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Abstract

Objectives: Recommended cut‐off criteria for testing measurement invariance (MI)

using the comparative fit index (CFI) vary between −0.002 and −0.01. We compared

CFI results with those obtained using Bayesian approximate MI for cognitive function.

Methods: We used cognitive function data from Waves 1–5 of the English Longitu-

dinal Study of Ageing (ELSA; Wave 1 n = 11,951), a nationally representative sample

of English adults aged ≥50. We tested for longitudinal invariance using CFI and

approximate MI (prior for a difference between intercepts/loadings ~N(0,0.01)) in

an attention factor (orientation to date, day, week, and month) and a memory factor

(immediate and delayed recall, verbal fluency, and a prospective memory task).

Results: Conventional CFI criteria found strong invariance for the attention

factor (CFI + 0.002) but either weak or strong invariance for the memory factor

(CFI −0.004). The approximate MI results also supported strong MI for attention but

found 9/20 intercepts or thresholds were noninvariant for the memory factor. This

supports weak rather than strong invariance.

Conclusions: Within ELSA, the attention factor is suitable for longitudinal analysis

but not the memory factor. More generally, in situations where the appropriate

CFI criteria for invariance are unclear, Bayesian approximate MI could alternatively

be used.
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1 | INTRODUCTION

Measurement invariance (MI) is an often‐underappreciated problem in

psychiatric research. Although some outcomes in psychiatry are dis-

crete and directly observable, many are impossible to observe directly.

Cognitive function is an example of this and is the focus of this study.

Latent variable analysis is one common method used to combine
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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multiple measures into a single measure of an underlying concept of

interest. However, a frequently occurring problem when using latent

variables longitudinally is that the association between the observed

variables and the unobserved latent variable changes over time.

In tests of cognition, performance on the tests will be determined

the individual's ability in the target function (say working memory) but

also their ability in a range of other cognitive and physical functions
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(such as attention and hearing). The demands on other functions will

differ between tests. Each additional function utilised in performing

each individual task may be differentially affected by ageing, disease,

or setting (McAvinue et al., 2012; Wiegand et al., 2014). As well as dif-

ferent rates of change secondary to cognitive or physical processes,

the size of practice effects may also vary between different tests of

the same cognitive function (Calamia, Markon, & Tranel, 2012). Any

of these may change the strength of the association between the indi-

vidual cognitive tests and the latent cognitive function over time. In

factor analysis, this manifests as a change in factor loading or intercept

and is known as MI (van de Schoot, Lugtig, & Hox, 2012).

MI has been discussed extensively elsewhere and has been iden-

tified as a problem in longitudinal studies of cognitive function since at

least the late 1980s and early 1990s (Horn & McArdle, 1992; Schaie,

Willis, Jay, & Chipuer, 1989). With some notable exceptions, popula-

tion and clinical research on cognitive function has had a tendency

to overlook this issue with a preference for using summed scores,

the measurement properties of which are often not examined

(Blankson & McArdle, 2013; McArdle, Fisher, & Kadlec, 2007;

Wicherts, 2016). If this issue is ignored, it biases estimates of change

in cognitive function over time towards the direction of the change

in latent intercept or varying effects for a change in factor loading

(Ferrer, Balluerka, & Widaman, 2008; Horn & McArdle, 1992; van de

Schoot et al., 2013; Wicherts, 2016; Widaman, Ferrer, & Conger,

2011). For example, practice effects would be expected to increase

the intercept leading to an overestimation of cognitive ability at

follow‐up visits and thus underestimation of decrease over time

(Wicherts & Dolan, 2010). Alternatively, a decrease in factor loading

due to increased sensory impairment over time weakening the associ-

ation between measurable and latent cognitive function could lead to

overestimation of cognitive function for low scorers and underestima-

tion for high scorers as time progresses (Wicherts, 2016).

