Exo Activity)

Mutator Effect
Relative to Wild-Type;

(Method of
Determination)

Allele Variant
(Exo Activity)

Mutator Effects
Relative to Wild-Type;

(Method of
Determination);

Cancer Incidence;
Predominant Types

of Cancer

P286H;
(−/+)

[122,142]
P286L

Same region, but
different amino
acid change

+;
colon, glioblastoma,

stomach
ultra-high s P301H;

nd

13;
(Canr)
[133]

S459F;
(-)

[122,142]

ExoIIIHs
TYSVSDAVATYYMm
TYSVSDAVATYYSc

EYSVSDAVATYY

++;
colon, endometrial,

glioblastoma, duodenal
high s S474F;

nd

30;
(Canr)
[133]

PoleS459F/S459F

(S459F);
nd

>220;
(NGS);
high;

thymic/splenic
lymphomas [122]

F367S;
(+/−)

[122,142]

Exo IIHs
MVTYNGDFFDWPFMm
MVTYNGDFFDWPFSc
ISTFNGDFFDWPF

+;
endometrial, colon ultra-high s F382S;

nd

17;
(Canr)
[133]

P436R;
nd

Exo VHs
AKLGYDPVELDPMm
AKLGYDPVELDPSc
AKLGYNPIELDP

+;
endometrial, colorectal ultra-high s P451R;

nd

5.2;
(Canr)
[133]

V411L;
(+/-)
[142]

Hs CLRWVKRDSYLPVMm
CLRWVKRDSYLPVSc
CFRWVKRDSYLPQ

+++;
+;

endometrial, colorectal,
glioblastoma, kidney

cancer, ovarian
medulloblastoma, urinary

tract, cervix, stomach

ultra-high s
h

V426L;
nd

1.2;
(Canr)
[133]
~5;

(Lyp-) [141]
1.8;

(SNVs/
genome)

[141]

L424V;
(+/-)

[122,142]

Exo IVHs
LPVGSHNLKAAAKMm
LPVGSHNLKAAAKSc
LPQGSQGLKAVTQ

+;
+++;

colorectal, endometrial,
lung, breast, glyoblastoma,

duodenal [122]

med s
h

L439V;
nd

5.2;
(Canr)
[133]
~33;

(Lyp-) [141]
7;

(SNVs/
genome)

[141]
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Table 2. Cont.

Pol Amino
Acid Change;

(Exo Activity) §

Pol Region, Sequence,
Conservation.

Changed Amino Acids
Are Underlined.

Amino Acids Different
from Human Protein

Are Highlighted Grey.

Recurrently Found in
Cancers *; Predominant

Types of Cancer [124,133]
and cBioPortal

Mutation
Burden in

Genomes of
Tumors with
the Change **

Sporadic (s) or
Hereditary (h)

Yeast Variants: Mice Variants:

Allele Name;
Amino Acid

Change;
(Exo Activity)

Mutator Effect
Relative to Wild-Type;

(Method of
Determination)

Allele Variant
(Exo Activity)

Mutator Effects
Relative to Wild-Type;

(Method of
Determination);

Cancer Incidence;
Predominant Types

of Cancer

POLD1

D316A;
E318A;

(-)

Exo IHs
LRVLSFDIECAGRKMm
LRVLSFDIECAGRKSc
LRIMSFDIECAGRI

Double change not found,
but
+;

D316N or D316G;
endometrial

high s

pol3–01;
D321A;E323A;

(+)
[22]

130;
(FOAr)

[21]
110;

(Canr)
[22]

D402A;
(-)

[143]

ExoIIHs
TGYNIQNFDLPYLIMm
TGYNIQNFDLPYLISc
TGYNTTNFDIPYLL

not found in cBio, but other
changes of the nearby
amino acids in motif

+;
breast adeno carcinoma,

melanoma

Q399H
med

P404Shigh
s

pol3–4DA;
D407A;

(-)
[144]

pol3–4DV;
D407V;nd

55;
(Canr)

[22]
76;

(Canr)
[22]

Pold1D400A/D400A

(-)[145]

3;
(derivatives of

BigBlueTM mice) [138]
;>10;

(ouabain resistance in
MEFs) [145]

6;
(fibrosarcoma cell line)

[145]
>50;

(ouabain or
thioguanine resistance

in MEFs) [138]
;high;

thymic lymphomas, tail
skin carcinoma, lung

adenocarcinoma

D515A;
(-)

[146]

Exo IIIHs
AVYCLKDAYLPLRLMm
AVYCLKDAFLPLRLSc
AVYCLKDAYLPLRL

+;
currently not found,

but D515N variant was
detected in melanoma

med s

pol3–5DV;
D520V;