1.1 | Conventional MI

Underlying a set of k (n = 0, …, k) continuous observed variables c that

have been measured, there is a latent variable η (Muthén &

Asparouhov, 2013; van de Schoot et al., 2013). If they are measured

in individual i at time t, the measurement part is

cikt ¼ vkt þ λktηit þ εikt: (1)

Here, cikt is the observed value of variable k at time t in individual

i, vkt is the intercept for variable k at time t, λkt is the loading for var-

iable k at time t, ηit is the value of the latent variable at time t for

the variable k, and εikt is the error for individual i at time t for observed

variable k. This model assumes independence amongst the c's condi-

tional on the factor that the residuals are uncorrelated with the factors

and the errors are normally distributed with a mean of 0. The factor

metric is usually set by fixing λ = 1 for one observed variable.

A linear growth curve for factor scores (the structural model) is

ηit ¼ ηoi þ xtη1t þ ςit: (2)

Here, η0i is the intercept of the latent variable, η1i is the slope

growth factor, and Ϛit is the time and individual specific residual. The
binary case is a straightforward extension of Equation (1), and if a

probit link function is assumed, then the latent variable is assumed

to follow a continuous distribution and the structural model is

unchanged. Otherwise, it should be noted that the intercept vkt is

replaced with the threshold –τtl (Muthen, 2004).

For continuous variables, the specification of MI consists of (a) the

same variables load onto the same factors at each time point (the

same vector of cikt for each ηit), (b) the factor loadings are equal at

each time point (λk1 = λk2 = … = λkt), (c) intercepts are equal at each

time point (vk1 = vk2 = … = vkt), and (d) residual variances fixed across

time (εik1 = εik2 = … = εikt; van de Schoot et al., 2012; Widaman et al.,

2011). If only a holds, this is known as configural invariance, a–b weak

invariance, a–c strong invariance, and a–d strict invariance. In the case

of binary observed variables the second stage, weak factorial invari-

ance is skipped because the item probability curve is influenced simul-

taneously by loading and intercept (Muthén & Muthén, 2014).

Strong invariance needs to be established in order to compare

latent means over time (Ferrer et al., 2008; Widaman et al., 2011). If

this assumption does not hold, then mean differences over time in a

latent variable of cognitive function cannot be clearly attributed to

change in true cognitive function because the scale of the dependent

variable has changed. Additionally, tests of MI are sensitive to the

choice of indicator variable (Shi, Song, Liao, Terry, & Snyder, 2017).

This is fixed at 1 for every time point and is used to establish the scale

of the latent variable, so at least one factor loading must be assumed

to be invariant. Thus, the choice of a noninvariant reference variable

can make decisions regarding MI significantly more difficult.

The standard approach to testing MI is to sequentially compare

each level of increasing invariance using the χ2 test of model fit. With

large sample sizes, this is a strict test and strong factorial invariance

over time may be rejected even in robust longitudinal studies of cog-

nitive ageing (Blankson & McArdle, 2013; Muthén & Asparouhov,

2013). Therefore, with large sample sizes, alternative fit indices, in

particular the comparative fit index (CFI), are frequently used instead

(Cheung & Rensvold, 2002; Meade & Bauer, 2007). However, recom-

mendations for the change in CFI that establishes MI differ between

studies, and these recommendations vary between 0.01 and 0.002

depending on author and the number of factors, indicators of

those factors, and groups/occasions used (Chen, 2007; Cheung &

Rensvold, 2002; Meade & Bauer, 2007; Meade, Johnson, & Braddy,

2008; Short, 2014).

Although these methods can be used to identify invariance, they

are not informative about which parameters are invariant. To do this,

one can either relax each equality constraint in turn or use modifica-

tion indices, which give a measure of the improvement in model fit

that would result from relaxing certain modelling assumptions.

Relaxing each equality constraint sequentially means allowing each

loading or intercept at each time point individually to be different to

the same intercept or loading at all other time points. The change in

model fit can then be assessed. This is laborious, and random variation

can lead to different invariance solutions being identified depending

upon the order in which the constraints are relaxed (MacCallum,

Roznowski, & Necowitz, 1992; Muthén & Asparouhov, 2012). Modifi-

cation indices are limited in application because they are only vali-

dated for two samples or time points (Muthén & Asparouhov, 2013).
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1.2 | Bayesian MI

Bayesian structural equation modelling (BSEM) has introduced the

concept of approximate MI to take account of multiple small or mod-

erate noninvariances in loadings, intercepts, or thresholds. Addition-

ally, it provides a one‐step method of identifying which parameters

are invariant (Muthén & Asparouhov, 2013; van de Schoot et al.,

2013; Verhagen & Fox, 2013). The basic effect of approximate MI is

that instead of requiring that all loadings be exactly equal, they are

instead “tethered” so that they do not have to be exactly equal but

are allowed to differ only by a substantively unimportant amount.

As described above, the conventional condition which must be

met for strong factorial invariance (and therefore the ability to mea-

sure change in latent means over time) is that for each of the observed

variables, λk1 = λk2 = … = λkt and vk1 = vk2 = … = vkt. Let ђ be the

difference between λ's such that λk1 − λk2 = ђk12, λk2 − λk3 = ђk23,

and λk1 − λk3 = ђk13. Also, let be the difference between v's such that

νk1 − νk2 = иk12, νk2 − νk3 = иk23, and νk1 − νk3 = иk13. The conventional

frequentist assumption of strong invariance can then be defined in

Bayesian terms as the strongly informative priors of ђkXX~N(0, 0) and

иkXX~N(0, 0) (Muthén & Asparouhov, 2013).

Given that, from a Bayesian perspective, the factor loadings and

intercepts are random variables, the assumption of 0 variance is diffi-

cult to envisage in this framework. With approximate MI, this is

instead relaxed slightly to a still strong but more plausible informative

prior with 0 mean and small variance such as ђkXX~N(0,0.01) and

иkXX~N(0,0.01). One reason for preferring the Bayesian approach in

this situation is that this assumption of exact equality is relatively

unrealistic in a number of situations due to issues such as random var-

iation across many time points, attrition, or practice effects (Blankson

& McArdle, 2013; Putnick & Bornstein, 2016). The researcher can

decide a priori how long to make the tether by specifying an appropri-

ate prior for the difference between loadings or intercepts over time.

The size of the prior variance therefore sets the length of the tether

and formalises the degree of invariance which is allowable.

The difference at each time point is tested to see whether it is statis-

tically significantly different from the mean of the loadings at all time

points. This tells you if any of the loadings have broken the tether and

show a degree of noninvariance beyond that believed to be unimportant

by the researcher. Additionally, this overcomes the problems in identifying

the truly noninvariant parameters caused by fixing one indicator's loadings

at 1 for all time points. Using the Bayesian approximate MI approach,

one need only fix single loading for a single observed indicator at a sin-

gle time point to 1 (Muthén & Asparouhov, 2013; Xu & Green, 2015).

An alternative frequentist approach to testing for MI is running

models with and without MI to see if the results are conflicting (Widaman

et al., 2011). With this approach, a, often informal, decision is made about

the degree of conflict in the results that is acceptable before MI is

rejected. This decision is made using substantive prior subject knowledge

and implicitly includes an assumption about the acceptable degree of

invariance. The Bayesian approach formalises the same substantive

knowledge into the prior that can therefore be specifically tested.

When assessing for longitudinal invariance in the English Longitu-

dinal Study of Ageing (ELSA), we encountered several of the afore-

mentioned problems with conventional MI testing. The sample size is
large, therefore the χ2 test likely to be overly conservative (Chen,

2007; Cheung & Rensvold, 2002; Steptoe, Breeze, Banks, & Nazroo,

2013). Additionally, as we will show, different cut‐offs for the CFI pro-

duced different conclusions. Moreover, the kind of invariance we were

expecting was of multiple small deviations rather than few large devi-

ations from invariance. Given the number of variables and time points

in use, relaxing each constraint in turn would be both laborious and

highly prone to the risk of error due to chance. For these reasons,

we applied Bayesian approximate MI to test whether the conclusions

about the level of MI drawn from this method differed to those drawn

from the χ2 test and CFI rules.