(-)
[22]

20;
(Canr)

[22]

§ Exo activity: (-)—none; (−/+)- residual; (+/−)—detectable, around 50% of wild-type; (+)—more than 50% of wild-type *—Found in cancers: +—less than 10 times; ++—10–30; +++—more
than 30. Sources of information: cBioPortal (http://www.cbioportal.org/) and [2,124]. **—Mutation load: med—<1000 per genome, high—1000–5000; ultra-high—more than 5000—methods
of determination of mutation rate or frequency and reference: in vivo mutation in Big Blue mice [138]; 6-tioguanine or ouabain-resistant mutants in cultured embryonic fibroblasts,
MEFs [138], #—NGS, mutations per megabase [135]; ***(-)—missing catalytic residue, predicted to be exo−.n/a—not applicable; nd—not determined.

http://www.cbioportal.org/


Cancers 2020, 12, 3489 13 of 20

6. Conclusions: A Projection into the Future

Tumor genomes databases list thousands of mutations in pol genes. It is conceivable that the
vast majority are passengers. We predict that, along with further progress and accuracy in the
characterization of tumor genomes and functional characterization of recurrent mutations, new regions
of DNA pols catalytic and other subunits whose alterations predispose to cancer will be found.
One example of the significance of POLD1 polymerase domain alterations in colorectal cancer is a
mutation leading to R689W change in pol III motif [147,148]. The knockout of the gene for an accessory
subunit of pol ε, Pole4 in mice causes genome instability and elevated tumorigenesis if Tp53 is also
knocked out [149]. Rev3l−/− mice are inviable, but MEF lines with the addition of Tp53−/− exhibit
striking genome instability [150]. It is likely that cancer-associated mutations will be found in the
genes encoding pol ζ, which is responsible for mutagenesis by virtually all DNA-damaging agents.
We will learn more about the functionality of mutations in genes for pols and other components
of cells, assuring genome integrity, and a more precise and detailed list of cancer susceptibility pol
alleles. Modeling the mutations in mice will provide more sophisticated information on their biological
consequences in comparison to the yeast model. Structural studies of human pols by crystallography
and EM will help to define all critical regions of DNA pols responsible for the fidelity of replication
and interaction with partners.

Author Contributions: Y.I.P. conceived the review, wrote the first draft, and finalized the manuscript for
submission. E.I.S. and A.S.Z. analyzed cancer-associated mutations in DNA pol genes (RSF #20-15-00081),
contributed to all four figures, edited, and modified the manuscript. Y.I.P., A.S.Z., and E.I.S. participated in
funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by RSF grant #20-15-00081 to E.I.S.; by the Government of the Russian
Federation through the ITMO Fellowship and Professorship Program to A.S.Z; Y.I.P was supported by the Eppley
Institute for Research in Cancer Pilot grant.

Acknowledgments: We thank Brad Preston, Polina Shcherbakova, and Stephanie Barbari for the discussions on
the subjects related to the review and for introducing Y.I.P. to the field of DNA polymerase alterations in cancer.
We thank Kristi Berger for help in manuscript editing.

Conflicts of Interest: The authors declare no conflict of interest. There is no role of funding agencies in the choice
of review, writing of the manuscript, or publishing results.

References

1. Rayner, E.; van Gool, I.C.; Palles, C.; Kearsey, S.E.; Bosse, T.; Tomlinson, I.; Church, D.N. A panoply of errors:
Polymerase proofreading domain mutations in cancer. Nat. Rev. Cancer 2016, 16, 71–81. [CrossRef] [PubMed]

2. Barbari, S.R.; Shcherbakova, P.V. Replicative DNA polymerase defects in human cancers: Consequences,
mechanisms, and implications for therapy. DNA Repair 2017, 56, 16–25. [CrossRef] [PubMed]

3. Loeb, L.A.; Springgate, C.F.; Battula, N. Errors in DNA replication as a basis of malignant changes. Cancer Res.
1974, 34, 2311–2321. [PubMed]

4. Preston, B.D.; Albertson, T.M.; Herr, A.J. DNA replication fidelity and cancer. Semin. Cancer Biol. 2010, 20, 281–293.
[CrossRef] [PubMed]

5. Tahirov, T.H.; Makarova, K.S.; Rogozin, I.B.; Pavlov, Y.I.; Koonin, E.V. Evolution of DNA polymerases:
An inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases
from two classes of archaeal ancestors. Biol. Direct 2009, 4, 11. [CrossRef] [PubMed]

6. Kazlauskas, D.; Krupovic, M.; Guglielmini, J.; Forterre, P.; Venclovas, Č. Diversity and evolution of B-family
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