Our primary research questions were first, in ELSA's cognitive func-

tion battery, is there longitudinal MI for an attention and a memory fac-

tor? Second, can Bayesian approximate MI be used to identify MI (or

the lack thereof) in situations where CFI has an uncertain result?
2 | METHODS

2.1 | Participants and procedure

ELSA has been described in detail elsewhere (Steptoe et al., 2013).

The study sample was drawn from participants in Health Survey for

England years 1998, 1999, and 2001 who were born before March

1, 1952 and living in a private household or those in their households

who were new partners or ≤50. We used the ELSA core sample that

was nationally representative of the age specific English population at

the time of recruitment. Data are collected in biennial sweeps by inter-

view in the participants homes. For this analysis, data from Waves 1

(2002) to 5 (2010) were utilised because the core cognitive battery

was consistent through this time.

Response rates at each wave were 70% at Wave 1, 82% at Wave

2, 73% at Wave 3, 74% at Wave 4, and 80% in Wave 5 (Steptoe et al.,

2013). After the exclusion of extreme values (see below), final sample

sizes at each wave were n = 11,951 in Wave 1, n = 9,313 in Wave 2,

n = 7,850 in Wave 3, n = 6,911 in Wave 4, and n = 6,535 in Wave 5.
2.2 | Cognitive measures

The cognitive tests were performed by computer‐assisted interview.

Orientation to time was assessed by asking the participant to name

the day, year, month, and date. To assess immediate and delayed veral

recall, 10 common words were played to participants (Steel, Huppert,

McWilliams, & Melzer, 2004). Immediate recall is assessed straight

away, and delayed recall of the word list was tested after the other

cognitive tests were undertaken (this also serve as a distraction

technique). The word lists used were randomly assigned, and a

standardised recording was used for all participants.

The prospective memory task required participants to remember

to write their initials in the top corner of a page they were handed.

Participants were prompted if they did not complete the actions spon-

taneously. A binary variable was used for remembering the correct

action (either prompted or spontaneous). Semantic (category) fluency

was assessed by asking participants to name as many animals as they
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can in 1 min. All the nonbinary variables were transformed to z‐scores

for the purpose of inclusion in the factor structure.
TABLE 1 Participant demographics at Wave 1

Variable Total Percentage

Age 64.2 SD 11.1

Female 6,676 55.7%

Non‐White 328 2.8%

Employment status

Retired 5,715 47.7%

Employed 3,370 28.1%

Self‐employed 687 5.7%

Unemployed 123 1.0%

Permanent sick 783 6.5%

Homemaker 1,173 9.8%

Other 131 1.1%

Marital status

1st Marriage 6,741 56.2%

Remarried 1,331 11.1%

Single 658 5.5%

Divorced/separated 1,256 10.5%

Widowed 2,003 16.7%

NS‐SEC social class

1 Professional 3,487 29.7%

2 1,596 13.6%

3 1,223 10.4%

4 1,320 11.3%

5 Manual 4,112 35.0%

Highest qualification

No qualifications 4,986 41.7%

High school 2,522 21.1%

6th Form 748 6.3%

Nondegree higher Ed. 1,317 11.0%

Degree 1,370 11.5%

Foreign qualification 1,014 8.5%
2.3 | Statistical analysis

Initially, extreme values with regard to the relationship between cogni-

tive variables were identified by regressing each cognitive function

variables in turn on all the others at each wave. The standardised

residuals and leverage statistics were then compared and regression

rerun with the exclusion of influential cases to see if the results were

substantively different (Institute for Digital Research and Education,

2009). Only for month and year did the exclusion of high residual

cases appears to make a substantive difference.

Due to the rarity of giving the incorrect response to year and

month, almost all incorrect answers were considered extreme

values by conventional recommendations. However, analysis of those

cases with particularly high residual values identified a subset of cases

who were incorrect on either year or month but achieved average or

better results on all other tests. These cases were felt likely to repre-

sent either errors in recording or single item inattention. In total, 97

and 85 measurement occasions were excluded for year and month,

respectively, meaning approximately 35 in total per wave of data col-

lection. Other missing data were considered missing at random, which

is as a property of the Bayesian estimation (Chen & Ibrahim, 2014).

Research on how missingness affects longitudinal invariance has only

been implemented in a single study using full information maximum

likelihood and, while a topic warranting further investigation, is

beyond the scope of this analysis (Sterba, 2017).

Initial exploratory factor analysis (EFA) and confirmatory factor

analysis (CFA) assuming invariance were performed as part of an ear-

lier study currently in submission. Two of the factors from this, atten-

tion (loaded onto by orientation questions) and memory (loaded onto

by immediate and delayed recall, prospective memory, and verbal flu-

ency), were used. The model was specified using CFA with configural

invariance and modification indices checked to see if there was any

need to make additional modifications beyond the basic factor struc-

ture (Muthén & Muthén, 2014). This identified that allowing residual

covariance over time in verbal fluency and within factor covariances

for immediate and delayed recall resulted in substantially improved

model fit. This improved model was then tested using the χ2 test

and CFI for MI.

Next, the Bayesian approximate MI model was specified. A prior

variance of ~N(0,0.01) for all differences between loadings, intercepts,

and thresholds at each wave with the mean across all waves was used.

The MPlus default noninformative priors were used for all other model

parameters (Muthén & Asparouhov, 2011). The conclusions about the

level of MI in the data were then compared between frequentist χ2

test and CFI and Bayesian approximate MI.

The primary analysis was run for all ages in the ELSA data. Sensi-

tivity analyses were run using age bands to check for one possible

source of longitudinal noninvariance. Though there was slightly less

noninvariance for older participants, and slightly more for younger

participants, the overall pattern of results was very similar for all ages.

Due to this, they are not presented here.
The data were edited using Stata version 12, and the structural

equation modelling was performed using MPlus version 7.0 (Muthén

& Muthén, 2014; StataCorp, 2011). Markov Chain Monte Carlo esti-

mation was utilised with the MPlus default Gibbs sampler and conver-

gence criterion, 105,000 iterations (of which the first 55,250 are burn‐

in) and no thinning (Muthén & Asparouhov, 2011).
3 | RESULTS

The participants at Wave 1 were 55.7% female, had a mean age of

64.2, and 2.8% of the sample were of non‐White ethnicity (Table 1).

The large minority of participants were retired (47.7%), and the major-

ity of the rest of the sample worked as either employed (28.1%) or

self‐employed (5.7%). Most participants were married (56.2% first

marriage; 11.1% remarried). The modal educational attainment was

no qualifications (41.7%) with 11.5% having attained a degree. There

was a bimodal distribution of social class with the largest groups being

Class 5 (manual and routine occupations; 35.0%) and the second larg-

est Class 1 (managerial and professional roles; 29.7%).



TABLE 2 Mean or proportion of correct responses for each cognitive task

Wave

1 2 3 4 5

n 11,630 9,066 7,659 6,656 6,535

Mean

Immediate 5.4 (1.8) 5.7 (1.8) 5.7 (1.8) 5.7 (1.8) 5.7 (1.9)

Delayed 4.0 (1.8) 4.3 (2.1) 4.4 (2.2) 4.4 (2.2) 4.4 (2.2)

Verbal fluency 19.3 (6.4) 19.8 (6.6) 19.8 (6.8) 20.2 (7.0) 20.2 (7.0)

Proportion correct (%)

Year 97.4 98.1 97.5 97.4 97.3

Date 80.6 81.4 80.8 80.8 81.7

Month 97.6 97.7 97.2 97.7 97.8

Day 97.9 97.8 97.6 97.7 97.5

Prospective 79.6 81.3 82.9 84.3 85.8

Results displayed as mean (standard deviation).

WILLIAMS ET AL. 5 of 8
Cognitive function data were available for 11,630 of 11,951 par-

ticipants at Wave 1; 9,066 of 9,313 at Wave 2; 7,659 of 7,850 at

Wave 3; 6,656 of 6,911 at Wave 4; and 6,216 of 6,535 at Wave 5.

The results showed a slight improvement in the memory factor tasks

over time (Table 2). Mean immediate word recall was 5.4 (SD 1.8) in

Wave 1 and 5.7 (SD 1.9) in Wave 5. Mean delayed recall was 4.0

(SD 1.8) in Wave 1 and 4.4 (SD 2.2) in Wave 5. The number of partic-

ipants correctly remembering the prospective memory task was 79.3%

in Wave 1 and 85.8% in Wave 5. The orientation to time tasks was

stable over time. The proportion of participants in Wave 1 correctly

identifying the year was 97.4%, date 80.6%, month 97.6%, and day

97.9%. This was not dissimilar to Wave 5 where the proportion of par-

ticipants correctly identifying the year 97.3%, date 81.7%, month

97.8%, and day 97.5%.

The factors structure was modelled based on previous EFA and

CFA. The attention factor was composed of orientation to year, date,

month, and day. The memory factor was composed of immediate and

delayed recall, verbal fluency, and prospective memory. In the memory

factor, the residual variances of verbal fluency were allowed to corre-

late over time and the residual variances between immediate and

delayed recall were allowed to correlate at each time point, reflecting

the more similar nature of these tasks.

When testing for longitudinal invariance using the χ2 test, all

levels of MI were rejected for both the attention and memory factor

with a p values of <0.001 (Table 3). We then compared the CFI

between the models. The model with configural invariance both atten-

tion and memory had a CFI of 0.976. Setting strong invariance for the

attention factor (not weak invariance as all four indicator variables
TABLE 3 Model fit tests for conventional frequentist CFA

χ2 test versus
baseline model

χ2 test vers
restrictive m

All configural <0.001 −

Attention strong <0.001 0.002

Memory weak <0.001 <0.001

Memory strong <0.001 <0.001

Both strong <0.001 <0.001

Note. CFI: comparative fit index.
were binary) actually improved the CFI to 0.978. Weak invariance

for the memory factor also increased the CFI to 0.978 whereas strong

invariance reduced it to 0.972. Strong invariance for both factors

resulted in a CFI of 0.973 showing that the misfit induced by strong

invariance in the memory factor was not compensated for by the

improvement in fit from strong invariance in the attention factor.

Therefore, using the CFI criteria, longitudinal MI was not rejected

for the orientation factor by any criteria. On the other hand, the

decrease in CFI of 0.006 in the change between weak and strong

invariance for the memory factor falls between different recommen-

dations from different studies.

The approximate MI results found that there was one parameter

in the attention factor that showed a minor degree of noninvariance

(Table 4); the 1st wave loading for recall of the day (0.326) that is

0.036 less than the mean loading across all waves (0.362); this was a

statistically significant difference based on the 95% credible interval.

This is not likely to have a substantively important impact on the

results of longitudinal analysis.

For the memory factor, there is only one noninvariant loading; the

Wave 4 verbal fluency loading (0.927) that is 0.029 greater than the

mean across all waves (0.898). However, 9 of the 20 intercepts and

thresholds are noninvariant. For immediate recall, the 2nd (0.052

above the mean), 3rd (0.032 above the mean), and 5th (0.057 below

the mean) loadings show significant noninvariance. For delayed recall,

the 2nd (0.036 above the mean) and 3rd (0.053 above the mean)

occasions are noninvariant. In verbal fluency, the 2nd measurement

occasion is estimated as being 0.009 above the mean. For prospective

memory task, the threshold on the 1st occasion is 0.069 above the
us less
odel CFI

CFI difference versus less
restrictive model

0.976 −

0.978 0.002

0.978 0.002

0.972 −0.006

0.973 0.001 or −0.005



TABLE 4 Factor loadings using Bayesian approximate measurement invariance for both factors at each time point

Item

Approximate invariance factor loadings (0.01 prior variance)

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Mean

Year 1 1.021 1.034 1.029 1.045 1.026

Orientation Date 0.278 0.295 0.298 0.264 0.264 0.28

Factor Month 0.51 0.54 0.555 0.513 0.516 0.527

Day 0.326* 0.387 0.35 0.369 0.377 0.362

Immediate recall 1 1.013 1.025 1.021 0.985 1.009

Memory Delayed recall 1.08 1.102 1.101 1.082 1.064 1.086

Factor Verbal fluency 0.856 0.897 0.896 0.927* 0.914 0.898

Prospective mem. 0.88 0.934 0.875 0.911 0.855 0.891

Approximate invariance intercepts† and thresholds‡ (0.01 prior variance)

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Mean

Year‡ −5.887 −5.9 −5.892 −5.898 −5.89 −5.893

Orientation Date‡ −1.095 −1.099 −1.088 −1.040 −1.062 −1.077

Factor Month‡ −3.483 −3.446 −3.463 −3.457 −3.476 −3.465

Day‡ −2.796 −2.853 −2.754 −2.847 −2.811 −2.812

Immediate recall† −0.013 0.053* 0.033* −0.013 −0.055* 0.001

Memory Delayed recall† −0.014* 0.069* 0.086* 0.037 −0.013 0.033

Factor Verbal fluency† −0.011 0.009* −0.013 −0.013 −0.063 −0.018

Prospective Memory‡ −0.963* −1.013 −1.034 −1.064 −1.086* −1.032

*Statistically significant using 95% credible interval.
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mean and the 5th occasion is 0.054 below the mean for all measure-

ment occasions.

This means that across multiple time points, there are different

expected values of the indicator variables for memory when the mean

of the factor is zero. Although the individual differences are small, the

number of noninvariant parameters suggest that the latent mean at

one time point is not directly comparable with another. It may be

better not to use the memory factor for longitudinal analysis but to

analyse the individual memory tasks separately. These results support

the use of the stricter CFI criteria for MI in this case.
4 | DISCUSSION

When analysing cognitive function data from ELSA, we encountered a sit-

uation where different recommendations for using the CFI to establish MI

led to different conclusions. We sought to use approximate MI to provide

an alternative method of deciding which level of MI to accept or reject. In

this case, the approximate MI approach identified small but significant

noninvariance in the loadings of the memory and attention factors that

was not identified by the use of CFI (which did not reject weak invari-

ance). However, the degree of invariance in loadings that was identified

using approximate MI but missed by CFI was relatively trivial. This sug-

gests that the assumptions of strong longitudinal MI in the attention

factor and weak invariance in the memory factor are plausible.

The main source of longitudinal noninvariance was not in the factor

loadings but the intercepts of the memory factor. This led to strong

invariance to being rejected by both the stricter CFI criteria and approx-

imate MI. This is particularly important because strong invariance is

required to compare latent means over time and therefore necessary

for longitudinal analysis. However, using alternative CFI cut‐off rules
for MI would have led the authors to a different conclusion about the

presence or absence of strong invariance for the memory factor. Using

a cut‐off of −0.01 such as that recommended by Chen (2007) or

Cheung and Rensvold (2002) would have suggested not rejecting strong

MI. By the more stringent recommendations of Meade et al. (2008) of

−0.002, strong but not weak invariance would have been rejected.

Moreover, as discussed by Short (2014), the truly suitable cut‐off for

CFI may be different again when using the specific number of time

points and observed variables available. Using approximate MI revealed

that there was a high proportion of noninvariant intercepts and thresh-

olds for the memory factor caused by multiple small deviations from

noninvariance. This would have been difficult to accurately identify in

a step‐wise fashion using a frequentist estimator.

If using factor analysis or another data reduction method, includ-

ing sum scores, then ignoring this MI would have resulted in bias in the

estimation of the memory factor latent mean (Muthén & Asparouhov,

2013; van de Schoot et al., 2013). In our results, the Waves 2 and 3

memory factor latent means would have been overestimated due to

increases in the immediate and delayed recall intercepts. Wave 5

would have been underestimated because of decreases in the immedi-

ate recall intercept and prospective memory threshold. These effects

would result in bias in both the estimation of both the rate and shape

of the latent growth curve.

The noninvariance in the memory factor seems to be a combina-

tion of several isolated deviations and a linked increase in immediate

and delayed recall in Waves 2 and 3. It is possible that the

noninvariance seen at Waves 2 and 3 for the intercepts of immediate

and delayed recall represents unequal practice effects in the indicators

of this factor. The reduction in Waves 4 and 5 may represent fatiguing

practice effects, an initial practice effect followed by more rapid

decline in performance on those tasks or practice effects for the other
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indicators catching up relative to the recall tasks (Calamia et al., 2012).

Whether Bayesian MI could be used to detect non‐uniform practice

effects may be an avenue for further research.

The present study has the strength of using data from a high‐

quality multidisciplinary survey with a large sample size. This study

is relevant to researchers with a wide variety of longitudinal research

questions relating to phenomena that cannot be directly observed. It

is especially pertinent for those researching common mental health

disorders who wish to utilise the richness of multidisciplinary surveys

but lack a validated measure (previously demonstrated to be invari-

ance over time in the population of interest) of the construct of

interest, as with cognition in the first five waves of ELSA. Here,

difficulties due to a large number of small noninvariances are partic-

ularly likely to occur. Furthermore, the specific number of groups or

time points may not to have been covered in previous simulation

studies, thus the most appropriate cut‐off for the CFI or other fit

indices not known.

The large sample size to some extent does cover one of the

potential weaknesses of BSEM in that it can be highly sensitive to

prior specifications (Depaoli, Yang, & Felt, 2017; van Erp, Mulder, &

Oberski, 2018). Informative priors for one parameter have the prop-

erty of inducing implicit priors for other covariant parameters in a

fashion that is difficult to predict and manage (MacCallum, Edwards,

& Cai, 2012). It should be noted that if there is insufficient data to

generate informative priors, or they are not desired for substantive

reasons, then BSEM estimates with noninformative priors tend to con-

verge with maximum likelihood estimates (Helm, Castro‐Schilo, &

Oravecz, 2017; Lee, Song, & Tang, 2007). Although the single step

identification of noninvariant parameters offers significant theoretical

advantages over methods such as modification indices, in terms of the

reduction of the capitalization of chance in inferences, there are few

simulation studies to confirm this finding (MacCallum et al., 2012).

BSEM retains the common practical problems of many types of

Bayesians analysis in terms of computational intensity, challenges with

assessing convergence, and unfamiliarity to many users. This is partic-

ularly the case in comparison with approaches to identifying MI such

as straightforwardly comparing parameters between models that

assume or do not assume MI. Although this approach may provide

rapid answers in some clear‐cut situations, in many cases even if an

acceptable difference between estimates is prespecified (e.g., 5% or

10%), the results are borderline (Flora & Curran, 2004). This approach

will also be model specific if the target of interest is a predictor of

growth or a distal outcome and the additional information about

invariant parameters will not be obtained, unlike with approximate MI.

Approximate MI, although not a panacea, is designed to handle

multiple small invariances, and its power to detect noninvariance is

not known to be affected by changing the number of groups or occa-

sions being compared, which provides substantial flexibility. As such, it

may be useful for future researchers to consider when testing the

measurement properties of their instruments in longitudinal research.

With regard to ELSA specifically, we find an attention factor that

essentially shows strong MI over time but only weak invariance for a

memory factor. Although the degree of noninvariance was relatively

small, it was on a large number of parameters and therefore,

researchers may wish to either avoid using the memory factor
for longitudinal research or accommodate the noninvariance using

approximate or partial MI.
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